
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 6, No. 2, 2018, pp. 248-265

Discretization of a fractional order ratio-dependent functional re-
sponse predator-prey model, bifurcation and chaos

Razie Shafeii Lashkarian∗

Department of Basic science, Hashtgerd Branch,
Islamic Azad University, Alborz, Iran.
E-mail: r.shafei@alzahra.ac.ir

Dariush Behmardi Sharifabad
Department of Mathematics,
Alzahra university, Tehran, Iran.
E-mail: behmardi@alzahra.ac.ir

Abstract This paper deals with a ratio-dependent functional response predator-prey model

with a fractional order derivative. The ratio-dependent models are very interest-
ing, since they expose neither the paradox of enrichment nor the biological control
paradox. We study the local stability of equilibria of the original system and its

discretized counterpart. We show that the discretized system, which is not more
of fractional order, exhibits much richer dynamical behavior than its corresponding
fractional order model. Specially, in the discretized system, many types of bifur-
cations (transcritical, flip, Neimark-Sacker) and chaos may happen, however, the

local analysis of the fractional-order counterpart, only deals with the stability (un-
stability) of the equilibria. Finally, some numerical simulations are performed by
MATLAB, to support our analytic results.
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Chaos.
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1. Introduction

Mathematical model for predator-prey interaction is studied originally by Lotka
[26] and Volterra [41] as{

ẋ = γx− αxy,
ẏ = βxy − δy,

(1.1)

where x and y are the numbers of prey and predator, respectively. In this classical
model the positive parameters γ, α, β, and δ stand for growth rate of prey, predation
rate, conversion rate to change prey biomass into predator reproduction and death
rate of predator, respectively.
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More generally the predator-prey model is the following system{
ẋ = rx(1− x

k )− F (x, y),
ẏ = β F (x, y)− δy.

(1.2)

The positive parameters r, k, β and δ represent the prey intrinsic growth rate, the
environmental carrying capacity, conversion rate to change prey biomass into predator
reproduction and predator’s death rate, respectively. The function F (x, y) describes
predation and is called the functional response.

Traditionally, F (x, y) is assumed to be a function of the prey population x, that
is, F (x, y) = F (x), where F (x) is a Holling type (II) function [34]. It is shown that
a predator-prey model with the prey-dependent functional response, may expose the
so-called paradox of enrichment or the biological control paradox [3, 11, 13, 37].

The following ratio-dependent functional response predator-prey model has been
suggested by Arditi and Ginzburg in [4]

ẋ = rx(1− x
k )−

axy
abx+y ,

ẏ = y
(
−d+ ηax

abx+y

)
.

(1.3)

Here a > 0 and b > 0 are predator’s attack rate and handling time, respectively.
System (1.3) exposes neither the paradox of enrichment nor the biological control

paradox [5, 17, 18, 39]. One can simplify (1.3), by rescaling

t → rt, x → x/k y → y/abk.

Therefore the ratio-dependent functional response predator-prey model is written as
ẋ = x(1− x)− αxy

x+y ,

ẏ = −δy + βxy
x+y ,

(1.4)

where

α =
a

r
, β =

η

br
, δ =

d

r
. (1.5)

Note that once r varies in system (1.3), then the values of α, β and δ change in system
(1.4). So in numerical simulations we plot the bifurcation diagrams in (r, x) plane.

On the other hand, the fractional derivative provides an excellent tool for describ-
ing memory and the hereditary properties of various materials and processes [14, 30].
In other words, the fractional derivative can adequately represent some long-term
memory and non-local effects [27]. In this calculus, a Caputo derivative implies a
memory effect via convolution between an integer-order derivative and power of time
[28]. Fractional differential equations (FDE) also help to reduce errors that arise
from neglected parameters in modeling of real-life phenomena [36]. The relation be-
tween memory and fractional mathematics is pointed out in [2]. Fractional calculus
arose originally from the generalization of the ordinary integrals and derivatives. For
example, in [21] the authors show that the fractional calculus is a combination of
stochastic processes, probability, integro-differential equations, integral transforms,
special functions, numerical analysis, etc. Consequently, considerable attention has
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been given to the solutions of fractional ordinary differential equations, integral equa-
tions and fractional partial differential equations of physical interest, see for example
[7, 19, 20, 29, 33, 35, 38].

Furthermore, studying chaos in fractional order dynamical systems is an interesting
topic as well [15, 16, 32]. Chaos is found in some autonomous fractional-order systems
with orders less than three, unlike their integer-order counterparts (according to the
Poincaré-Bendixon theorem).

However, at our best knowledge, the bifurcations of fractional order systems, is
not defined yet and to study it, one should use a discretization algorithm. In this
method one should interchange the fractional order system of order θ, with a para-
metric ordinary discrete dynamical system in the parameter θ, and then one study
the bifurcations of the new system.

In this paper we consider a fractional order ratio-dependent functional response
predator- prey model and its discretization. We show that the discretized fractional-
order system produces a much richer dynamic (bifurcations and chaos) than the sys-
tem’s counterpart. At our best knowledge, this is the first study on the dynamic of a
discretized fractional order ratio-dependent response predator- prey model.

The organization of the paper is as follows. In Section 2, after some fractional
calculus preliminaries, we review some results for relations between properties of
equilibria and possibility of existence of chaos in a fractional order system. In Section
3, we determine the equilibria of the model and then the discretization process of
the system is given. In Section 4, we study the local stability of the equilibria, and
we investigate the dynamics of the discretized model. Section 5 is devoted to some
numerical simulations and bifurcation diagrams, to support the analytic results.

2. Preliminaries

Definition 2.1. Let function f ∈ L1(R+). The Riemann-Liouville fractional integral
of order θ ∈ R+, is defined as

Iθf(t) =
1

Γ(θ)

∫ t

0

(t− τ)θ−1f(τ)dτ, (2.1)

where Γ(.) is the Euler gamma function.

Definition 2.2. The Caputo fractional derivative of order θ ∈ (n − 1, n), n ∈ N, of
f(t), t > 0, is defined by

Dθf(t) = 1
Γ(n−θ)

(
d
dt

)n ∫ t

0
(t− τ)n−θ−1f(τ)dτ

= 1
Γ(n−θ)

∫ t

0
f(n)(τ)

(t−τ)n−θ−1 dτ,

(2.2)

where the function f(t) has absolutely continuous derivatives up to order (n− 1).

Fractional order differential equations are, as stable as their integer order counter-
part, because systems with memory are typically more stable than their memoryless
counterpart [2]. Consider the nonlinear autonomous fractional order system

Dθx(t) = f(x), (2.3)
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where θ ∈ [0, 1) and x ∈ Rn. The equilibria of system (2.3)are given by solving
equation f(x) = 0. These points are locally asymptotically stable if all the eigenvalues

of the Jacobian matrixA = ∂f
∂x at the equilibrium points satisfy the following condition

[31]:

| arg(λi)| > θπ/2, i = 1, 2, . . . , (2.4)

where λi, i = 1, . . . , n are the eigenvalues of the Jacobian matrix A, through the
equilibrium point of system (2.3).

The Lyapunov exponent of a dynamical system, is a quantity that characterizes the
rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories
in phase space with initial separation δX0, diverge (provided that the divergence can
be treated within the linearized approximation) at a rate given by

|δX(t)| ≈ eλt|δX0|,

where λ is the Lyapunov exponent.
LetX(t) be the trajectory of the following n-dimensional linear ordinary differential

equation with constant coefficients

Ẋ = AX + f t, (2.5)

and if the constant coefficient matrix A has n different eigenvalues λ1, λ2, . . . , λn, then
the real parts of the n different eigenvalues are naturally the Lyapunov exponents.
However, if the dynamical system is not given by (2.5), for instance, if the dynamical
system is a nonlinear polynomial autonomous system, the conception on Lyapunov
exponents becomes complicated [12].

Also the rate of separation can be different for different orientations of initial
separation vector. Thus, there is a spectrum of Lyapunov exponents, equal in number
to the dimensionality of the phase space. It is common to refer to the largest one as the
Maximal Lyapunov exponent (MLE), because it determines a notion of predictability
for a dynamical system. A positive MLE is usually taken as an indication that the
system is chaotic.

The Maximal Lyapunov exponent can be defined as follows:

λ = lim
t→∞

lim
δX0→0

1

t
ln

|δX(t)|
|δX0|

,

The limit δX0 → 0 ensures the validity of the linear approximation at any time [8].
For discrete time system xn+1 = f(xn), for an orbit starting with x0 this translates

into:

λ(x0) = lim
n→∞

1

n

n−1∑
i=0

ln |f
′
(xi)|.

For a dynamical system with evolution equation f t in an n- dimensional phase
space, the spectrum of Lyapunov exponents

{λ1, λ2, . . . , λn},
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in general, depends on the starting point x0. However, we will usually be interested
in the attractor (or attractors) of a dynamical system, and there will normally be
one set of exponents associated with each attractor. The choice of starting point
may determine which attractor the system ends up on, if there is more than one.
The Lyapunov exponents describe the behavior of vectors in the tangent space of the
phase space and are defined from the Jacobian matrix

J t(x0) =
df t(x)

dx

∣∣∣∣
x0

,

The J t matrix describes how a small change at the point x0 propagates to the final
point f t(x0). The limit

L(x0) = lim
t→∞

(J t · Transpose(J t))1/2t

defines a matrix L(x0) (the conditions for the existence of the limit are given by
the Oseledec theorem). If Λi(x0) are the eigenvalues of L(x0), then the Lyapunov
exponents λi are defined by

λi(x0) = lnΛi(x0),

Based on the experience of the linear system (2.5) and some plausible thinking,
for a dissipative system, as criterions, it is proposed in the reference [8] that, if the
attractor reduces to

a: stable fixed point, all the exponents are negative;
b: limit cycle, an exponent is zero and the remaining ones are all negative;
c: k- dimensional stable torus, the first k Lyapunov exponents vanish and the

remaining ones are negative;
d: for strange attractor generated by a chaotic dynamics at least one exponent

is positive.

The above mentioned definition on Lyapunov exponents and proposed criterions about
the relations between the characteristic of LE and the properties of the attractors are
widely used.

The set of Lyapunov exponents will be the same for almost all starting points of
an ergodic component of the dynamical system.

Lyapunov exponent for time varying linearization: To introduce Lyapunov
exponent let us consider a fundamental matrix X(t) (e.g., for linearization along sta-

tionary solution x0 in continuous system the fundamental matrix is exp

(
dft(x)
dx

∣∣∣
x0

t

)
consisting of the linear independent solutions of the first approximation system. The
singular values {αj

(
X(t)

)
}n1 of the matrix X(t) are the square roots of the eigenvalues

of the matrix X(t)∗X(t). The largest Lyapunov exponent λmax is as follows [40]

λmax = max
j

lim sup
t→∞

1

t
lnαj

(
X(t)

)
.

Lyapunov proved that if the system of the first approximation is regular (e.g., all
systems with constant and periodic coefficients are regular) and its largest Lyapunov



CMDE Vol. 6, No. 2, 2018, pp. 248-265 253

exponent is negative, then the solution of the original system is asymptotically Lya-
punov stable. Later, it was stated by Perron that the requirement of regularity of the
first approximation is substantial.

In 1930 Perron constructed an example of a second order system, where the first
approximation has negative Lyapunov exponents along a zero solution of the original
system but, at the same time, this zero solution of the original nonlinear system is
Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution
almost all solutions of original system have positive Lyapunov exponents. Also, it is
possible to construct a reverse example in which the first approximation has positive
Lyapunov exponents along a zero solution of the original system but, at the same
time, this zero solution of original nonlinear system is Lyapunov stable [24, 25]. The
effect of sign inversion of Lyapunov exponents of solutions of the original system and
the system of first approximation with the same initial data was subsequently called
the Perron effect [24, 25].

Perron’s counterexample shows that a negative largest Lyapunov exponent does
not, in general, indicate stability, and that a positive largest Lyapunov exponent does
not, in general, indicate chaos.

Therefore, time varying linearization requires additional justification [25].
In [9] the stability of a linear fractional differential equation is characterized by its

fractional Lyapunov spectrum.
In this paper using MATLAB, the Maximal Lyapunov exponents diagram of the

discretized system, which is an ordinary discrete dynamical system is plotted and we
show that the discrete system undergoes chaos.

3. Equilibria of the ratio dependent functional response model

Consider the following fractional order ratio-dependent functional response preda-
tor prey model

Dθx(t) = x(1− x)− αxy
x+y ,

Dθy(t) = y
(
−δ + βx

x+y

)
,

(3.1)

with the initial conditions

x(0) > 0 , y(0) > 0.

Denote Nx, Ny respectively, the prey and predator nullclines. That is

Nx = {(x, y) : x = 0} ∪
{
(x, y) : y =

x(x− 1)

1− α− x

}
, (3.2)

Ny = {(x, y) : y = 0} ∪
{
(x, y) : x =

δy

β − δ

}
. (3.3)

As we are interested in biologically feasible equilibria, we only consider the points in
Nx ∩ Ny ∩ R2

+, where R2
+ is the first quadrant. The system (3.1) has two boundary
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equilibria O = (0, 0), E = (1, 0). Furthermore Nx ∩Ny has another common element
E∗ = (x∗, y∗) given by

x∗ = β−αβ+αδ
β ,

y∗ = β−δ
δ x∗ = x∗(x∗−1)

1−α−x∗ = β2−αβ2+2αδβ−βδ−αδ2

βδ .
(3.4)

Thus the system has an interior equilibrium E∗ in the first quadrant when

β − αβ + αδ > 0, β > δ. (3.5)

Note that if 0 < α < 1, then the condition β > δ implies the condition β−αβ+αδ >
0.

Remark 3.1. The condition β > δ grants a coexistence equilibrium, the predator
growth parameter β must be sufficiently larger than the predator death parameter δ.

The above details are summarized in the following theorem.

Theorem 3.2. The boundary equilibria of the system (3.1) in the first quadrant are
the coextinction point E0 = (0, 0) and the predator free point E1 = (1, 0). If β > δ
and β − αβ + αδ > 0, then the model has a coexistence equilibrium E∗ = (x∗, y∗)
defined by (3.4).

Now, the discretization process of the fractional order ratio dependent functional
response predator prey system is as follows.

Let x(0) = x0, y(0) = y0 be the initial conditions of system (3.1). So, the dis-
cretization of system (3.1) with piecewise constant arguments is given by

Dθx(t) = x
([

t
s

]
s
)
(1− x

([
t
s

]
s
)
)− αx([ ts ]s)y([

t
s ]s)

x([ ts ]s)+y([ ts ]s)
,

Dθy(t) = y
([

t
s

]
s
)(

−δ +
βx([ ts ]s)

x([ ts ]s)+y([ ts ]s)

)
,

(3.6)

where
[
t
s

]
is the value of t

s rounded down to the nearest integer.

First, Assume t ∈ [0, s) so
[
t
s

]
s = 0, hence we have

Dθx(t) = x0(1− x0)− αx0y0

x0+y0
,

Dθy(t) = y0

(
−δ + βx0

x0+y0

)
,

(3.7)

and the solutions of (3.7) are
x1(t) = x0 + Iθ

(
x0(1− x0)− αx0y0

x0+y0

)
,

y1(t) = y0 + Iθ
(
y0

(
−δ + βx0

x0+y0

))
,

(3.8)
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that is equivalent to
x1(t) = x0 +

tθ

θΓ(θ)

(
x0(1− x0)− αx0y0

x0+y0

)
,

y1(t) = y0 +
tθ

θΓ(θ)

(
y0

(
−δ + βx0

x0+y0

))
.

(3.9)

Second, let t ∈ [s, 2s) so
[
t
s

]
s = s, hence we have

Dθx(t) = x1(1− x1)− αx1y1

x1+y1
,

Dθy(t) = y1

(
−δ + βx1

x1+y1

)
,

(3.10)

with the following solution
x2(t) = x1(s) + Iθs

(
x1(s)(1− x1(s))− αx1(s)y1(s)

x1(s)+y1(s)

)
,

y2(t) = y1(s) + Iθs

(
y1(s)

(
−δ + βx1(s)

x1(s)+y1(s)

))
,

(3.11)

where Iθs ≡ 1
Γ(θ)

∫ t

s
(t− τ)θ−1dτ, θ > 0. So the solution of (3.10) is as follows

x2(t) = x1(s) +
(t−s)θ

θΓ(θ)

(
x1(s)(1− x1(s))− αx1(s)y1(s)

x1(s)+y1(s)

)
,

y2(t) = y1(s) +
(t−s)θ

θΓ(θ)

(
y1(s)

(
−δ + βx1(s)

x1(s)+y1(s)

))
.

(3.12)

Thus, by repeating the discretization process n times, we obtain

xn+1(t) = xn(ns)+

(t−ns)θ

θΓ(θ)

(
xn(ns)(1− xn(ns))− αxn(ns)yn(ns)

xn(ns)+yn(ns)

)
,

yn+1(t) = yn(ns)+

(t−ns)θ

θΓ(θ)

(
yn(ns)

(
−δ + βxn(ns)

xn(ns)+yn(ns)

))
.

(3.13)

where t ∈ [ns, (n+ 1)s). For t → (n+ 1)s, system (3.13) is reduced to
xn+1(t) = xn + sθ

θΓ(θ)

(
xn(1− xn)− αxnyn

xn+yn

)
,

yn+1(t) = yn + sθ

θΓ(θ)

(
yn

(
−δ + βxn

xn+yn

))
.

(3.14)

Remark 3.3. Note that if α → 1 in (3.14), we obtain the Euler discretization of
predator prey model.
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4. Local stability of the equilibria and dynamic of discretiztion

In this section we study the local behavior of the model around its equilibria. The
general Jacobian matrix of system (3.1) evaluated at an arbitrary point (x, y) equals
to

J =

 1− 2x− αy2

(x+y)2 − αx2

(x+y)2

βy2

(x+y)2 −δ + βx2

(x+y)2

 . (4.1)

We shall point out here that although (0, 0) is defined for system (3.1), it cannot be
linearized at. So, local stability of (0, 0) can not be studied. Indeed, this singularity
at the origin, while causes much difficulty in our analysis of the system, contributes
significantly to the richness of dynamics of the model. A complete parametric analysis
of stability properties and dynamic around the complicated equilibrium (0, 0) for the
model is done in [6].

The following theorem is an immediate result of expression (4.1).

Theorem 4.1. The equilibrium point E1 is locally asymptotically stable if β < δ and
saddle point if β > δ.

Proof. The characteristic equation corresponding to the equilibrium E1 has the eigen-
values λ1 = −1 and λ2 = β − δ. If β < δ, then both of eigenvalues λ1,2 are negative.
Hence, the equilibrium point E1 is locally asymptotically stable if β < δ and saddle
point if β > δ. �

Now we study the linearized system at the interior equilibrium E∗ = (x∗, y∗).

Theorem 4.2. Let

M =
(β − δ)(−αδβ2 + αδ2β + β2δ)

β3
,

N =
−β2 + α(β2 − δ2)− βδ(β − δ)

β2
.

If y∗ ≤ T , then we have:

(1) if N2 − 4M ≥ 0, N < 0 then E∗ is asymptotically stable;
(2) if N2 − 4M > 0 and N > 0, then E∗ is unstable;
(3) if N2 − 4M < 0 and 0 < θ < 1, then E∗ is asymptotically stable.

Proof. The Jacobian matrix of system (3.1) at E∗ is

J =


−β2+α(β2−δ2)

β2 −αδ2

β2

(β−δ)2

β
δ(δ−β)

β

 .

The associated characteristic equation is

λ2 −Nλ+M = 0.
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Thus the eigenvalues of the Jacobian matrix are

λ1,2 =
N ±

√
N2 − 4M

2
,

and the result is immediately obtained. Note that if N2 − 4M < 0, the relation

|arg(λ1,2)| = arctan(
√
4M−N2

N ) > θπ
2 is satisfied for all 0 < θ < 1. �

In the following, we investigate the dynamics of the discretized fractional-order
model (3.14), which is a discrete ordinary dynamical system . The dynamical behav-
iors of model (3.14) is determined by five parameters α, β, δ, s, θ. Then we discuss the
stability and bifurcation of fixed points of model (3.14). The Jacobian matrix J of
model (3.14) at any equilibrium (x, y) is

J =

(
A B
C D

)
,

where

A = 1 +
sθ

θΓ(θ)

(
1− 2x− αy2

(x+ y)2

)
,

B = − sθ

θΓ(θ)

(
αx2

(x+ y)2

)
,

C =
sθ

θΓ(θ)

(
βy2

(x+ y)2

)
,

D = 1 +
sθ

θΓ(θ)

(
−δ +

βx2

(x+ y)2

)
.

The characteristic equation of the Jacobian matrix can be written as

λ2 − Trλ+Det = 0, (4.2)

where Tr is the trace and Det is the determinant of the Jacobian matrix J . Hence,
we can consider one of the following cases for the system (3.14):

(1) dissipative dynamical system, if Det < 1;
(2) conservative dynamical system, if Det = 1;
(3) otherwise un-dissipated dynamical system.

In order to study stability analysis of the fixed points of the model (3.14), we recall
the following Lemma that can be easily proved by using the relation between roots
and coefficients of the characteristic Eq. (4.2).

Lemma 4.3. [1] Let F (λ) = λ2 − Trλ+Det. Suppose that F (1) > 0, λ1 and λ2 are
the two roots of F (λ). Then

(i): |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and Det < 1.
(ii): |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2 < 1|) if and only if F (−1) < 0.
(iii): |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Det > 1.
(iv): λ1 = −1 and λ2 = 1 if and only if F (−1) = 0 and Tr = 0, 2.
(v): λ1 and λ2 are complex and |λ1| = |λ2| if and only if Tr2 − 4Det < 0 and

Det = 1.
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Let λ1 and λ2 be the two roots of Eq.(4.2), which are called eigenvalues of equilib-
rium (x, y), we recall that

(i): An equilibrium (x, y) is called a sink if |λ1| < 1 and |λ2| < 1.
(ii): An equilibrium (x, y) is called a source if |λ1| > 1 and |λ2| > 1.
(iii): An equilibrium (x, y) is called a saddle if |λ1| < 1 and |λ2| > 1 or |λ1| > 1

and |λ2| < 1.
(iv): An equilibrium (x, y) is called a non-hyperbolic if |λ1| = 1 or |λ2| = 1.

Lemma 4.4. [23] A sink is locally asymptotically stable and a source is locally un-
stable.

The necessary and sufficient conditions ensuring that |λ1| < 1 and |λ2| < 1 are [10]

(i): 1− TrJ +DetJ > 0;
(ii): 1 + TrJ +DetJ > 0;
(iii): DetJ < 1.

Once only one of these conditions doesn’t satisfied, while the other being simultane-
ously fulfilled, bifurcations occur as follows:

If condition (i) is not satisfied and conditions (ii) and (iii) satisfied, that is a real
eigenvalue passes through +1, a fold or transcritical bifurcation occurs. This local
bifurcation leads to change the stability between two different equilibria; If condition
(ii) is not satisfied and conditions (i) and (iii) satisfied, that is a real eigenvalue passes
through −1, system exposes a flip bifurcation. This local bifurcation implicates the
appearance of a limit cycle; If condition (iii) is not satisfied and conditions (i) and
(ii) satisfied, that is the modulus of a complex eigenvalue pair that passes through
1, a Neimark-Sacker bifurcation arises. This local bifurcation implies the birth of
an invariant curve in the phase plane. Neimark-Sacker bifurcation is considered to
be equivalent to the Hopf bifurcation in continuous time and is indeed the major
instrument to prove the existence of quasi-periodic orbits for the map. In [10] the
author presents a complete study of the three main types of bifurcations, for two-
dimensional maps.

Theorem 4.5. If 0 < s < θ
√
2θΓ(θ), then the equilibrium E0 = (0, 0) is a saddle

point. If s > θ
√
2θΓ(θ), then E0 is a source and if s = θ

√
2θΓ(θ), then E0 is non-

hyperbolic.

Proof. The Jacobian matrix J at E0 is

J(E0) =

(
1 + sθ

θΓ(θ) 0

0 1− δ sθ

θΓ(θ)

)
.

Hence, the eigenvalues are λ1 = 1 + sθ

θΓ(θ) and λ2 = 1− δ sθ

θΓ(θ) . Since
sθ

θΓ(θ) > 0, then

|λ1| > 1. Thus the equilibrium E0 is saddle point if 0 < s < θ
√
2θΓ(θ), source if

s > θ
√
2θΓ(θ) and non-hyperbolic if s = θ

√
2θΓ(θ). �

Theorem 4.6. There are at least four different topological types of E1 = (1, 0) for
all parameters values



CMDE Vol. 6, No. 2, 2018, pp. 248-265 259

(i): E1 is a sink if and only if β − δ < 0 and 0 < s < min{ θ
√
2θΓ(θ), θ

√
2θΓ(θ)
δ−β }.

(ii): E1 is a source if and only if β − δ > 0 and s > θ
√
2θΓ(θ).

(iii): E1 is non-hyperbolic if and only if β − δ < 0 and s = θ
√
2θΓ(θ) or s =

θ

√
2θΓ(θ)
δ−β .

(iv): E1 is a saddle for the other values of parameters except those values in
(i)-(iii).

Proof. The Jacobian matrix J at E1 is given by

J(E1) =

(
1− sθ

θΓ(θ) − αsθ

θΓ(θ)

0 1 + (β − δ) sθ

θΓ(θ)

)
,

Hence, the eigenvalues are λ1 = 1− sθ

θΓ(θ) and λ2 = 1 + (β − δ) sθ

θΓ(θ) . Note that

|λ1| < 1 ⇐⇒
−1 < 1− sθ

θΓ(θ) < 1 ⇐⇒
0 < sθ

θΓ(θ) < 2 ⇐⇒
0 < s < θ

√
2θΓ(θ).

If β − δ < 0 then we have

|λ2| < 1 ⇐⇒
−1 < 1 + (β − δ) sθ

θΓ(θ) < 1 ⇐⇒
0 < (δ − β) sθ

θΓ(θ) < 2 ⇐⇒

0 < s < θ

√
2θΓ(θ)
δ−β .

Note that if β − δ > 0, then |λ2| > 1. �
In order to discuss the stability of the fixed point E∗ of system (3.14), the following

Lemma would be useful,

Lemma 4.7. [22] The necessary and sufficient conditions for both eigenvalues of
Jacobian matrix to have magnitude less than 1 are the following conditions:

|TrJ | < 1 +DetJ < 2. (4.3)

By Lemma 4.7, instead of calculating the eigenvalues of J , one can check the so-
called Jury conditions (4.3).

Theorem 4.8. The positive fixed point E∗ = (x∗, y∗) of the system (3.14) is asymp-
totically stable if

(−β2 + α(β2 − δ2))(δ(δ − β)) + (β − δ2)(αδ2)

β3
> 0,

and

sθ

θΓ(θ)

(
−β2+αβ2−αδ2

β2

)
+

(
sθ

θΓ(θ)

)2 (
(−β2+α(β2−δ2))(δ(δ−β))+(β−δ2)(αδ2)

β3

)
< 3.



260 R. SHAFEII AND D. BEHMARDI

Figure 1. α = 1.3, β = 0.8, δ = 0.4, θ = 0.6, 0.7, 0.8, 0.9, 1.
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Proof. The Jacobian matrix evaluated at the equilibrium E∗ is of the form

J(E∗) =


1 + sθ

θΓ(θ)

(
−β2+α(β2−δ2)

β2

)
− sθ

θΓ(θ)

(
αδ2

β2

)
sθ

θΓ(θ)

(
(β−δ)2

β

)
1 + sθ

θΓ(θ)

(
δ(δ−β)

β

)
 .

The trace and determinant of the Jacobian matrix J(E∗) are given by

Tr(J(E∗)) = 2 +
sθ

θΓ(θ)

(
−β2 + αβ2 − αδ2

β2

)
, (4.4)

Det(J(E∗)) = 1 + sθ

θΓ(θ)

(
−β2+αβ2−αδ2

β2

)
+

(
sθ

θΓ(θ)

)2 (
(−β2+α(β2−δ2))(δ(δ−β))+(β−δ2)(αδ2)

β3

)
.

(4.5)

By Lemma 3, the coexistence equilibrium E∗is locally asymptotically stable whenever

(−β2 + α(β2 − δ2))(δ(δ − β)) + (β − δ2)(αδ2)

β3
> 0,

and

sθ

θΓ(θ)

(
−β2+αβ2−αδ2

β2

)
+

(
sθ

θΓ(θ)

)2 (
(−β2+α(β2−δ2))(δ(δ−β))+(β−δ2)(αδ2)

β3

)
< 3.

�

5. Numerical simulations

In this section we give some numerical simulations of the model (3.1), by use of
MATLAB. In Figure 1, the phase portrait of the system is shown with the parameter
values α = 1.3, β = 0.8, δ = 0.4. The initial state of the system (1.3) is (0.1, 0.1).
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Figure 2. Bifurcation diagram a = 1.3, η = 0.8, d = 0.4, b = 1, θ =
0.9, s = 0.01.
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Figure 3. Bifurcation diagram a = 1.3, η = 0.8, d = 0.4, b = 1, θ =
0.9, s = 0.15.
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Then the bifurcation diagram of model (1.3) in (r, x) plane is shown in Figures 2-4
for θ = 0.9 and s = 0.01, s = 0.15, s = 0.2 respectively. The Maximal Lyapunov
exponent (MLE) corresponding to Figure 2 is given in Figure 5. One knows that the
Maximal Lyapunov exponent determines the predictability for the dynamical system.
A positive MLE usually implies that the system is chaotic. Figure 3 shows that for
r less than roughly 1.3, all points are assembled at zero. Zero is an attractor for r
less than 1.3. for r between 1.3 and 11.5, we still have one point attractors, but the
attracted value of x increases as r increases, at least to r = 11.5. Bifurcations occur
at r = 11.5, r = 14.5 (approximately), etc., until just beyond 15, where the system is
chaotic. It is observed from Figures 2-4 that increasing the parameter s and fixing
the fractional order parameter θ destabilize the system (1.3) and periodic behavior
occurs. We study the bifurcation in (r, x) plane because by relations (1.5), α, β, δ that
are present in Theorems 4.6,4.8, depends on r.
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Figure 4. Bifurcation diagram a = 1.3, η = 0.8, d = 0.4, b = 1, θ =
0.9, s = 0.2.
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Figure 5. Maximal Lyapunov exponent a = 1.3, η = 0.8, d =
0.4, b = 1, θ = 0.9, s = 0.01.

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

r

M
ax

im
al

 L
ya

pu
no

v 
ex

po
ne

nt
 

Then the bifurcation diagram of model (1.3) in (r, x) plane is shown in Figure 6 for
θ = 0.5 and s = 0.09. Thus, it shows that the discretized model (1.3) is stabilized
only for relatively small step-sizes(s approaches to zero) and for large fractional order
θ ( θ approaches to one).
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Figure 6. Bifurcation diagram a = 1.3, η = 0.8, d = 0.4, b = 1, θ =
0.5, s = 0.09.
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