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Abstract In this paper, the fractional partial differential equations are defined by modified
Riemann-Liouville fractional derivative. With the help of fractional derivative and
fractional complex transform, these equations can be converted into the nonlinear

ordinary differential equations. By using solitay wave ansatz method, we find exact
analytical solutions of the space-time fractional Zakharov Kuznetsov Benjamin Bona
Mahony (ZK-BBM) equation, the space-time fractional Klein-Gordon equation and
the space-time fractional modified Regularized Long Wave (RLW) equation. This

method can be suitable and more powerful for solving other kinds of nonlinear FDEs
arising in mathematical physics.
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1. Introduction

Fractional differential equations are generalizations of differential equations of inte-
ger order. So, in recent years, nonlinear fractional differential equations (FDEs) have
gained importance and popularity in various fields of science. These equations ap-
pear in a great array of contexts such as in plasma physics, fluid mechanics, nonlinear
optics, geochemistry, acoustic waves, hydrodynamics, chemical kinematics, control
theory, optical fibers, chemical physics, signal processing, systems identification and
many other fields [45,48,54].

The study of solitary wave has made remarkable advances in the past decades.
Soliton is one of the major areas of research in nonlinear dispersive media. There
are two different types of envelope solitons bright and dark. This area of research
has made an enormous progress especially in recent years [6, 7, 10,14–18,43,60]. The
existence of soliton-type solution for nonlinear PDEs is of particular interest because of
their extensive applications in many physics areas. This paper addresses the dynamics
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of soliton propagation through soliton solutions. This leads to a different kind of
nonlinear FDEs that describes the dynamics of soliton propagation [29,30,49,50,52].

There are, in fact, various modern methods of integrability of a variety of non-
linear fractional differential equations. Some of these methods are the exp-function
method, the (G′/G)-expansion method, the first integral method, the fractional sub-
equation method, the functional variable method, the fractional modified trial equa-
tion method, the ansatz method, the modified simple equation method and the mod-
ified Kudryashov method [2,5, 8, 9, 12,13,19,21–28,31,32,34–37,47,51,57,62].

There are several approaches to the generalization of the notion of differentiation
to fractional orders e.g. Grünwald–Letnikow, Caputo and Riemann–Liouville [20,
58]. Modified Riemann-Liouville derivative is defined a local fractional derivative by
Jumarie [40]. The definition and some properties for the Jumarie’s derivative of order
α are listed as follows [41]

Dα
wf(w) =

{
1

Γ(1−α)
d
dw

∫ w

0
f(τ)−f(0)
(w−τ)α dτ, 0 < α < 1,

(f (n)(w))(α−n), n ≤ α ≤ n+ 1, n ≥ 1.
(1.1)

Dα
ww

γ =
Γ(1 + γ)

Γ(1 + γ − α)
wγ−α, γ > 0, (1.2)

Dα
w(c) = 0, c = constant, (1.3)

Dα
w{af(w) + bg(w)} = aDα

wf(w) + bDα
wg(w), (1.4)

where a ̸= 0 and b ̸= 0 are constants. Now, we will give main steps of methodology.
Step 1: We consider the following general nonlinear space-time FDE of the type

H(u,Dα
t u,D

α
xu,D

2α
t u,Dα

t D
α
xu,D

2α
x u, ...) = 0, 0 < α < 1, (1.5)

where u is an unknown function, and H is a polynomial of u and its partial fractional
derivatives.

Step 2: By using fractional complex transform

u(x, t) = f(τ),

τ = kxα

Γ(1+α) −
ctα

Γ(1+α) ,
(1.6)

where k ̸= 0 and c ̸= 0 are constants and by using the chain rule

Dα
t u = σt

∂f
dτ D

α
t τ,

Dα
xu = σx

∂f
dτ D

α
x τ,

(1.7)

where σt, σx are called the sigma indexes [33] and it can take σt = σx = L, where L
is a constant.

Step 3: When we substitute (1.6) with (1.2) and (1.7) into (1.5), we get following
nonlinear ODE,

N(U,
df

dτ
,
d2f

dτ2
,
d3f

dτ3
, .....) = 0. (1.8)
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2. Applications

2.1. The space-time fractional ZK-BBM equation. Let us consider, the space-
time fractional ZK-BBM equation [3]

Dα
t u+Dα

xu− 2auDα
xu− bDα

t (D
2α
x u) = 0, (2.1)

where a and b are arbitrary constants. It arises as a description of gravity water waves
in the long-wave regime. Alzaidy solved this equation by a fractional sub-equation
method in [3] and obtained three types of exact analytical solutions. Bekir et al. have
applied the functional variable method to obtain new periodic and hyperbolic solu-
tions of Eq.(2.1) in [11]. We will use the ansatz method to obtain the exact solutions
with the help of ansatz method. In order to solve Eq.(2.1), we use the transformation
(1.6) then integrating Eq.(2.1) with respect to τ and setting the integration constant
equal to zero, we have

(k − c)f − akf2 + bck2L2f
′′
= 0. (2.2)

To obtain bright soliton solution of Eq.(2.2),

f(τ) = A sechp τ, (2.3)

where

τ =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
, (2.4)

which k, c and A are constant coefficients. From the ansatz (2.3) and (2.4), we get

d2f(τ)

dτ2
= Ap2 sechp τ −Ap(p+ 1) sechp+2 τ, (2.5)

and

f2(τ) = A2 sech2p τ. (2.6)

Thus, substituting the ansatz (2.3)-(2.6) into Eq.(2.2), yields to

(k − c)A sechp τ − akA2 sech2p τ

− bck2L2Ap2 sechp τ − bck2L2Ap(p+ 1) sechp+2 τ (2.7)

= 0.

From (2.7), when we equate exponents p+ 2 and 2p, that leads to p = 2. From (2.7),
setting the coefficients of sechp+2 τ and sech2p τ terms to zero,

−akA2 − bck2L2Ap(p+ 1) = 0, (2.8)

then we obtain

A = −bckL2p(p+ 1)

a
. (2.9)

We find, from setting the coefficients of sechp τ terms in Eq.(2.7) to zero

(k − c)A− bck2L2Ap2 = 0, (2.10)
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Figure 1. Shape of solution for (2.12) with k = 1, a = 1, b = 1, L = 1.

(a) α = 0.5 (b) α = 1

also we get

c =
k

bk2L2p2 + 1
. (2.11)

Finally; when we use p = 2, we get the bright soliton solution for the space-time
fractional ZK-BBM equation as follow:

u(x, t) = −6bckL2A

a
sech2

(
kxα

Γ(1 + α)
− ktα

(4bk2L2 + 1)Γ(1 + α)

)
. (2.12)

The solution.(2.12) is represented in Figure 1, within the interval 0 < x < 10 and
0 < t < 1.

Remark 1. The solution (2.12) is not given in [3,11] and have not been reported
by other authors in the literature.

2.2. The nonlinear space-time fractional Klein-Gordon equation. We next
consider the nonlinear space-time fractional Klein-Gordon (KG) equation [39]

D2α
tt u−D2α

xxu+ γu− βu2 = 0. (2.13)

where α, β are nonzero constant. This equation describes many types of nonlinear-
ities and plays a significant role in several real world applications such as the solid
state physics, nonlinear optics and quantum field theory. Baleanu and his colleagues
have found many new types of exact travelling wave solutions of KG equation by us-
ing the auxiliary equation method by using sub-equation method, and obtained new
exact solutions of equation (2.13) containing hyperbolic, trigonometric and rational
functions. In [11], the functional variable method successfully applied to finding pe-
riodic and hyperbolic solutions of the fractional KG equation by Bekir at al. When
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α = 1, equation (2.13) is called the quadratic nonlinear Klein–Gordon equation and
there are a lot of studies for this equation [4, 38,46,53,59,61,63].

Now we consider the nonlinear fractional KG equation. With the same process as
in the previous example, we obtain following ODE

(c2L2 − k2L2)f
′′
+ γU − βU2 = 0, (2.14)

where f ′ = df
dτ .

From the ansatz (2.3) and (2.4), we obtain necessary derivatives. Then, substitut-
ing them into Eq.(2.14), yields to

(c2L2 − k2L2)Ap2 sechp τ − (c2L2 − k2L2)Ap(p+ 1) sechp+2 τ

+ γA sechp τ − βA2 sech2p τ (2.15)

= 0.

From (2.15), equating exponents p+ 2 and 2p, that gives p = 2. From (2.15), setting
the coefficients of sechp+2 τ and sech2p τ terms to zero,

(c2L2 − k2L2)Ap(p+ 1) + βA2 = 0, (2.16)

by use (4.10), we obtain

A = − (c2L2 − k2L2)p(p+ 1)

β
. (2.17)

Analogously, from setting the coefficients of sechp τ terms in Eq.(2.15) to zero, we
have

(c2L2 − k2L2)Ap2 + γA = 0, (2.18)

then we get

c = ∓
√
p2k2L2 + γ

pL
. (2.19)

Consequently, we can determine the bright soliton solution of (2.13) as with p = 2,

u(x, t) = −6(c2L2 − k2L2)A

β
sech2

(
kxα

Γ(1 + α)
±
√
4k2L2 + γtα

2LΓ(1 + α)

)
. (2.20)

Also, Eq.(2.19) implies the domain restrictions 4k2L2 + γ > 0.
We plot the solutions of Eq.(2.20) for this equation in Figure 2 within the interval

0 < x < 100 and 0 < t < 100.
Remark 2. Comparing our result with Baleanu’s and Bekir’s [11, 39] results, it

can be seen that the result is new.

2.3. The space-time fractional modified RLW equation. This equation has the
form [42]

Dα
t u+ vDα

xu+ µu2Dα
xu− εDα

t D
2α
x u = 0, (2.21)

where α describing the order of the fractional derivatives 0 < α ≤ 1 and v, µ and ε
are all constants. Kaplan et al. solved this equation by the modified simple equation
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Figure 2. Shape of solution for (2.20) with k = 1, L = 1, β = 1, γ = 1.

(a) α = 0.5 (b) α = 1

method [42]. Abdel-Salam and Gumma have obtained abundant types of exact analyt-
ical solutions including generalized trigonometric and hyperbolic functions solutions
of this equation with the improved fractional Riccati expansion method in [1]. The
modified RLW equation is considered as an alternative to the modified KdV equation.
This equation is modeled to govern a large number of physical phenomena such as
transverse waves in shallow water and magneto hydrodynamic waves in plasma and
phonon packets in nonlinear crystals [44,55,56].

When we substitute (1.6) with (1.2) and (1.7) into (2.21), integrating Eq.(2.1) with
respect to τ and setting the integration constant equal to zero, Eq.(2.21) can reduced
into an ODE

(kv − c)f + µk
3 f3 + εck2L2f ′′ = 0, (2.22)

where f ′ = df
dτ .

From the ansatz (2.3) and (2.4), we obtain necessary derivatives. Then, substitut-
ing them into Eq.(2.22), yields to

(kv − c)A sechp τ +
µk

3
A3 sech3p τ

+ εck2L2Ap2 sechp τ − εck2L2Ap(p+ 1) sechp+2 τ (2.23)

= 0.

From (2.23), if we equate the exponents p+ 2 and 3p, we have

p = 1. (2.24)
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When we set, coefficients of sechp+2 τ and sech3p τ terms to zero in Eq.(2.23), we get

µk

3
A3 − εck2L2Ap(p+ 1) = 0, (2.25)

by use (2.24) and after some calculations, we have

A = ∓L

√
6εkc

µ
, µ ̸= 0. (2.26)

Again from setting coefficients of sechp τ terms in Eq.(2.23) to zero

(kv − c)A+ εck2L2Ap2 = 0, (2.27)

we obtain

c =
vk

1− εk2L2
. (2.28)

From (2.28) it is important to note that

4εk2L2 ̸= 1. (2.29)

Thus finally, we can determine the bright soliton solution of (2.21) as with p = 1,

u(x, t) = A sech

(
kxα

Γ(1 + α)
− ctα

Γ(1 + α)

)
, (2.30)

where the A is given by (2.26) and the c is given by (2.28). We plot the solutions of
Eq.(2.30) for this equation in Figure 3 within the interval 0 < x < 100 and 0 < t <
100.

Remark 3. Note that solution (2.30) is quite different from the travelling wave
solutions found in [1, 42].

3. Conclusion

In this paper, the ansatz method is used to obtain the bright soliton solution of
the nonlinear FDEs with Jumarie’s modified Riemann–Liouville derivative. In general,
there exist no method that yields soliton solutions for fractional differential equations.
But, a fractional complex transform is adopted in this paper to convert such equa-
tions into classical partial differential equations. We succeeded in extracting soliton
solutions for the space-time fractional ZK-BBM equation, the space-time fractional
Klein-Gordon equation and the space-time fractional modified RLW equation. As a
result, some new exact solutions for them have been succesfully found. Being concise
and powerful, the proposed method can be applied to solve other nonlinear FDEs
and systems. All the solutions reported above have been verified using the symbolic
computation system Maple.
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Figure 3. Shape of solution for (2.30) with k = 1, τ = 2, v =
−1, L = 1, µ = 1.

(a) α = 0.5 (b) α = 1
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