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On asymptotic stability of Weber fractional differential systems
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Abstract In this article, we introduce the fractional differential systems in the sense of the
Weber fractional derivatives and study the asymptotic stability of these systems.
We present the stability regions and then compare the stability regions of fractional

differential systems with the Riemann-Liouville and Weber fractional derivatives.
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1. Introduction

Fractional differential equations (the differential equations with the derivative of
arbitrary order) are generalizations of the classical differential equations of integer or-
ders and are applicable tools for the modeling of many physical phenomena in physics,
biology, fractional dynamics, engineering and control theory. With the developments
of theory of fractional calculus the stability analysis of fractional differential systems
have been the main point of view in many contributions [12, 16, 17, 20, 1, 3, 19].

In general, the stability analysis of fractional differential equations is related to the
stability analysis of the following fractional differential system

Dα
t x(t) = A x(t), x(0) = x0, 0 < α ≤ 1, (1.1)

where Dα
t is a fractional differential operator and A ∈ Rn×n is a matrix. The stability

analysis of the above fractional differential systems was studied for the first time by
Matignon [12] in the sense of the Caputo derivative. Later, other researchers obtained
the stability criteria of fractional systems containing other fractional derivatives such
as the Riemann-Liouville, Hilfer and Prabhakar fractional derivatives [16, 17, 20, 1,
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3, 19, 4, 5, 6, 18]. In all contributions, the behaviors of eigenvalues of matrix A in
the complex plane determine the fundamental criteria for stability analysis of these
systems.

In this paper, we intend to introduce the fractional differential systems with re-
spect to a new fractional derivative (the Weber fractional derivative) and investigate
the asymptotic stability for these types of systems. Among other generalization of
fractional derivatives [9, 2, 7, 8, 10, 15], the Weber fractional derivative is defined
as a generalization of the Riemann-Liouville and Caputo fractional derivatives with
respect to the Weber parabolic cylinder function [13]. We employ the Laplace trans-
forms of the Weber fractional derivatives and use the asymptotic behavior of Weber
parabolic cylinder function to study the asymptotic behavior of the solution with
respect to the Jordan canonical forms of matrix A.

The rest of paper is organized as follows. In Section 2, some definitions and lem-
mas in fractional calculus are stated. In Section 3, we introduce the linear differential
systems containing the Weber fractional derivative and treat the asymptotic stability
analysis of these systems. In Section 4, we compare the stability aspects of We-
ber fractional differential systems with the Riemann-Liouville fractional differential
systems.

2. Preliminaries

In this section, we recall some definitions and lemmas which are used in the next
sections. First, we consider the following function

eα(t) =
1

2
1
2−α

√
π
tα−1e−

ν
8tD1−2α(

√
ν

2t
), ℜ(α) > 0,ℜ(ν) > 0, t > 0, (2.1)

where D is the Weber parabolic cylinder function [13, p.448(46:6)]

D1−2α(x) =
√
21−2απe

x2

4

∞∑
j=0

(−x
√
2)j

j!Γ( 2α−j
2 )

, (2.2)

and the Laplace transform of this function is given by

L{ 1

2
1
2−α

√
π
tα−1e−

ν
8tD1−2α(

√
ν

2t
); s} =

1

sα
e−

√
νs, ℜ(ν) > 0, s ∈ C. (2.3)

Definition 2.1. [11, 14]. For 0 < α ≤ 1 and f ∈ L1[0, b], 0 < t < b ≤ ∞, the
Riemann-Liouville fractional integral and derivative of the order α are defined as

0+I
α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1dτ, t > 0, 0 < α ≤ 1, (2.4)

0+D
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(τ)(t− τ)−αdτ, t > 0, 0 < α ≤ 1. (2.5)

Also, for the absolutely continuous function f , the Caputo fractional derivatives of
order α is defined as follows

C
0+D

α
t f(t) = 0+I

1−α
t

d

dt
f(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α d

dτ
f(τ)dτ. (2.6)
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Definition 2.2. For m − 1 < ℜ(α) ≤ m and function f ∈ L1[0, b], 0 < t < b ≤ ∞,
the Weber fractional integral is defined as follows

0+E
α
t f(t) =

1

2
1
2−α

√
π

∫ t

0

(t− τ)α−1e−
ν

8(t−τ)D1−2α(

√
ν

2(t− τ)
)f(τ)dτ. (2.7)

Definition 2.3. For the function f ∈ L1[0, b], the Weber fractional derivative is
defined as

0+D
α
t f(t) =

dm

dtm 0+E
m−α
t f(t), t > 0, (2.8)

where m− 1 < ℜ(α) ≤ m.

Lemma 2.4. The Laplace transform of the Weber fractional derivative for m− 1 <
ℜ(α) ≤ m is given by

L{0+Dα
t f(t); s} = sαe−

√
νsF (s)−

m−1∑
k=0

sm−k−1Dα−m+k
t f(t) |t=0, (2.9)

or

L{0+Dα
t f(t); s} = sαe−

√
νsF (s)−

m−1∑
k=0

sm−k−1 dk

dtk
Em−α

t f(t) |t=0, (2.10)

where D = d
dx and F (s) is the Laplace transform of f(t)

F (s) =

∫ ∞

0

e−stf(t)dt. (2.11)

Proof. Applying the Laplace transform on the right hand side of relation (2.8), we
get

L{0+Dα
t f(t); s} = L{ dm

dtm 0+E
m−α
t f(t); s}

= smL{0+Em−α
t f(t); s} − sm−1

0+E
m−α
t f(t) |t=0

− sm−2 d

dt
Em−α

t f(t) |t=0 · · · − dm−1

dtm−1
Em−α

t f(t) |t=0 . (2.12)

We now use the following fact for the Laplace transform of fractional Weber integral

L{0+Em−α
t f(t); s} =

1

sm−α
e−

√
νsF (s), (2.13)

and substitute the relation (2.13) into (2.12), to obtain the claimed result. �

Definition 2.5. For m − 1 < ℜ(α) ≤ m and function f ∈ L1[0, b], 0 < t < b ≤ ∞,
the Caputo-Weber fractional derivative of order α which is a generalization of the
Caputo fractional derivative is defined as

C
0+D

α
t f(t) = Em−α

0+
dm

dtm
f(t), (2.14)
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or equivalently

C
0+D

α
t f(t) = 0+D

α
t f(t)−

m−1∑
k=0

1

2
1
2−(k−α+1)

√
π
tk−αe−

ν
8tD1−2(k−α+1)(

√
ν

2t
).

(2.15)

Lemma 2.6. The asymptotic expansion of the parabolic cylinder function is given by
[13, p. 449(46:6:6)]

Dν(x) ≃ xνe−
x2

4

[
1− (−ν)(1− ν)

2x2
+

(−ν)(1− ν)(2− ν)(3− ν)

2!(2x2)2

− · · ·+ (−ν)2j
j!(−2x2)j

+ · · ·
]

= xνe−
x2

4

∞∑
j=0

(−ν)2j
j!(−2x2)j

, x → ∞, (2.16)

where (−ν)2j = −ν(1 − ν) · · · (−ν + 2j − 1). Also, for small x we have [13, p.
450(46:9:1)]

Dν(x) ≃
√
2νπ

[1− (
1
4 + ν

2

)
x2

Γ( 1−ν
2 )

− x
√
2

Γ(−ν
2 )

]
. (2.17)

3. Asymptotic Stability Analysis of Linear Autonomous Weber
Fractional Differential Systems

3.1. Main theorem. In this section, we introduce the linear autonomous Weber
fractional differential systems and treat the asymptotic stability of these systems. We
consider the following fractional system

0+D
α
t x(t) = Ax(t), t > 0, 0 < α ≤ 1,

0+E
1−α
t x(0+) = x0, (3.1)

where x ∈ Rn, A ∈ Rn×n is matrix, x0 = (x10, x20, · · · , xn0) and α = (α1, α2, · · · , αn)
such that 0 < αi < 1 for i = 1, 2, · · · , n.

Definition 3.1. The system (3.1) is called commensurate order system if

α1 = α2 = · · · = αn.

Definition 3.2. The Weber fractional derivatives system (3.1)

i): is stable if for any initial value x0 and t > 0, i.e., there exists an ϵ > 0 such
that ∥x(t)∥ < ϵ.

ii): is asymptotically stable if it is stable and limt→∞ ∥x(t)∥ = 0.

We discuss the asymptotic stability of system (3.1) when A has non-zero eigenval-
ues.
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Theorem 3.3. The solution of the linear commensurate order system (3.1) is given
by

x(t) = − 1√
2π

∞∑
n=0

2−nαt−nα−1e−
n2ν
8t D1+2nα(

√
n2ν

2t
)(A−1)n+1x0. (3.2)

Proof: Since A is an invertible matrix, then we have A−1
0+D

α
t x(t) = x(t). We

apply the Laplace transform on both sides of (3.1) and use the relation (2.10) to get

A−1
{
sαe−

√
νsX(s)− x0

}
= X(s). (3.3)

We write the Taylor expansion of X(s) with the condition ||A−1 sαe−
√
νs|| < 1, to

obtain

X(s) = − A−1x0

I −A−1 sαe−
√
νs

= −A−1x0

(
I −A−1 sαe−

√
νs

)−1

= −A−1x0

∞∑
n=0

(A−1sαe−
√
νs)n =

∞∑
n=0

(A−1)n+1snαe−n
√
νsx0. (3.4)

We now consider the relation (2.3) for the inverse Laplace transform of the above
expression in terms of the parabolic cylinder functions

x(t) = − 1√
2π

∞∑
n=0

2−nαt−nα−1e−
n2ν
8t D1+2nα(

√
n2ν

2t
)(A−1)n+1x0. (3.5)

Hence, the proof is completed.

Theorem 3.4. If all the eigenvalues of A ( λ(A)) satisfy the following condition for
any r > 0 and ν > 0

| arg(λ(A))| > π

2
α− 1

2

√
2rν, (3.6)

then the solution of system (3.1) is asymptotically stable.

Proof: It is well known that the linear differential system

x′(t) = Ax(t), x(0) = x0,

is asymptotically stable if and only if all roots of det(sI − A) = 0 have negative
real parts. So the system (3.1) is asymptotically stable if and only if all roots of

det(sαe−
√
νsI −A) = 0 have negative real parts. In this sense, we apply the transfor-

mation W (s) = sαe−
√
νs that maps the region arg(λ(s)) > π

2 onto desired stability

region. For this purpose, we choose the boundaries s = re±iπ
2 of region

R := {s ∈ C| arg(λ(s)) > π

2
},

and use the mapping function W (s) to find the necessary condition of asymptotic
stability. Therefore, we construct the mapped region as

| arg(λ(A))| > arg
[
sαe−

√
νs
]
s=rei

π
2
, (3.7)



CMDE Vol. 6, No. 1, 2018, pp. 30-39 35

which implies that

| arg(λ(A))| > π

2
α− 1

2

√
2rν. (3.8)

We now discuss the asymptotic stability of system (3.1) in two cases as follows.

Case 1: Suppose that the matrix A−1 is diagonalizable and J has the Jordan canoni-
cal form of the matrix A−1 such that J = P−1A−1P = diag( 1

λ1
, 1
λ2
, · · · , 1

λn
) where P

is an invertible matrix and λi, i = 1, 2, · · · , n, are the eigenvalues of A. In this case,
we have

(
A−1

)n+1
= (PJP−1)n+1 = PJn+1P−1 = P (diag(

1

λn+1
1

,
1

λn+1
2

, · · · , 1

λn+1
n

))P−1.

(3.9)

So, by applying relation (2.17) for the solution (3.2), we have

x(t) = −
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

] 1

λn+1
i

x0 → 0,

t → ∞, 1 ≤ i ≤ n. (3.10)

Hence for the value

S =
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
diag(

1

λn+1
1

,
1

λn+1
2

, · · · , 1

λn+1
n

)x0

we get

lim
t→∞

∥S∥ = 0, (3.11)

and consequently

lim
t→∞

∥x(t)∥ = lim
t→∞

∥
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
(A−1)n+1x0∥

= lim
t→∞

∥P (
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
Jn+1x0)P

−1∥ = 0.

(3.12)

Case 2: Suppose that the matrixA−1 has a Jordan canonical form J = (J1, J2, · · · , Js),
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where Ji, 1 ≤ i ≤ s, is given by

Ji =


1
λi

1
1
λi

1

. . .
. . .
1
λi

1
1
λi


ni×ni

, λi ∈ C, (3.13)

and
∑s

i=1 ni = n. So, we have

(A−1)n+1 = (PJP−1)n+1 = PJn+1P−1 = P (diag(Jn+1
1 , Jn+1

2 , · · · , Jn+1
h ))P−1,

(3.14)

and for the solution (3.2), we obtain

x(t) =−
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
Jn+1
i x0

= −
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]

×



1
λn+1
i

D1
n+1

1
λn
i

· · · Dni−1
n+1

1

λ
n−ni+2

i

0 1
λn+1
i

. . .
...

...
. . .

. . . D1
n+1

1
λn
i

0 · · · 0 1
λn+1
i

x0,

(3.15)

where Dj
k, 1 ≤ j ≤ ni, are the binomial coefficients such that

Dj
k =

(
k
j

)
=

{ k!
j!(k−j)! 0 ≤ j ≤ k,

0 etc.

If we consider the non-zero elements of the above matrix and apply the relation (2.17)
once again, then for solution (3.2) we obtain

x(t) =

∞∑
n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
× (−λ)j

(j − 1)!

{( ∂

∂λ

)j−1( 1

λ

)n−j+3}
|λ=λi x0, (3.16)

j = 1, 2, · · · , ni.

which implies that for t → ∞

|
∞∑

n=0

t−nα−1e−
n2ν
8t
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×
[1− (

3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

] (−λi)
j

(j − 1)!

{( ∂

∂λi

)j−1( 1

λi

)n−j+3}
x0| → 0.

(3.17)

Consequently

lim
t→∞

∥x(t)∥ = lim
t→∞

∥
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
(A−1)n+1x0∥

= lim
t→∞

∥P (
∞∑

n=0

t−nα−1e−
n2ν
8t

[1− (
3
4 + nα

)
n2ν
2t

Γ(−nα)
−

√
n2ν
t

Γ(−1−2nα
2 )

]
Jn+1x0)P

−1∥ = 0.

(3.18)

4. Comparison with Riemann-Liouville fractional differential systems

It is obvious that for ν = 0, the Weber fractional integral (2.1) coincides with the
Riemann-Liouville fractional integral of order α. In this case, the stability region of
fractional systems with the Riemann-Liouville fractional derivative can be plotted by
the following condition

| arg(λ(A))| > απ

2
. (4.1)

The stability regions of the Weber and Riemann-Liouville fractional derivatives differ
by the term π

2α− 1
2

√
2rν which is plotted in Figure 2.

Remark 4.1. The shaded region in Figure 2 shows that the fractional differential
systems with the Riemann-Liouville and Weber derivatives have not the same stability
for order 0 < α ≤ 1. It means that, for a determined parameter α, the fractional
differential system with the Riemann-Liouville derivative is asymptotically stable, but
the associated fractional differential system with the Weber derivative is unstable.
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Figure 1. The asymptotic stability regions of system (3.1) for pa-
rameters α = 0.25, 0.5, 0.75, 0.95, 1 and ν = 1.

Figure 2. The difference region between the fractional differential
systems with the Riemann-Liouville and Weber derivatives of order
α = 0.25, ν = 1.
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