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Abstract In this paper, at first the elemantary and basic concepts of multiplicative discrete
and continuous differentian and integration are introduced. Then for these kinds of

differentiation invariant functions, the general solution of discrete and continuous
multiplicative differential equations will be given. Finally a vast class of differ-
ence equations with variable coefficients and nonlinear difference and differential
equations are investigated and solved by making use multiplicative difference and

differential equations.
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1. Introduction

The classical calculus (or Newtonian calculus) was introduced in the 17th century
by Isaac Newton and Gottfried Leibniz. This calculus some times called differential
and integral calculus. This calculus and its beautiful result (differential equations)
could solve many problems in physics and engineering. Therefore the 18th century
was called as utilization century for Newtonian calculus [7, 13, 15]. As regarding that
the classical calculus provides very useful and important tools for modeling and solv-
ing many physical and engineering problems, but there are several problems in physics
and natural phenomena needed to different kind of calculus for modeling and solv-
ing these problems. Discrete additive and multiplicative calculus were introduced by
many mathematicians. In order to more details, see [4, 13, 15]. In 1978, Jane Gross-
man, Michael Grossman and Robertz Katz introduced a new calculus which called
Non-Newtonian calculus or geometric and bigeometric calculus, see [9, 10, 11, 12].
Afterward, this calculus was named as multiplicative continuous calculus. In recent
years, many mathematicians have used this calculus for introducing new kind of deriv-
ative and integration operator. Consequently, new kind of differential equations was
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introduced as multiplicative continuous differential equations [4, 5, 6]. In this paper,
at first we recall the concepts and definitions of discrete and continuous multiplicative
derivative, and then we introduce their invariant functions. Next we will use invari-
ant functions for solving discrete and continuous multiplicative differential equations
[1, 3].

2. Multiplicative Discrete Differential Equations

To solve this kind of equations, we first remark discrete multiplicative derivative
concept. We have discrete multiplicative derivative of discrete function of f : Z → R
in form of

f [1](x) =
f(x+ 1)

f(x)
, x ∈ Z.

In [1] the authors introduced the invariant function for multiplicative discrete deriv-
ative as in the from

y(x) = C(λ+1)x , (2.1)

where the basis C is a constant and λ is a parameter.

Remark 2.1. Some of properties of this kind of derivative have been given in [3] by
the authors. Also, for the elementary functions their discrete multiplicative derivatives
have been given. They used this function for finding general solution of multiplicative
discrete differential equations with initial and boundary conditions.

For example we consider the following initial value problems

y[1] (x) = ya(x); x > x0, y(x0) = y0,

where bracket is discrete multiplicative derivative and a is a constant. The solution
of this problem is given by

y(x) = y
(a+1)(x−x0)

0 ,

which the power expression in this relation is

y(x) = y
(a+1)(x−x0)

0 .

Also, for the second order of this kind of differential equation we can consider the
following problem

y[11] (x) = y[1] (x)
a
. y(x)

b
; x > x0; x, x0 ∈ Z,

where a, b are real constants.
The initial conditions are given as follows

y(x0) = y0, y[1] (x0) = y1.

According to the invariant function (2.1) the solution can be calculated by following
process:
by replacing the first and second derivative of this function in differential equation
(2.2), we have



CMDE Vol. 5, No. 4, 2017, pp. 271-279 273

C(λ+1)xλ2

=
(
C(λ+1)x.λ

)a(
C(λ+1)x

)b

,

or

C(λ+1)x.λ2

= C(λ+1)x.(λa+b).

Then the characteristic equation is obtained as

λ2 − λa− b = 0 ⇒ λ1, λ2 =
a±

√
a2 + 4b

2
.

Therefore the general solution of the equation (2.2) is

y(x) = C
(λ1+1)x

1 . C
(λ2+1)x

2 .

By imposing given initial conditions we have

C
(λ1+1)x0λ1

1 C
(λ2+1)x0λ2

2 = y1, C
(λ1+1)x0

1 C
(λ2+1)x0

2 = y0.

Finally by determining the unknown coefficients C1, C2, the solution of this problem
is

y(x) =
(
yλ2
0 y−1

1

) (λ1+1)x−x0

λ2−λ1
.
(
y−λ1
0 y1

) (λ2+1)x−x0

λ2−λ1
, x ∈ Z. (2.2)

At the end of this section, we consider the following boundary value problem for this
kind of differential equation

y[1] (x) = ya(x); x ∈ (x0, x1), x, x0, x1 ∈ Z, (2.3)

with boundary condition

y(x0) = A yα(x1), (2.4)

where A, a, α are real constants, α is a degree. By making use of invariant function
(2.1) and using boundary condition (2.5) we get

C(a+1)x0
= A

(
C(a+1)x1

)α

⇒ C = A
1

(a+1)x0−(a+1)x1α .

Therefore the exact solution of problem (2.4)-(2.5) is

y(x) = A
(a+1)x

(a+1)x0−(a+1)x1α =
(
A

1
(a+1)x0−(a+1)x1α

)(a+1)x

.

Now by considering the first and second discrete derivative of y(x)

y[1](x) =
y(x+ 1)

y(x)
, y[11](x) =

y(x+2)
y(x+1)

y(x+1)
y(x)

=
y(x)y(x+ 2)

y2(x+ 1)
,

we can study second order multiplicative discrete the differential equation

y[11](x) =
[
y[1](x)

]a[
y(x)

]b
,

this equation can be written in the following from

y(x+ 2) = ya+2(x+ 1) y(x)b−a−1,

also it can be written as the following difference equation

yn+2 = ya+2
n+1. y

b−a−1
n .

Example 1. In the above obtained difference equation let a = b = 1 and
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y(0) = 1, y[1](0) = 2,

then, we will have an initial value problem including a nonlinear difference equation
in the following from

yn+2 = y3n+1.
1

y(n) , y0 = 1, y1 = 2.

By using the analytic solution (2.3) of equation (2.2) the exact and analytic solution
of this problem will be as follows

y(x) = 2
(λ2+1)x−(λ1+1)x

λ2−λ1 ,

where

λ2 − λ− 1 = 0 ⇒ λ1 = 1+
√
5

2 , λ2 = 1−
√
5

2 .

3. Multiplicative Continuous Differential Equations

As mentioned in introduction, multiplicative continuous derivative is defined by
the formula for the function f : R → R

f∗(x) = lim
h→0

(f(x+ h)

f(x)

) 1
h

.

We show that this formula can be written in the following form

f∗(x) = e
f′(x)
f(x)

f∗(x) = lim
h→0

(f(x+ h)

f(x)

) 1
h

= lim
h→0

(f(x+ h)

f(x)
− f(x)

f(x)
+ 1

) 1
h

= lim
h→0

(
1 +

f(x+ h)− f(x)

f(x)

) 1
h

= lim
h→0

[(
1 +

f(x+ h)− f(x)

f(x)

) f(x)
f(x+h)−f(x)

] f(x+h)−f(x)
h . 1

f(x)

= e
f′(x)
f(x) .

Remark 3.1. Some of properties of this kind of derivative were given in [11, 12].

For elementary functions, their multiplicative continuous derivatives are deter-
mined in the following

Example 2. a) f(x) = xn ⇒ f∗(x) = e
n
x , b)g(x) = lnx ⇒ g∗(x) = e

1
x ln x .

Similarly, the second order multiplicative continuous derivative is defined as follows

f∗∗(x) = e(ln f∗)′(x) = e(ln f)′′(x).

Similar to discrete multiplicative derivative, we are going to determinate the invariant
function for the continuous case. For this, at first we consider the multiplicative
continuous differentiation of the function y0(x) = ee

x

.

y∗0(x) = lim
h→0

(eex+h

eex

) 1
h

= lim
h→0

[(
ee

x+h−ex
)] 1

h

= elimh→0
ex+h−ex

h = ee
x

= y0(x).
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Similarly we can write: y0(x, λ) = e

(
eλx

)
,

y∗0(x, λ) = lim
h→0

(y0(x+ h, λ)

y0(x)

) 1
h

= lim
h→0

(eeλ(x+h)

eeλx

) 1
h

= lim
h→0

e

(
eλ(x+h)−eλx

) 1
h

= elimh→0 e

(
eλ(x+h)−eλx

) 1
h

= elimh→0

λ

(
e(x+h)−ex

)
h

h = eλe
λx

= (ee
λx

)λ = yλ0 (x, λ).

Therefore we have

y∗0(x, λ) = yλ0 (x, λ). (3.1)

Let us calculate its second derivative

y∗∗0 (x, λ) = lim
h→0

(y∗0(x+ h, λ)

y∗0(x, λ)

) 1
h

= lim
h→0

(eλeλ(x+h)

eλeλx

) 1
h

= lim
h→0

(
e(λe

λ(x+h)−λeλx)
) 1

h

= eλ limh→0
eλ(x+h)−eλx

h = eλ
2.eλx

= (ee
λx

)λ
2

= yλ
2

0 (x, λ).

By mathematical induction we can obtain for the arbitrary order multiplicative de-
rivative

y

n︷ ︸︸ ︷
∗ · · · ∗(x) = y[n](x) = yλ

n

0 (x, λ).

By the following existence and uniqueness theorem, we are going to determine the
analytic solutions of continous multiplicative differential equations.

Theorem 3.2. Let f be continuous function on the open region G in R× R+ to
(a, b), where 0 < a < b < ∞. Assume that f satisfies the multiplicative analog of the
Lipscitz condition. Take (x0, y0) ∈ G. Then there exists ε > 0 such that equation
y∗(x) = f(x, y(x)) has a unique solution y : (x0 − ϵ, x0 + ϵ) → R+ satisfying the
condition y(x0) = y0 [4].

Now, we can investigate multiplicative continuous differential equations with bound-
ary and initial conditions. For this, we consider the general form of the second order
multiplicative continuous differential equation

y∗∗(x)
(
y∗(x)

)a
.
(
y∗(x)

)b
= 1, (3.2)

with following boundary conditions

y∗(0) = A, y∗(1) = B. (3.3)

By using the invariant function (3.1) and substituting the first and second order
derivatives in equation (3.2)

eλ
2eλx

. eλae
λx

ee
λxb = 1 ⇒ e(λ

2+λa+b)eλx

= 1,

therefore, we obtain the characteristic equation
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λ2 + λa+ b = 0,

assume its roots are distinct and real numbers, that is

λ1, λ2 =
−a±

√
a2 − 4b

2
,

then the general solution of equation (3.2) will be

y(x) = (ee
λ1x

)c1 . (ee
λ2x

)c2 = ec1e
λ1x+c2e

λ2x

. (3.4)

Now, by imposing the boundary conditions (3.3), we have

A = eλ1c1.λ2c2 , B = eλ1c1e
λ2.1

eλ2c2eλ2.1, (3.5)

applying logarithm operation on both sides of relations (3.5) yields the following
algebraic system{

λ1c1 + λ2c2 = lnA,

λ1c1e
λ2 + λ2c2e

λ2 = lnB.

Assume the determinant of this system is not vanished, that is∣∣∣∣ λ1 λ2

λ1e
λ1 λ2e

λ2

∣∣∣∣ = λ1λ2(e
λ2 − eλ1) ̸= 0,

we have c1 = eλ2 lnA+lnB
λ1eλ1+λ2

and c2 = − eλ1 lnA+lnB
λ2eλ1+λ2

. By replacing c1, c2 in general

solution (3.4), we get the solution of BVP (3.2)-(3.3).
Now let us define an analog of Riemann integral in multiplicative calculus. Let f be
positive bounded function on [a, b], where −∞ < a < b < ∞. Consider the partition
P = {x0, x1, ..., xn} of [a, b]. Take the numbers ξ1, ξ2, ..., ξn associated with the
partition P. The first step in the definition of proper Riemann integral of f on [a, b]
is the formation of the integral sum

S(f,P) =
n∑

i=1

f(ξi)(ξi − ξi−1).

To define the multiplicative integral of f on [a, b] we will replace the sum by product
and the product by raising to power

P (f,P) =

n∏
i=1

f(ξi)
ξi−ξi−1 . (3.6)

The function f is said to be integrable in the multiplicative sense or ∗ integrable if
there exists a number P having the property: for every ε > 0 there exists a partition
Pε of [a, b] such that |P (f,P) − P | < ε for every refinement P of Pε independently
on selection of the numbers associated with the partition P. The symbol∫ b

a

f(x)dx,



CMDE Vol. 5, No. 4, 2017, pp. 271-279 277

reflecting the feature of the product in (3.6), is used for the number P and it is called
the multiplicative integral f or * integral of on [a, b]. It is reasonable to let∫ b

a

f(x)dx =

(∫ a

b

f(x)dx
)−1

.

It is easily seen that if f is positive and Riemann integrable on [a, b], then it is *
integrable on [a, b] and∫ b

a

f(x)dx = e
∫ b
a
(ln ◦f(x))dx.

Indeed, since the Riemann integral of ln ◦f on [a, b] exists, the continuity of the
exponential function and

P (f,P) = e
∑n

i=1(xi−xi−1)(ln ◦f)(ξi) = eS(ln ◦f,P),

imply the above statement [4].

Example 3. Consider the nonlinear ordinary differential equation:

y′′y − y′2 = g(x) y2. (3.7)

At first, by using the multiplicative continuous derivative and some algebraic opera-
tion, we reduce the nonlinear equation (3.7) to a continuous multiplicative differential
equation as follows

y′′y − (y′2) = y2 g(x) ⇒ y′′y−(y′2)
y2 = g(x) ⇒ e

y′′y−(y′2)

y2 = eg(x) = f(x),

e

(
y′
y

)′

= f(x) ⇒ y∗∗(x) = f(x).

For solving this multiplicative differential equation, it is enough to take multiplica-
tive continuous integerate from f(x). This process will be presented in the following
examples.

Example 4. Consider the equation

y′′y − (y′2)

y2
= cosx. (3.8)

By applying the above process we get

e
y′′y−(y′2)

y2 = ecos x ⇒ e(ln y)′′(x) = ecos x ⇒ y∗∗(x) = ecos x.

This is a multiplicative O.D.E, for solving it, we apply two time multiplicative con-
tinuous integeration for this equation

y∗(x) = c1

∫ x

0

(ecos t)dt = c1 e
∫ x
0

ln ecos tdt = c1 esin x,

y(x) = c2 e

∫ x
0

(
ln c1+ln esin x

)
dx

= c2 ex ln c1 .e− cos x.
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Thus, the general solution of equation (3.7) is

y(x) = c2 ex ln c1 .e− cos x.

Example 5. Consider the homogeneous second order multiplicative continuous dif-
ferential equation

y∗∗(x) = 1.

The general solution is

y(x) = cx1 . c2.

It is interested to know that this equation is similar to ordinary case y
′′
(x) = 0

and its general solution is y(x) = c1x+ c2.

4. Conclusion

In this paper we recalled the preliminary definitions of discrete and continuous mul-
tiplicative differentiations. Then their related invariant functions were introduced. By
means of these functions we could solve the related multiplicative differential equa-
tions with suitable initial and boundary conditions. We can extend the multiplicative
concepts and methods for investigation and solving advanced nonlinear difference and
differential equations. Note that this process was done by converting the given non-
linear difference and differential equation to a multiplicative continuous differential
equation as shown in examples 3 and 4.
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