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Abstract Advection-dispersion equation is solved in numerically by using combinations of
differential quadrature method (DQM) and various time integration techniques cov-

ering some explicit or implicit single and multi step methods. Two different initial
boundary value problems modeling conservative and non conservative transports

of some substance represented by initial data are chosen as test problems. In the

first case, pure advection conservative model problem is studied. The second prob-
lem models motion of non conservative substance and simulates fade out of it as

time proceeds. The errors between analytical and numerical results are measured

by discrete maximum norm. Comparison with some earlier works indicates that the
proposed algorithms generate more accurate and valid results for some discretization

parameters.
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1. Introduction

Many physical phenomena in real world are modeled by various linear PDEs. Hav-
ing both advection and dispersion (diffusion) terms in the Advection-Dispersion Equa-
tion (ADE) makes it a useful model for problems in various fields. Isenberg and
Gutfinger examined a thin film of incompressible liquid draining down a vertical wall,
motion for the film and unsteady heat transfer within the film [13]. Water transport in
soils and dispersion in rivers and estuaries are also two well known studies modeled by
the ADE [7,32]. Various problems including different types of the equation are used to
model for the transient problems associated with flow through wellbores, geothermal
production with reinjection, thermal energy storage in porous formations, thermal,
hot fluid injection and energy extraction techniques for oil recovery, miscible flooding,
oil recovery from hot dry rocks [5]. A type of one dimensional form is used to describe
uptake and desorption of solute diffusion into porous soil aggregates, lithofragments
in sediments and aquifer materials in the sorptive [10]. Solute transport problem by
groundwater flow through isotropic and homogeneous aquifer is also modeled by the
ADE [14]. In transport phenomena in food processing, one dimensional unsteady
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diffusion in an isotropic medium, isothermal process, and the moisture content on a
dry basis are studied with a different kind of the ADE [1].
Consider the initial boundary value problem (IBVP) for one dimensional form of the
ADE

∂u(x, t)

∂t
+ ν

∂u(x, t)

∂x
− λ∂

2u(x, t)

∂x2
= 0, (1.1)

with initial data

u(x, 0) = f(x),

and boundary data

u(a, t) = b1(t),

u(b, t) = b2(t),

over a finite interval [a, b]. This problem models transport of the quantity u(x, t) of
heat, fluid or related substances moving along x−axis with a constant flow velocity ν
and the dispersion(diffusion) coefficient λ [2, 35].
So far, various numerical methods have been applied to the ADE. Dağ et al. developed
the least square finite element algorithm based on low degree B-spline shape func-
tions (FEMLSF and FEMQSF) to solve transport problem modeled by the ADE [8].
Szymkiewicz also solved a model problem described by the ADE via the combination
of the spline functions and finite elements [36]. Kadalbajaoo and Arora constructed
a Taylor-Galerkin B-spline finite element algorithm to solve various IBVPs for one
dimensional ADE [30].
Noye and Tan obtained the numerical solutions of the ADE by the third-order semi
explicit finite difference method [31]. Various two-level explicit and implicit finite
difference methods covering the upwind explicit, the Lax-Wendroff, the modified
Siemieniuch-Gladwell and the fourth-order method have been compared with each
other on the numerical solutions of model problems including the ADE. Karahan
solved various initial boundary value problems for the ADE by the use of implicit,
third-order upwind and explicit finite difference methods [19–21]. Guraslan et al.
developed a sixth-order compact finite difference method (CD6) combined with the
fourth order Runge-Kutta method for numerical solution of three dynamic model
problems [11].
Irk et al. set up a collocation method based on extended cubic B-spline functions (EX-
CBS) [12]. In that study, pollutant transport through a channel problems modeled
by the ADE with mixed boundary conditions were studied. Kaya developed a poly-
nomial based DQM algorithm to obtain numerical solutions of two initial boundary
value problems including flood propagation in an open channel [22]. He also compared
the obtained results with the explicit and implicit finite difference results. One more
DQM based on cubic B-spline functions (CSDQM) was developed for transport of
conserved contaminant and fadeout problems in one dimension [25].
Aim of this study is to obtain the numerical solutions of initial boundary value prob-
lems for the ADE in one dimension by DQM based on Sinc functions. This technique
is a little bit different from common DQM techniques [15–18, 29] owing to the basis
function set used while calculating the weight coefficients.
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The ODE system obtained by the reduction of the ADE by DQM will be integrated
for time variable by using various methods covering forward Euler (FORE), im-
proved polygon (modified Euler) method (IMPOLY), Heun (improved Euler) method
(HEUN), classical Runge-Kutta methods of order two to four (RK2,RK3,RK4), im-
plicit Rosenbrock method of third-fourth order (RB34), Gear single step method with
Burlirsch-Stoer rational extrapolation (GB), FehlBerg Runge-Kutta method of order
fifth order (RKF45), Runge-Kutta method with Cash-Karp coefficients of order four-
five (RKCK45), Adams-Bashforth (AB4) and Adams-Moulton methods of order four
(AM4). The first three initial steps of the iterations of AB4 and AM4 methods are
calculated by RK4. In the predictor-corrector method AM4, the predictor method is
chosen as AB4.

2. Numerical Method

The Sinc functions

Sm(x) =


sin ([

x−m∆x

∆x
]π)

[
x−m∆x

∆x
]π

, x 6= m∆x,

1, x = m∆x,

(2.1)

form a basis on the real line where ∆x is the equal node size, and m is an integer
[6, 9, 33,34]. The nodal values of sinc functions are described in [9] as

Sm(xj) = δmj , (2.2)

Consider the series

C(u)(x) =

∞∑
m=−∞

u(m∆x)Sm(x), (2.3)

for the function u defined on (−∞,∞). The function C(u)(x) is named the cardinal
of u if it converges [28]. First two derivatives of Sinc function Sm(x) are calculated
as

S′m(x) =


π

∆x
(x−m∆x) cos

x−m∆x

∆x
π − sin

x−m∆x

∆x
π

π

∆x
(x−m∆x)2

, x 6= m∆x,

0, x = m∆x,

(2.4)

S′′m(x) =


− π

∆x
sin

x−m∆x

∆x
π

x−m∆x
−

2 cos
x−m∆x

∆x
π

(x−m∆x)2
+

2 sin
x−m∆x

∆x
π

π

∆x
(x−m∆x)3

, x 6= m∆x,

− π2

3∆x2
, x = m∆x.

(2.5)
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DQM is a derivative approximation technique described as ”the p.th order derivative
of a function u(x) at xm is approximated by finite weighted sum of nodal function
values, i.e.,

∂u(p)(x)

∂x(p)

∣∣∣∣
x=xm

=

N∑
i=1

w
(p)
miu(xi), m = 1, 2, . . . , N, (2.6)

where the partition of the finite problem interval [a, b] is xm = a + (m − 1)∆x,m =

1, 2, . . . , N , w
(p)
mi are the weights of nodal functional values for the p. th order derivative

approximation [3]”. The weights w
(p)
mi are calculated using basis functions spanning the

problem interval. So far various basis function sets covering Lagrange interpolation
functions and higher order B-splines, etc, have been used to calculate the weights
[23,24,26].

2.1. Determination of the first order approximation weights. Letting p = 1
in the fundamental DQM derivative equation will lead to produce the weights of the

first order derivative w
(1)
mi . The Sinc functions set {Sm(x)}m=N

m=1 forms a basis for

the functions defined on [x1 = a, b = xN ]. In order to calculate the weights w
(1)
1i of

the node x1, we substitute each Sinc basis functions into the fundamental differential
quadrature equation 2.6. Substitution of S1(x) and using the functional and derivative
values of it which can determined by using (2.4) and (2.5) will lead the equation

S′1(x1) =

N∑
i=1

w
(1)
1i S1(xi)

= w
(1)
11 S1(x1) + w

(1)
12 S1(x2) + . . .+ w

(1)
1NS1(xN )

= w
(1)
11 δ11 + w

(1)
12 δ12 + . . .+ w

(1)
1Nδ1N

0 = w
(1)
11 ,

(2.7)

and will generate the weight w
(1)
11 . The weight w

(1)
12 can be calculated by substitution

of S2(x) into Eq.(2.6) as

S′2(x1) =

N∑
i=1

w
(1)
2i S2(xi)

= w
(1)
11 S2(x1) + w

(1)
12 S2(x2) + . . .+ w

(1)
1NS2(xN )

= w
(1)
11 δ21 + w

(1)
12 δ22 + . . .+ w

(1)
1Nδ2N

(−1)2+1

∆x(1− 2)
= w

(1)
12 .

(2.8)

It can be concluded that the weights w
(1)
1i focused on the first node x1 can be deter-

mined by substitution of each Sinc functions Sm(x),m = 1, 2, . . . , N into the funda-
mental differential quadrature equation (2.6) as

w
(1)
1i =

(−1)1−i

∆x(1− i)
, 1 6= i, (2.9)
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w
(1)
11 = 0. (2.10)

When the weight w
(1)
mi focused on the node xm is wanted to be calculated, a general

explicit formulation to determine it can be given as [4, 27]

w
(1)
mi =

(−1)m−i

∆x(m− i)
, m 6= i, (2.11)

w(1)
mm = 0. (2.12)

2.2. Determination of the second order approximation weights. Assuming
p = 2 and m = 1 in the Eq.(2.6) and using functional and derivative values of S1(x)
will generate the equation

S′′1 (x1) =

N∑
i=1

w
(2)
1i S1(xi)

= w
(2)
11 S1(x1) + w

(2)
12 S1(x2) + . . .+ w

(2)
1NS1(xN )

= w
(2)
11 δ11 + w

(2)
12 δ12 + . . .+ w

(2)
1Nδ1N

−π2

3∆x2
= w

(2)
11 .

(2.13)

Substitution of S2(x) into the fundamental differential quadrature equation (2.6) will
lead the equation

S′′2 (x1) =

N∑
i=1

w
(2)
1i S2(xi)

= w
(2)
11 S2(x1) + w

(2)
12 S2(x2) + . . .+ w

(2)
1NS2(xN )

= w
(2)
11 δ21 + w

(2)
12 δ22 + . . .+ w

(2)
1Nδ2N

2
(−1)(2+1+1)

(∆x)2(1− 2)2
= w

(2)
12 ,

(2.14)

and will generate the weight w
(2)
12 . In a general case the weights w

(2)
mi focused on the

node xm of the second order derivative approximation can be written in an explicit
form [4,27]

w
(2)
mi =

2(−1)m−i+1

∆x2(m− i)2
, m 6= i, (2.15)

w(2)
mm = − π2

3∆x2
, (2.16)
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3. Discretization of the ADE

Replacing the space derivative terms by their DQM approximations in ADE (1.1)
leads to an ODE system of the form

∂u(x, t)

∂t

∣∣∣∣
x=xm

= −ν
N∑
i=1

w
(1)
miu(xi, t) + λ

N∑
i=1

w
(2)
miu(xi, t), (3.1)

where w
(1)
mi and w

(2)
mi are the weights of each u(xi, t) for the first two derivative ap-

proximations at the node xm. Since the values of the function u(x, t) at x1 and xN
are boundary data at both ends of the problem interval, then (3.1) can be expressed
in the form

∂u(x, t)

∂t

∣∣∣∣
x=xm

= [−ν + λ]w
(1)
m1b1(t) + [−ν + λ]w

(2)
mNb2(t)

+

N−1∑
i=2

[
−νw(1)

mi + λw
(2)
mi

]
u(xi, t).

(3.2)

The fully space discretized system (3.2) is integrated for the time variable t by using
time integration methods.

4. Problems

In the process of application of numerical methods, the numerical error between the
results obtained by the proposed algorithms and the analytical solution is measured
to indicate the accuracy and the validity of the method. The measure of the error
also provides a chance to compare the related method with the other ones. In this
study, the discrete maximum norm (∆x,∆t)L∞ is used to determine the error between
the approximate and the analytical solutions. This norm is defined as;

(∆x,∆t)L∞ = max
2≤m≤N−1

|ua(xm, t)− un(xm, t)| ,

where ua(xm, t) and un(xm, t) are the analytical and the numerical solutions, respec-
tively, at the node xm at a fixed time t for the space and time step sizes ∆x and
∆t.

4.1. Transport with only Advection. The model problem for transport of a quan-
tity of concentration along a channel is described as a pure advection initial boundary
value problem for the ADE. The initial condition for the problem is derived by sub-
stituting t = 0 into the analytical solution

u(x, t) = 10 exp(− 1

2ρ2
(x− x̃− νt)2), (4.1)

where ρ and x̃ denote the standard deviation and the initial peak position of the bell-
shaped quantity of 10 units height, respectively [8,11,25,36]. The solution represents
motion of the initial quantity to the right along the channel of length 9 kilometers
with a constant speed ν. For the sake of comparison with the results stated in some
earlier studies, the standard deviation ρ = 264, the flow velocity ν = 0.5m/s and the
initial peak position x̃ = 2 referring the 2 kilometers away from the left end of the
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channel are used as parameters to simulate the solutions. This choice of parameters
moves the peak position of the initial quantity to 6.8 kilometers far away from the left
end of the channel at the simulation terminating time 9600 seconds. The boundary
conditions at both ends are selected as homogeneous Dirichlet conditions over the
problem interval [0, 9]. The simulation of the transport obtained by SDQM-RKF45
with the parameters ∆x = 25 and ∆t = 10 is graphed in Figure 2(a). The maximum
error obtained by SDQM-RKF45 with the same parameters at some specific times
are also recorded and depicted in Figure 2(b).

Figure 1. Transport of the initial quantity and the maximum errors
during simulation.

(a) Simulation of the transport. (b) Maximum error as time goes with ∆x = 25
and ∆t = 10.

Over the long simulation time, the solutions obtained by the SQDM seem stable and
are in very good agreement with the analytical ones. Comparative solutions with the
results in some earlier studies for various mesh sizes are tabulated in Table 1.
When ∆x = 200 and ∆t = 50, the error obtained by the SDQM-FORE is too high.
The maximum norms are 1.15 and 1.35 for the CSDQM and the FEMLSF, respectively
with the same parameters. The results obtained by the methods SDQM-IMPOLY,
SDQM-HEUN and SDQM-RK2 methods are accurate to one decimal digit like the re-
sults of the FEMQSF, the CD6 and the EXCBS. The RK3 and the AB4 methods have
two decimal digits accuracy. The SDQM-RK4, the SDQM-GB, the SDQM-RKF45,
the SDQM-RKCK45 and the SDQM-AB4 generate three decimal digit accurate re-
sults.
The choice of ∆x and ∆t as 50 causes to fail the low order the SDQM-FORE, the
SDQM-IMPOLY, the SDQM-HEUN and the SDQM-RK2 and multi-step methods
the AB4 and the AM4. The FEMLSF and the FEMQSF generates one decimal digit
accurate results as the SDQM-RK3 has two decimal digits accuracy. The methods
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with three decimal digit accurate can be listed as the CSDQM and the EXCBS. The
results obtained by the method CD6 are accurate to four decimal digits, the SDQM-
RK4, the SDQM-RB34 and SDQM-RKF45 five decimal digits and the RKCK45 six
decimal digits. The most accurate results obtained by the method SDQM-GB as eight
decimal digits in this case.
Most of the methods applied for the time integration in the present study, covering
classical Runge-Kutta methods of order one to four, variations of Euler method and
multi step methods, failed when ∆x is reduced to 25 with fixed ∆t = 50. The results
obtained by the FEMLSF and the FEMQSF are accurate to one decimal digit, the
CSDQM three decimal digits, and the CD6 four decimal digits. The accuracy of the
results of SDQM-RB34 and the SDQM-RKF45 are five decimal digits as the best
results again are obtained by the SDQM-GB as seven decimal digits accuracy.
In the case reduction ∆t to 10 with ∆x = 25, the SDQM-FORE method fails. The
SDQM-IMPOLY, the SDQM-HEUN and the SDQM-RK2 generate two decimal digits
accuracy as the results obtained by the SDQM-RK3 are accurate to four decimal
digits, the SDQM-AB4 five decimal digits, the SDQM-RK4 and the SDQM-AM4
six decimal digits. The accuracy of the methods SDQM-RB34 and SDQM-GB are
measured in seven decimal digits. The most accurate results for those parameters are
produced by the methods SDQM-RK45 and SDQM-RKCK45 to eight decimal digits.
Since the better results are obtained by the use of those parameters when compared
with the results by EXCBS with ∆x = ∆t = 10, we do not reduce the step sizes more.

Table 1. Comparison of present results with some earlier ones for
pure advection transport.

Method (200,50)L∞ (50,50)L∞ (25,50)L∞ (25,10)L∞ (10,10)L∞

SDQM-FORE 533.5714 ∞ ∞ ∞
SDQM-IMPOLY 3.9486×10−1 ∞ ∞ 1.7442×10−2

SDQM-HEUN 3.9486×10−1 ∞ ∞ 1.5005×10−2

SDQM-RK2 3.9486×10−1 ∞ ∞ 1.7442×10−2

SDQM-RK3 1.9080×10−2 1.8821×10−2 ∞ 1.5429×10−4

SDQM-RK4 1.9151×10−3 7.0186×10−5 ∞ 1.1436×10−6

SDQM-RB34 1.9182×10−3 6.1214×10−5 6.1275×10−5 1.1967×10−7

SDQM-GB 1.9183×10−3 8.7642×10−8 2.0875×10−7 1.1584×10−7

SDQM-RKF45 1.9186×10−3 1.8497×10−5 1.8834×10−5 7.5235×10−8

SDQM-RKCK45 1.9183×10−3 3.0192×10−6 23025.3677 7.4091×10−8

SDQM-AB4 2.8709×10−2 ∞ ∞ 4.6886×10−5

SDQM-AM4 2.5487×10−3 ∞ ∞ 3.5583×10−6

CSDQM [25] 1.15 8.00×10−3 1.00×10−3

FEMLSF [8] 1.35 3.80 ×10−1 3.77×10−1

FEMQSF [8] 5.18 ×10−1 3.73 ×10−1 3.79×10−1

CD6 [11] 4.29×10−1 8.00×10−4 7.00×10−4

EXCBS [12] 6.07×10−1 2.20×10−3 3.44×10−6

4.2. Transport with both Advection and Dispersion. The initial boundary
value problem, constructed using both advection and dispersion terms together, mod-
els the fadeout of an initially solitary wave-shaped quantity while moving to the right
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of the channel as time proceeds. The exact solution of this model is given as

u(x, t) =
1√

4t+ 1
exp

(
− (x− x̃− νt)2

λ(4t+ 1)

)
, (4.2)

where x̃ is the initial peak position of the quantity of unit height moving with a
constant velocity ν [30, 31]. The initial data are chosen as

u(x, 0) = exp

(
− (x− x̃)2

λ

)
, (4.3)

which can be obtained by substitution of t = 0 into the analytical solution. The
simulation is accomplished by assuming homogeneous Dirichlet boundary data at both
ends of the channel of length 9 kilometers. The algorithm to simulate the solution of
the problem is run up to the compatible test time t = 5 seconds with the dispersion
coefficient λ = 0.005, the transport velocity ν = 0.8m/s and the initial peak position
of the quantity x̃ = 1. The simulation of the motion and the maximum error-time
graph are depicted in Figure 3(a) and in Figure 3(b), respectively. The peak of the
quantity reaches the fifth kilometers of the channel at the end of the simulation. This
situation corresponds to the theoretical aspects of the solution owing to the value of
ν.

Figure 2. The fadeout of an initial quantity and the error at t = 5.

(a) Fadeout of quantity as time goes. (b) Maximum error as time goes.

A comparison of the results obtained by SQDM methods with the ones from the
CSDQM method is also summarized for some various mesh sizes and fixed ∆t =
0.0125, Table 2. When ∆x = 0.2, the results of all methods given in the table are as
accurate as each other, namely to one decimal digit.
When the mesh size is chosen as 0.1, the results obtained from SDQM-FORE are one
decimal digit accurate. This choice of ∆x causes two decimal digits accuracy for the
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method CSDQM (Method II). The results obtained by the CSDQM (Method I) has
three decimal digits accuracy like all SDQM methods except SDQM-FORE.
In the case ∆x = 0.05, the results of SDQM-FORE has one decimal digit accuracy
as the SDQM-AB4 fails. The accuracy of the results of the SDQM-IMPOLY, the
SDQM-HEUN, the SDQM-RK2 and the CSDQM (Method I) are to three decimal
digits. The methods SDQM-RK3, SDQM-RK4, SDQM-RB34, SDQM-GB, SDQM-
RKF45, SDQM-RKCK45, SDQM-AM4, and CSDQM (Method II) have four decimal
digits accurate.
In the last case, we choose ∆x as 0.0025. This choice of ∆x causes the methods
SDQM-FORE, SDQM-RB34 and multi step methods to fail. The results obtained
by the SDQM-IMPOLY, the SDQM-HEUN, and the SDQM-RK2 are accurate to
three decimal digits accurate results, the CSDQM (Method I) four decimal digits, the
SDQM-RK3 and the CSDQM (Method II) five decimal digits, the SDQM-RK4 seven
decimal digits and the SDQM-GB and the SDQM-RKF45 eight decimal digits. The
most accurate results are obtained by the SDQM-RKCK45 as nine decimal digits for
this case.

Table 2. Comparison of the results with some earlier studies on the
maximum error at t = 5 for the fadeout problem.

Method (0.2,0.0125)L∞ (0.1,0.0125)L∞ (0.05,0.0125)L∞ (0.025,0.0125)L∞

SDQM-FORE 4.7876×10−1 2.2734×10−1 2.2243×10−1 ∞
SDQM-IMPOLY 1.3818×10−1 9.9836×10−3 1.6755×10−3 1.6842×10−3

SDQM-HEUN 1.3818×10−1 9.9836×10−3 1.6755×10−3 1.6842×10−3

SDQM-RK2 1.3855×10−1 9.9836×10−3 1.7655×10−3 1.6842×10−3

SDQM-RK3 1.3848×10−1 9.9843×10−3 1.1087×10−4 3.9909×10−5

SDQM-RK4 1.3855×10−1 9.9863×10−3 1.1070×10−4 8.8121×10−7

SDQM-RB34 1.3855×10−1 9.9863×10−3 1.1071×10−4 ∞
SDQM-GB 1.3855×10−1 9.9863×10−3 1.1071×10−4 1.9130×10−8

SDQM-RKF45 1.3855×10−1 9.9863×10−3 1.1071×10−4 1.1869×10−8

SDQM-RKCK45 1.3855×10−1 9.9863×10−3 1.1071×10−4 8.6012×10−9

SDQM-AB4 1.3856×10−1 9.9860×10−3 ∞ ∞
SDQM-AM4 1.3855×10−1 9.9864×10−3 1.1073×10−4 ∞
CSDQM(Method I) [25] 1.25×10−1 6.95 ×10−3 1.21×10−3 3.07×10−4

CSDQM(Method II) [25] 1.36×10−1 1.45×10−2 2.88×10−4 1.81×10−5

5. Conclusion

In the study, DQM based on sine cardinal functions is setup to solve the advection-
dispersion equation numerically. The weight coefficients required for differential quad-
rature derivative approximations are computed in an explicit form. After discretiza-
tion of the ADE in space by the DQM, and application of boundary conditions,
the resultant ODE system is integrated with respect to the time variable t using
various methods covering single step methods of different orders, and explicit Adams-
Bahsforth and implicit Adams-Moulton multistep methods of order four. In order to
show the validity and accuracy of the numerical results, two IBVPs are studied. The
simulations and error distributions at the terminating times for both problems are
depicted. The discrete maximum error norms are computed for various mesh and time
step sizes. A comparison of the results with each other and some results from different
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studies in literature is also accomplished by the comparison of norms. Comparisons
also show that Sinc DQM generates acceptable, accurate and valid, better for some
cases, solutions like the earlier solutions obtained by various methods in literature.
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