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Abstract In this manuscript a new method is introduced for solving fractional differential

equations. The fractional derivative is described in the Caputo sense. The main
idea is to use fractional-order Legendre wavelets and operational matrix of fractional-
order integration. First the fractional-order Legendre wavelets (FLWs) are presented.
Then a family of piecewise functions is proposed, based on which the fractional order

integration of FLWs are easy to calculate. The approach is used this operational
matrix with the collocation points to reduce the under study problem to a system
of algebraic equations. Convergence of the fractional-order Legendre wavelet basis
is demonstrate. Illustrative examples are included to demonstrate the validity and

applicability of the technique.
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1. Introduction

Fractional differential equations (FDEs) are generalizations of ordinary differential
equations to an arbitrary (non-integer) order. A history of the development of frac-
tional differential operators can be found in [27, 31].
FDEs appear in several problems in science and engineering such as

• Viscoelasticity [2].
• Bioengineering [23].
• Dynamics of interfaces between nanoparticles and substrates [7].
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• Fluid-dynamic traffic [17].
• Signal processing [33].
• Control theory [5].
• Solid mechanics [40].
• Statistical mechanics [24].
• Economics [3].
• Nonlinear oscillations of earthquakes [16].

In general, most of fractional differential equations do not have exact solution, in this
case, finding numerical solutions has become the destination of many mathemati-
cians, some of these methods include: Fourier transforms [14], spectral Tau method
[11], eigenvector expansion [46], Laplace transforms [34], Adomian decomposition
method [28], variational iteration method [29], power series method [30], finite dif-
ference method [25], fractional differential transform method [1], collocation method
[38], Tau method [43], homotopy analysis method [10], Bernstein operational matrix
method [41], Legendre operational matrix method [42] and fractional-order Bernoulli
wavelets [36].
The available sets of orthogonal functions can be divided into three classes. The first
class includes sets of piecewise constant basis functions (e.g., block-pulse, Haar and
Walsh [32]). The second class consists of sets of orthogonal polynomials (e.g., Cheby-
shev, Laguerre and Legendre). The third class is the set of sine-cosine functions in
the Fourier series. Orthogonal functions have been used when dealing with various
problems of the dynamical systems. The most frequently used orthogonal functions
are sine-cosine functions, block-pulse functions, Legendre, Laguerre and Chebyshev
orthonormal sets of functions. The remarkable orthonormal wavelets provide basis
for many important spaces.
Wavelets theory is a relatively new and an emerging area in the field of applied sci-
ence and engineering. It has been applied in a wide range of engineering disciplines;
particularly, wavelets are very successfully used in signal analysis for waveform rep-
resentation and segmentation, time-frequency analysis and fast algorithms for easy
implementation [8]. Wavelets have many attractive features: orthogonality, arbitrary
regularity and good localization. The study of wavelets attained its present growth
after the mathematical analysis of wavelets by Stromberg [45], Grossmann and Morlet
[15] and Meyer [26]. Wavelet basis can be used to reduce the underlying problem to a
system of algebraic equations by estimating the integrals using operational matrices.
Recently the operational matrices for fractional order integration for Haar wavelets
[49], Chebyshev wavelets [48], CAS wavelet [44], Legendre wavelet [39] and Bernoulli
wavelet [19, 35] have been developed to solve fractional order differential equations.
Recently, in [18] Kazem et al. defined new orthogonal functions based on the shifted
Legendre polynomials to obtain the numerical solution of fractional-order differential
equations. Yin et al. [47] extended this definition and presented the operational
matrix of fractional derivative and integration for such functions to construct a new
Tau technique for solving fractional partial differential equations (FPDEs). Bhrawy
et al. [4] proposed the fractional-order generalized Laguerre functions based on the
generalized Laguerre polynomials. They used these functions to find numerical so-
lution of systems of fractional differential equations. In [51] Yüzbasi presented a
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collocation method based on the fractional-order Bernstein functions for solving the
fractional Riccati type differential equations. Chen et al. [6] expanded the fractional
Legendre functions to interval [0, h] and to acquire numerical solution of the FPDEs.
In [21], Krishnasamy and Razzaghi defined the fractional Taylor vector approxima-
tion for solving the Bagley-Torvik equation. Darani and Nasiri [9] introduced a type
of fractional-order polynomials based on the classical Chebyshev polynomials of the
second kind for solving linear fractional differential equations. Rahimkhani et al. [36]
constructed the fractional-order Bernoulli wavelets for solving FDEs and system of
FDEs. Moreover, Rahimkhani et al. [37] expanded the fractional-order Bernoulli
wavelets to interval [0, h] and to acquire numerical solution of the fractional panto-
graph differential equations.
In this paper, a new numerical method for solving the initial and boundary value
problems for the fractional differential equations is presented. The method is based
upon fractional-order Legendre wavelets (FLWs) approximation. First, the fractional-
order Legendre wavelets are constructed. Then, we obtain the operational matrix of
fractional order integration for FLWs by expanding these wavelets into a family of
piecewise functions where are introduced. Finally, this matrix is utilized to reduce the
solution of the fractional differential equations with initial and boundary conditions
to the solution of algebraic equations.
The rest part of this paper is organized as follows. In Section 2, some necessary
mathematical preliminaries and notations of fractional calculus are given. Section
3 is devoted to the basic formulation of wavelets and the fractional-order Legendre
wavelets. In Section 4, we derive the fractional-order Legendre wavelets operational
matrix of fractional integration. Section 5 is devoted to problem statement. In Section
6, the numerical method for solving the initial and boundary value problems for FDEs
and systems of FDEs is presented. In Section 7, convergence of the fractional-order
Legendre wavelet bases is demonstrated. In Section 8 we report our numerical find-
ings and demonstrate the accuracy of the proposed numerical scheme by considering
seven numerical examples. The conclusion is included in Section 9.

2. Preliminaries and notations

2.1. The fractional derivative and integral. There are various definitions of frac-
tional derivative and integration. The widely used definition of a fractional derivative
is the Caputo definition, and a fractional integration is the Riemann-Liouville defini-
tion.

Definition 2.1. The Riemann-Liouville fractional integral operator of order ν ≥ 0 is
defined as [20, 36]

Iνf(t) =
1

Γ(ν)

∫ t

0

f(s)

(t− s)1−ν
ds, ν > 0, t > 0, (2.1)

I0f(t) = f(t),

where

Γ(ν) =
∫∞
0
tν−1e−tdt.
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For the Riemann-Liouville fractional integral we have [13]

Iνtβ = Γ(β+1)
Γ(β+ν+1) t

ν+β , β > −1,

Iν(λf(t) + µg(t)) = λIνf(t) + µIνg(t),

IνIµf(t) = Iν+µf(t),

IνIµf(t) = IµIνf(t).

Definition 2.2. Caputo’s fractional derivative of order ν is defined as [20, 36]

Dνf(t) =
1

Γ(n− ν)

∫ t

0

f (n)(s)

(t− s)ν+1−n
ds, n− 1 < ν ≤ n, n ∈ N. (2.2)

For the Caputo derivative we have [13]

Dνc = 0,

DνIνf(t) = f(t),

IνDνf(t) = f(t)−
∑n−1

i=0 y
(i)(0) t

i

i! ,

Dν(λf(t) + µg(t)) = λDνf(t) + µDνg(t),

where c is constant.

Definition 2.3. (Generalized Taylor’s formula) [18]. Suppose that Diαf ∈ C(0, 1]
for i = 0, 1, ...,m. Then we have

f(t) =
m−1∑
i=0

tiα

Γ(iα+ 1)
Diαf(0+) +

tmα

Γ(mα+ 1)
Dmαf(ξ), (2.3)

with 0 < ξ ≤ t,∀t ∈ (0, 1]. Also, one has

|f(t)−
m−1∑
i=0

tiα

Γ(iα+ 1)
Diαf(0+)| ≤Mα

tmα

Γ(mα+ 1)
, (2.4)

where Mα ≥ supξ∈(0,1]|Dmαf(ξ)|.
In case of α = 1, the generalized Taylor’s formula (2.3) reduces to the classical Taylor’s
formula.

2.2. Fractional-order Legendre functions. The fractional-order Legendre func-
tions (FLFs) are proposed by Kazem et al. [18]. These functions are defined by
transformation x = tα, (α > 0) based on the shifted Legendre polynomials and are
denoted by Flαi (t), i = 0, 1, 2, . . .. They are particular solution of the normalized
eigenfunctions of the singular Sturm-Liouville problem [18]

((t− t1+α)Fl′αi (t))′ + α2i(i+ 1)tα−1Flαi (t) = 0, t ∈ [0, 1].

The fractional-order Legendre functions Flαi (t) satisfy the following recursive formula

Flαi+1(t) =
(2i+1)(2tα−1)

i+1 Flαi (t)− i
i+1Fl

α
i−1(t), i = 1, 2, . . . ,

F lα0 (t) = 1, F lα1 (t) = 2tα − 1.
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The analytic form of Flαi (t) of degree iα given by

Flαi (t) =
i∑

s=0

bs,it
sα, i = 0, 1, 2, . . . , (2.5)

where bs,i =
(−1)i+s(i+s)!
(i−s)!(s!)2 , and Flαi (0) = (−1)i, F lαi (1) = 1.

The FLFs are orthogonal with respect to the weight function ω(t) = tα−1 on the
interval [0, 1], then the orthogonal condition is [18]∫ 1

0

Flαn(t)Fl
α
m(t)tα−1dt =

1

(2m+ 1)α
δnm, m ≥ n, (2.6)

where δnm is the Kronecker function.

3. Fractional-order Legendre wavelets and their properties

3.1. Wavelets and fractional-order Legendre wavelets. Wavelets have been
very successfully used in many scientific and engineering fields. They constitute a
family of functions constructed from dilation and translation of a signal function
called the mother wavelet. When the dilation parameter a and the translation pa-
rameter b vary continuously, we have the following family of continuous wavelets [36]

ψa,b(t) = |a|− 1
2ψ( t−b

a ), a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a

−k
0 ,

a0 > 1, b0 > 0, where n and k are positive integers, the family of discrete wavelets
are defined as

ψk,n(t) = |a0|k/2ψ(ak0t− nb0),

where ψk,n(t) form a wavelet basis for L2(R).
Fractional-order Legendre wavelets ψα

n,m(t) = ψα(k, n̂,m, t) have four arguments;

n̂ = n − 1, n = 1, 2, . . . , 2k−1, k can assume any positive integer, m is the order for
fractional-order Legendre functions and t is the normalized time. We define them on
the interval [0, 1) as follows

ψα
n,m(t) =

{
((2m+ 1)α)

1
2 2

k−1
2 Flαm(2k−1t− n̂), n̂

2k−1 ≤ t < n̂+1
2k−1 ,

0, otherwise,
(3.1)

where m = 0, 1, 2, . . . ,M − 1 and n = 1, 2, . . . , 2k−1. The coefficient ((2m+ 1)α)
1
2 is

for normality, the dilation parameter is a = 2−(k−1) and the translation parameter
b = n̂2−(k−1). Here, Flαm(t) are the fractional-order Legendre functions of order mα
which are defined in the Section 2.2.

3.2. Function approximation. A function f, defined over [0, 1), may be expanded
as

f(t) =

∞∑
n=1

∞∑
m=0

cnmψ
α
nm(t), (3.2)

where the coefficients cnm are given by

cnm =< f,ψα
nm >=

∫ 1

0
f(t)ψα

nm(t)tα−1dt,
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where <,> denotes the inner product in L2[0, 1]. If the infinite series in Eq. (3.2) is
truncated, then it can be written as

f(t) ≃
∑2k−1

n=1

∑M−1
m=0 cnmψ

α
nm(t) = CTΨα(t),

where C and Ψα(t) are 2k−1M × 1, vectors given by

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T

= [c1, c2, c3, . . . , cm̂]T , m̂ = 2k−1M, (3.3)

and

Ψα(t) = [ψα
10(t), ψ

α
11(t), . . . , ψ

α
1(M−1)(t), . . . , ψ

α
2k−10(t), . . . , ψ

α
2k−1(M−1)(t)]

T

= [ψα
1 (t), ψ

α
2 (t), ψ

α
3 (t), . . . , ψ

α
m̂(t)]T . (3.4)

3.3. Piecewise fractional-order Taylor functions. In this section, a new family
of piecewise functions is introduced to facilitate the calculation of the fractional-order
Legendre wavelets operational matrix of fractional integration.
Since fractional-order Legendre wavelets are formulated based on fractional-order
functions, a family of functions based on fractional-order Taylor defined on [0, 1)
is constructed as

ϕαn,m(t) =

{
tmα, n̂

2k−1 ≤ t < n̂+1
2k−1 ,

0, otherwise,
(3.5)

where n̂ = n − 1, n = 1, 2, . . . , 2k−1, m = 0, 1, 2, . . . ,M − 1 and α is real constant.
Unlike fractional-order Legendre wavelets, this family of functions is not normalized.
We let

Φα(t) = [ϕα10(t), ϕ
α
11(t), . . . , ϕ

α
1(M−1)(t), . . . , ϕ

α
2k−10(t), . . . , ϕ

α
2k−1(M−1)(t)]

T

= [ϕα1 (t), ϕ
α
2 (t), ϕ

α
3 (t), . . . , ϕ

α
m̂(t)]T , (3.6)

and

Tα(t) = [1, tα, t2α, . . . , t(M−1)α]T , (3.7)

where Tα(t) is the M × 1 vector of fractional-order Taylor functions [21].

4. Operational matrix of fractional integration

In this section, we derive the fractional-order Legendre wavelets operational matrix
of fractional integration by first transforming these wavelets to piecewise fractional-
order Taylor functions introduced in previous section. Then, we derive the piecewise
fractional-order Taylor functions operational matrix of fractional integration, and
finally we derive the fractional-order Legendre wavelet operational matrix of fractional
integration.
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4.1. Transformation matrix of the fractional-order Legendre wavelets to
the piecewise fractional-order Taylor functions. The fractional-order Legendre
wavelets Ψα(t) can be expanded into m̂−set of piecewise fractional-order Taylor func-
tions Φα(t) as

Ψα
m̂×1(t) = Θ−1

m̂×m̂Φα
m̂×1(t), (4.1)

where Θ−1 is the transformation matrix of fractional-order Legendre wavelets to the
piecewise fractional-order Taylor functions. Also, Θ−1 denotes inverse matrix of Θ.
The connection between the piecewise fractional-order Taylor functions and the fractional-
order Legendre wavelets can be demonstrated as follows

ϕαi (t) =
m̂∑
j=1

θijψ
α
j (t), i = 1, 2, . . . , m̂, (4.2)

where

θij = ⟨ϕαi , ψα
j ⟩ =

∫ 1

0
ϕαi (t)ψ

α
j (t)t

α−1dt, i = j = 1, 2, . . . , m̂,

and we let

Θ = [θij ],

where Θ is a matrix of order m̂× m̂.
Then, the following result is obtained

Φα(t) = ΘΨα(t). (4.3)

Also, we can write

Ψα(t) = Θ−1Φα(t), (4.4)

therefore, Θ−1 is the transformation matrix of the fractional-order Legendre wavelets
to the piecewise fractional-order Taylor functions.
For example, for k = 2,M = 3 and α = 1 the transformation matrix can be expressed
as

Θ =



1√
2

0 0 0 0 0
1

4
√
2

1
4
√
6

0 0 0 0
1

12
√
2

1
8
√
6

1
24

√
10

0 0 0

0 0 0 1√
2

0 0

0 0 0 3
4
√
2

1
4
√
6

0

0 0 0 7
12

√
2

√
3
2

8
1

24
√
10


.

Also, for k = 2,M = 3 and α = 2 the transformation matrix can be expressed as
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Θ =



1
4 0 0 0 0 0
1
32

1
32

√
3

0 0 0 0
1

192
1

128
√
3

1
384

√
5

0 0 0

0 0 0 3
4 − 1

2
√
3

1
2
√
5

0 0 0 15
32 −

√
3

160
3

28
√
5

0 0 0 21
64

47
√
3

896
71

2688
√
5


.

4.2. Piecewise fractional-order Taylor functions operational matrix of frac-
tional integration. The Riemann-Liouville fractional integration of the vector Φα(t)
given in Eq. (3.6) can be expressed by

IνΦα(t) = Fα(t, ν)Φα(t), (4.5)

where Fα(t, ν) is the m̂× m̂ operational matrix of fractional integration of order ν.

From Eq. (3.7), and the properties of the operator Iν we have

IνTα(t) = [
1

Γ(α+ 1)
,

Γ(α+ 1)

Γ(α+ ν + 1)
tα+ν , . . . ,

Γ((M − 1)α+ 1)

Γ((M − 1)α+ ν + 1)
t(M−1)α+ν ]T

= tνG(α,ν)Tα(t) = Hα(t, ν)Tα(t), (4.6)

where

G(α,ν) = diag[ 1
Γ(α+1) ,

Γ(α+1)
Γ(α+ν+1) ,

Γ(2α+1)
Γ(2α+ν+1) , . . . ,

(M−1)α+1)
Γ((M−1)α+ν+1) ].

Using Eqs. (4.5) and (4.6), we get

Fα(t, ν) = diag[Hα(t, ν),Hα(t, ν), . . . , Hα(t, ν)]. (4.7)

4.3. Fractional-order Legendre wavelets operational matrix of fractional in-
tegration. We now derive the fractional-order Legendre wavelets operational matrix
of fractional integration. Let

IνΨα(t) = Pα(t, ν)Ψα(t), (4.8)

where the matrix Pα(t, ν) is called fractional-order Legendre wavelets operational
matrix of fractional integration of order ν. Using Eqs. (4.1) and (4.5) we get

IνΨα(t) = IνΘ−1Φα(t) = Θ−1Fα(t, ν)Φα(t). (4.9)

From Eqs. (4.8) and (4.9) we have

Pα(t, ν)Ψα(t) = Pα(t, ν)Θ−1Φα(t) = Θ−1Fα(t, ν)Φα(t). (4.10)

Then, the fractional-order Legendre wavelets operational matrix of fractional integra-
tion Pα(t, ν) is given by

Pα(t, ν) = Θ−1Fα(t, ν)Θ. (4.11)

Therefore, we have found the operational matrix of fractional integration for the
fractional-order Legendre wavelets.
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For example, for k = 2,M = 3, and ν = α = 1 the operational matrix of fractional
integration at t = 0.1 can be expressed as

P 1(0.1, 1) =


0.1 0 0 0 0 0

−0.0866 0.05 0 0 0 0
0.0373 −0.0645 0.0333 0 0 0

0 0 0 0.1 0 0
0 0 0 −0.2598 0.05 0
0 0 0 0.9317 −0.193649 0.0333

 .

5. Problem statement

In this paper, we focus on the following problems:

5.1. Problem a. Caputo fractional differential equation with initial conditions as
Dν1y(t) = F (t, y(t), Dν2y(t)), 0 ≤ t < 1, m− 1 < ν1 ≤ m,

0 ≤ ν2 < ν1,
y(i)(0) = yi0, i = 0, 1, . . . ,m− 1.

(5.1)

5.2. Problem b. Caputo fractional differential equation with boundary conditions
as  Dν1y(t) = F (t, y(t), Dν2y(t), Dν3y(t)), 0 ≤ t < 1, 1 < ν2 < ν1 ≤ 2,

0 ≤ ν3 ≤ 1,
y(0) = y0, y(1) = y1.

(5.2)

5.3. Problem c. System of Caputo fractional differential equations with initial con-
ditions as

 Dνiyi(t) = F (t, y1(t), y2(t), . . . , yn(t)), 0 ≤ t < 1, 0 < νi ≤ 1,
i = 1, 2, . . . , n,

yi(0) = yi0, i = 1, 2, . . . , n,
(5.3)

where F is a continuous linear or nonlinear function.

6. Numerical method

In this section, we use the fractional-order Legendre wavelets for solving problem
(a) given in Eq. (5.1), problem (b) given in Eq. (5.2) and problem (c) given in Eq.
(5.3).
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6.1. Problem a. For problem (a), we expand Dν1y(t) by the fractional-order Le-
gendre wavelets as

Dν1y(t) ≃ CTΨα(t). (6.1)

By using Eqs. (4.8), (5.1) and (6.1) we have

y(t) ≃ CTPα(t, ν1)Ψ
α(t) +

m−1∑
i=0

yi0
ti

i!
. (6.2)

From Eqs. (4.8), (6.2), we get

Dν2y(t) ≃ CTPα(t, ν1 − ν2)Ψ
α(t) +Dν2

(m−1∑
i=0

yi0
ti

i!

)
. (6.3)

Substituting Eqs. (6.1) - (6.3) in Eq. (5.1), we get

CTΨα(t) = F

(
t, CTPα(t, ν1)Ψ

α(t) +
m−1∑
i=0

yi0
ti

i!
, CTPα(t, ν1 − ν2)Ψ

α(t)

+ Dν2
(m−1∑

i=0

yi0
ti

i!

))
. (6.4)

Next, we collocate Eq. (6.4) at the m̂ zeros of shifted Legendre polynomials Pm̂(t).
These equations give m̂ nonlinear algebraic equations, which can be solved for the
unknown vector C using Newton’s iterative method.

6.2. Problem b. For problem b, we expandDν1y(t) by the fractional-order Legendre
wavelets as

Dν1y(t) ≃ CTΨα(t). (6.5)

By using Eqs. (4.8), (5.2) and (6.5) we have

y(t) ≃ CTPα(t, ν1)Ψ
α(t) + y0 + y′0t. (6.6)

From Eqs. (4.8), (6.6), we get

Dν2y(t) ≃ CTPα(t, ν1 − ν2)Ψ
α(t). (6.7)

Dν3y(t) ≃ CTPα(t, ν1 − ν3)Ψ
α(t) +Dν3(y0 + y′0t). (6.8)

Substituting Eqs. (6.5) - (6.8) in Eq. (5.2), we get

CTΨα(t) = F
(
t, CTPα(t, ν1)Ψ

α(t) + y0 + y′0t, C
TPα(t, ν1 − ν2)Ψ

α(t),

CTPα(t, ν1 − ν3)Ψ
α(t) +Dν3(y0 + y′0t)

)
. (6.9)

Also, by using Eqs. (5.2) and (6.6), we have

y(1) = CTPα(1, ν1)Ψ
α(1) + y0 + y′0 = y1. (6.10)
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Next, we collocate Eq. (6.9) at the m̂ zeros of shifted Legendre polynomials Pm̂(t).
The resulting equations together with Eq. (6.10) give m̂ + 1 algebraic equations,
which can be solved for the unknown vector C and y′0.

6.3. Problem c. For problem (c), we expandDνiyi(t), i = 1, 2, ..., n, by the fractional-
order Legendre wavelets as

Dνiyi(t) ≃ CT
i Ψ

α(t), i = 1, 2, . . . , n. (6.11)

From Eqs. (4.8), (5.3) and (6.11), we obtain

yi(t) ≃ CT
i P

α(t, νi)Ψ
α(t) + yi0, i = 1, 2, . . . , n. (6.12)

Substituting Eqs. (6.11) and (6.12) in Eq. (5.3), we obtain a system of algebraic
equations with nm̂ unknowns. Next, we collocate this system at the nm̂ zeros of
shifted Legendre polynomials Pnm̂(t). This system give nm̂ nonlinear algebraic equa-
tions, which can be solved for the unknown vectors Ci, i = 1, 2, . . . , n using Newton’s
iterative method.

7. Convergence of the fractional-order Legendre wavelet bases

Now, we derive the convergence of approximation of a function with respect the
fractional-order Legendre bases. In fact, we will show that fm̂ converges to f as k
or m approaches ∞. Also, we obtain an upper bound for its error by the following
theorem.

Theorem 7.1. Suppose Dkαf ∈ C[0, 1] for k = 0, 1, . . . ,M−1 and Y α
m = span{Flα0 , F lα1 ,

. . . F lαM−1}. If fm =
∑M−1

i=0 aiFl
α
i = ATFLα is the best approximation of f out of

Y α
m on the interval [ n−1

2k−1 ,
n

2k−1 ], then

∥f − fm̂∥2 ≤
supt∈[0,1]|DMαf(0+)|

Γ(Mα+ 1)

√
1

(2M + 1)α
. (7.1)

Proof. Considering the Generalized Taylors formula, we let

y1(t) =
∑M−1

i=0
tiα

Γ(iα+1)D
iαf(0+),

then, we have

|f(t)− y1(t)| ≤ tMα

Γ(Mα+1)supt∈Ik,n
|DMαf(0+)|,

where Ik,n = [ n−1
2k−1 ,

n
2k−1 ].

Because the interval [0, 1] is divided into 2k−1 subintervals Ik,n = [ n−1
2k−1 ,

n
2k−1 ] that

the function f is approximated on them by using fractional-order Legendre functions
as a function of the (M − 1)α order at most with the least-square property, therefore
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would be as

∥f − fm̂∥22 =

∫ 1

0

w(t)[f(t)− CTΨα(t)]2dt

=
2k−1∑
n=1

∫ n

2k−1

n−1

2k−1

wn(t)(f(t)− CTΨα(t))2dt

=
2k−1∑
n=1

∫ n

2k−1

n−1

2k−1

wn(t)(f(t)−ATFLα(t))2dt, (7.2)

where ATFLα is any function of order (M − 1)α that interpolates f on Ik,n with
the following error bound for interpolating

|f(t)−ATFLα(t)| ≤ tMα

Γ(Mα+1)supt∈Ik,n
|DMαf(0+)|.

Therefore, using the above relations, we obtain

∥f − fm̂∥22 =
2k−1∑
n=1

∫ n

2k−1

n−1

2k−1

wn(t)

(
f(t)−ATFLα(t)

)2

dt

≤
2k−1∑
n=1

∫ n

2k−1

n−1

2k−1

wn(t)

(
tMα

Γ(Mα+ 1)
supt∈Ik,n

|DMαf(0+)|
)2

dt

=

∫ 1

0

w(t)

(
tMα

Γ(Mα+ 1)
supt∈Ik,n

|DMαf(0+)|
)2

dt

=
1

Γ(Mα+ 1)2(2M + 1)α

(
supt∈[0,1]|DMαf(0+)|

)2

. (7.3)

�

By taking the square roots of both sides, we obtain the upper bound of the error.
Using the fractional-order Legendre wavelet basis we will have two degrees of freedom
which increase the accuracy of the method. One of these parameters is the dilation
argument k and the other is M corresponding to the number of elements of the basis
in every subinterval [ n−1

2k−1 ,
n

2k−1 ].
When M is fixed and k approaches ∞, we have

|Ik,n| =
∣∣∣∣ n
2k−1 − n−1

2k−1

∣∣∣∣ → 0,
∫
Ik,n

[f(t)− fm(t)]2dt→ 0.

By using Eq. (7.2), we have

limk→∞ ∥f − fm̂∥2 = 0.

When k is fixed and M approaches ∞, by (7.1) we get

limM→∞ ∥f − fm̂∥2 = 0.

This completes the convergence of approximation by the fractional-order Legendre
wavelets bases.
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8. Illustrative examples

In this section, seven examples are given to demonstrate the applicability and ac-
curacy of our method. Examples 1-3, are initial value problems, Examples 4-5, are
boundary value problems, and Examples 6 and 7 are systems of fractional differential
equations.
Example 1. Consider the following fractional differential equation with initial con-
dition [22]{

D0.5y(t) + y(t) =
√
t+

√
π
2 , 0 ≤ t < 1,

y(0) = 0.
(8.1)

The exact solution of this problem is

y(t) =
√
t.

Here we solve this problem by using the fractional-order Legendre wavelet approach.
Let

D0.5y(t) ≃ CTΨα(t). (8.2)

Then using Eqs. (4.8), (8.1) and (8.2) we have

y(t) ≃ CTPα(t, 0.5)Ψα(t). (8.3)

Substituting Eqs. (8.2) and (8.3) into Eq. (8.1), we have

CTΨα(t) + CTPα(t, 0.5)Ψα(t) =
√
t+

√
π

2
. (8.4)

Now, we collocate Eq. (8.4) at the zeros of shifted Legendre polynomials, which can
be solved for the unknown vector C, using Newton’s iterative method. It is well
known that the initial guesses for Newton’s iterative method are very important. For
this problem, by using y(0), and Eq. (8.3), we choose the initial guesses such that
CTPα(0, 0.5)Ψα(0) = 0.
In Tables 1 and 2 we compare the L∞ and L2 errors of the present method for
k = 2,M = 2, α = 1 with the B-spline functions method of [22]. Also, Table 3 shows
the absolute errors between the exact and approximate solutions for various values of
α with k = 1,M = 3. The comparisons show that the best value of α for this problem
is α = 1

3 .

Table 1. Comparison of L∞ errors for y(t) for Example 1.

t Ref. [22] Our method

m̂ = 17 m̂ = 65 m̂ = 257 m̂ = 4(k = 2,M = 2)
0 7.8× 10−3 7.7× 10−4 7.8× 10−5 1.11× 10−16

Example 2. Consider the fractional nonlinear differential equation with initial con-
ditions [12]{

Dνy(t)− y2(t) = 1, p− 1 < ν ≤ p, 0 ≤ t < 1,
y(i)(0) = 0, i = 0, 1, . . . , p− 1.

(8.5)
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Table 2. Comparison of L2 errors for y(t) for Example 1.

t Ref. [22] Our method

m̂ = 17 m̂ = 65 m̂ = 257 m̂ = 4(k = 2,M = 2)
0 3.9× 10−3 4.0× 10−4 4.2× 10−5 9.54× 10−17

Table 3. Comparison of absolute error of y(t) with k = 1,M = 3
for different values of α for Example 1.

t α = 1
5 α = 1

3 α = 1
2 α = 1 α = 2

0 0 0 0 0 0
0.1 5.55× 10−17 0 0 5.55× 10−17 2.66× 10−15

0.2 1.11× 10−16 0 0 5.55× 10−17 3.61× 10−15

0.3 1.11× 10−16 0 1.11× 10−16 0 4.22× 10−15

0.4 1.11× 10−16 0 2.22× 10−16 1.11× 10−16 4.66× 10−15

0.5 1.11× 10−16 0 1.11× 10−16 1.11× 10−16 4.77× 10−15

0.6 1.11× 10−16 0 1.11× 10−16 1.11× 10−16 4.77× 10−15

0.7 2.22× 10−16 0 0 0 4.88× 10−15

0.8 1.11× 10−16 0 1.11× 10−16 1.11× 10−16 5.11× 10−15

0.9 1.11× 10−16 0 1.11× 10−16 1.11× 10−16 5.33× 10−15

The exact solution of the initial value problem (8.5) for ν = 1, is

y(t) = tan(t).

Similar to the method of Example 1, we approximate the solutions to the problem in
Eq. (8.5).
Table 4 shows the absolute errors between the exact and approximate solutions for
various values of α with k = 1,M = 5, ν = 1. Also, the approximate solutions by
the present method at various values of ν with k = 1,M = 5 and α = 2 are plotted
in Figure 1. Again we see that as ν approaches 1, the solution of the fractional
differential equation approaches to the integer-order differential equations.

Table 4. Comparison of absolute error of y(t) with k = 1,M =
5, ν = 1 for different values of α for Example 2.

t α = 1
2 α = 1 α = 2 α = 3

0.1 1.73× 10−2 9.78× 10−5 1.94× 10−7 4.64× 10−5

0.3 1.08× 10−2 3.43× 10−4 4.71× 10−7 1.92× 10−4

0.5 1.95× 10−2 7.37× 10−4 2.50× 10−5 4.96× 10−3

0.7 2.10× 10−2 4.78× 10−4 7.64× 10−5 1.44× 10−2

0.9 3.37× 10−2 1.76× 10−4 8.07× 10−5 1.40× 10−2
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Figure 1. Comparison of y(t) for k = 1,M = 5, α = 2 with
ν = 0.90, 0.95, 1, 1.5, 2.5, 3.5 and the exact solution at ν = 1, for
Example 2.

Example 3. Consider the fractional differential equation with initial conditions [12]{
D2y(t) +D

3
4 y(t) + y(t) = t3 + 6t+ 8.533333333

Γ(0.25) t2.25, 0 ≤ t < 1,

y(0) = 0, y′(0) = 0.

(8.6)

The exact solution of this problem is

y(t) = t3.

We solve this problem by using the proposed method in section 6. In Table 5, we
compare the maximum absolute error of the present method for k = 2,M = 2, α = 1
with the Chebyshev spectral method [12]. Also, Table 6 shows the absolute errors
between the exact and approximate solutions for k = 1,M = 6 and different values
of α.

Table 5. Comparison of the maximum absolute error for Example 3.

t Ref. [12] Our method

m̂ = 5 m̂ = 9 m̂ = 17 m̂ = 4(k = 2,M = 2)
0 8.82× 10−6 1.91× 10−7 2.52× 10−9 2.11× 10−12

Example 4. Consider the fractional differential equation with boundary conditions
[50] {

MD2y(t) + 2S
√
µρD

3
2 y(t) +Ky(t) = f(t), 0 ≤ t < 1,

y(0) = 1, y(1) = 2.
(8.7)
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Table 6. Comparison of absolute error of y(t) with k = 1,M = 6
for different values of α for Example 3.

t α = 1
4 α = 1

3 α = 1
2 α = 1 α = 2

0 0 0 0 0 0
0.1 4.23× 10−14 1.50× 10−14 7.00× 10−17 1.54× 10−9 1.88× 10−4

0.2 8.62× 10−14 3.39× 10−14 4.83× 10−15 5.58× 10−9 7.24× 10−5

0.3 1.52× 10−13 7.70× 10−14 3.02× 10−14 1.13× 10−8 4.98× 10−4

0.4 2.74× 10−13 1.78× 10−13 1.15× 10−13 1.78× 10−8 2.63× 10−3

0.5 5.00× 10−13 3.87× 10−13 3.19× 10−13 2.42× 10−8 4.10× 10−3

0.6 8.97× 10−13 7.70× 10−13 7.11× 10−13 2.99× 10−8 2.51× 10−3

0.7 1.54× 10−12 1.40× 10−12 1.37× 10−12 3.41× 10−8 4.95× 10−4

0.8 2.53× 10−12 2.39× 10−12 2.35× 10−12 3.62× 10−8 4.45× 10−3

0.9 3.97× 10−12 3.82× 10−12 3.74× 10−12 3.56× 10−8 1.15× 10−2

This problem describes the motion of a large plate of the surface S and mass M in a
Newtonian fluid with viscosity µ and density ρ. The plate is hanging on a massless
spring of stiffness K. The function f represents the loading force.
In this problem, we choose M = 2S

√
µρ = K = 1 and f(t) = t + 1 in Eq. (8.7) to

obtain {
D2y(t) +D

3
2 y(t) + y(t) = f(t), 0 ≤ t < 1,

y(0) = 1, y(1) = 2.
(8.8)

The exact solution of this problem is

y(t) = t+ 1.

For solving this problem, we expand D2y(t) as

D2y(t) ≃ c10ψ
α
10(t) + c20ψ

α
20(t) = CTΨα(t). (8.9)

Using Eqs. (4.8) and (8.9) we have

y(t) ≃ CTPα(t, 2)Ψα(t) + 1 + y′0t, D
3
2 y(t) ≃ CTPα(t,

1

2
)Ψα(t). (8.10)

Substituting Eqs. (8.9) and (8.10) into Eq. (8.8), we have

CTΨα(t) + CTPα(t,
1

2
)Ψα(t) + CTPα(t, 2)Ψα(t) + 1 + y′0t = f(t). (8.11)

Also by using the boundary condition y(1) = 2, we have

CTPα(1, 2)Ψα(1) + 1 + y′0 = 2. (8.12)

Now, we collocate Eq. (8.11) at t0 = 0.211325 and t1 = 0.788675. Then, by solving
these equations we find

c10 = c20 = 0, y′0 = 1.

By using Eq. (8.10), we find the exact solution.
Example 5. Consider the fractional differential equation with boundary conditions
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[19] {
Dνy(t)− y2(t) = 2π2cos(2πt)− sin4(t), 1 < ν ≤ 2, 0 ≤ t < 1,
y(0) = 0, y(1) = 0.

(8.13)

The exact solution, when ν = 2 is

y(t) = sin2(πt).

Similar to the method of Example 4, we approximate the solutions to the problem
in Eq. (8.13). The computational results for k = 1,M = 6, α = 1 and different
values of ν are given in Figure 2. My result is in good agreement with the numerical
results obtained by [19]. Also, Table 7 shows the absolute errors between the exact
and approximate solutions for various values of α with k = 1,M = 11.

Figure 2. Comparison of y(t) for k = 1,M = 6, α = 1 with ν =
1.70, 1.80, 1.90, 1.95, 2 and the exact solution, for Example 5.

Table 7. Comparison of absolute error of y(t) with k = 1,M = 11
for different values of α for Example 5.

t α = 1
3 α = 1

2 α = 2
3 α = 4

3 α = 3
2

0.1 8.11× 10−4 1.81× 10−4 1.43× 10−6 1.05× 10−5 1.56× 10−5

0.2 3.20× 10−4 2.43× 10−4 3.20× 10−6 2.00× 10−5 4.11× 10−5

0.3 3.81× 10−4 1.71× 10−4 2.21× 10−6 4.18× 10−5 1.34× 10−4

0.4 2.87× 10−4 1.53× 10−4 1.66× 10−6 4.98× 10−5 2.33× 10−4

0.5 2.30× 10−4 1.23× 10−4 1.52× 10−6 1.13× 10−5 1.16× 10−4

0.6 1.88× 10−4 9.34× 10−5 1.33× 10−6 5.51× 10−5 2.83× 10−4

0.7 1.34× 10−4 7.16× 10−5 6.66× 10−7 8.84× 10−5 6.28× 10−4

0.8 9.11× 10−5 4.64× 10−5 6.93× 10−7 7.46× 10−5 6.48× 10−4

0.9 4.47× 10−5 2.35× 10−5 2.10× 10−7 5.59× 10−5 5.46× 10−4

Example 6. Consider the fractional order system of nonlinear differential equations
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[52]  Dν1y1(t) =
1
2y1(t), 0 < ν1, ν2 ≤ 1, 0 ≤ t < 1,

Dν2y2(t) = y2(t) + y21(t),
y1(0) = 1, y2(0) = 0.

(8.14)

The exact solution of this system, when ν1 = ν2 = 1 is

y1(t) = e
t
2 , y2(t) = tet.

For solving this problem, we approximate Dν1y1(t) and D
ν2y2(t) as

Dν1y1(t) ≃ CT
1 Ψ

α(t), Dν2y2(t) ≃ CT
2 Ψ

α(t). (8.15)

From Eqs. (4.8) and (8.15) we get

y1(t) ≃ CT
1 P

α(t, ν1)Ψ
α(t) + 1, y2(t) ≃ CT

2 P
α(t, ν2)Ψ

α(t). (8.16)

Substituting Eqs. (8.15) and (8.16) into Eq. (8.14), we obtain CT
1 Ψ

α(t) = 1
2 (C

T
1 P

α(t, ν1)Ψ
α(t) + 1),

CT
2 Ψ

α(t) = CT
2 P

α(t, ν2)Ψ
α(t) + (CT

1 P
α(t, ν1)Ψ

α(t) + 1)2.
(8.17)

Then, by collocation system (8.17) at the zeros of shifted Legendre polynomials and
using Newton’s iterative method, we can obtain the unknown vectors C1 and C2.
Table 8 shows the absolute errors between the exact and approximate solutions ob-
tained for y1(t) and y2(t) by using the present method for k = 2,M = 10, ν1 = ν2 =
α = 1. Also, Table 9 displays the absolute errors between the exact and approximate
solutions at k = 1,M = 14 with various values of α for y1(t) and y2(t). The numerical
results for y1(t) and y2(t) with k = 2,M = 10, α = 1 and ν = 0.6, 0.7, 0.8, 0.9 and the
exact solutions are plotted in Figures 3(a) and 3(b) respectively.

Table 8. Absolute errors of y1(t) and y2(t) at k = 2,M = 10 and
ν1 = ν2 = α = 1 for Example 6.

t y1(t) y2(t)
0 0 0
0.1 0 2.78× 10−17

0.2 2.22× 10−16 0
0.3 0 1.67× 10−16

0.4 0 8.88× 10−16

0.5 5.91× 10−10 8.41× 10−8

0.6 6.21× 10−10 9.31× 10−8

0.7 6.53× 10−10 1.03× 10−7

0.8 6.87× 10−10 1.14× 10−7

0.9 7.22× 10−10 1.26× 10−7
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Table 9. Comparison of absolute error of y1(t) and y2(t) with k =
1,M = 14 for different values of α for Example 6.

t y1(t)
α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 3.34× 10−9 1.39× 10−7 2.33× 10−7 0
0.2 1.74× 10−9 1.58× 10−7 2.90× 10−7 2.22× 10−16

0.3 4.55× 10−9 1.44× 10−7 2.45× 10−7 0
0.4 2.99× 10−9 1.68× 10−7 4.38× 10−7 2.22× 10−16

0.5 6.60× 10−10 1.95× 10−7 7.82× 10−8 0
0.6 5.32× 10−9 1.49× 10−7 6.08× 10−7 2.22× 10−16

0.7 6.61× 10−9 2.01× 10−7 1.38× 10−7 0
0.8 1.06× 10−9 2.35× 10−7 5.30× 10−7 2.22× 10−16

0.9 6.54× 10−9 1.49× 10−7 2.70× 10−8 2.22× 10−16

t y2(t)
α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 6.98× 10−8 1.23× 10−6 2.32× 10−6 0
0.2 8.04× 10−8 1.33× 10−6 2.64× 10−6 1.67× 10−16

0.3 8.14× 10−8 1.59× 10−6 2.81× 10−6 3.89× 10−16

0.4 9.93× 10−8 1.71× 10−6 4.19× 10−6 2.22× 10−16

0.5 1.05× 10−7 1.93× 10−6 2.27× 10−6 2.22× 10−16

0.6 1.06× 10−7 2.33× 10−6 6.12× 10−6 2.22× 10−16

0.7 1.27× 10−7 2.46× 10−6 3.38× 10−6 4.44× 10−16

0.8 1.41× 10−7 2.78× 10−6 6.62× 10−6 2.22× 10−16

0.9 1.42× 10−7 1.35× 10−6 3.71× 10−6 8.88× 10−16

Figure 3. Comparison of y1(t) and y2(t) for k = 2,M = 10, α =
1 with ν = ν1 = ν2 = 0.6, 0.7, 0.8, 0.9 and the exact solution, for
Example 6.

Example 7. Consider the fractional order system of nonlinear differential equa-
tions [52]

Dν1y1(t) = y1(t), 0 < ν1, ν2, ν3 ≤ 1, 0 ≤ t < 1,
Dν2y2(t) = 2y21(t),
Dν3y3(t) = 3y1(t)y2(t),
y1(0) = 1, y2(0) = 1, y3(0) = 0.

(8.18)
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The exact solution of this system, when ν1 = ν2 = ν3 = 1 is

y1(t) = et, y2(t) = e2t, y3(t) = e3t − 1.

Similar to the method of Example 6, we approximate the solutions to the problem in
Eq. (8.18). Table 10, shows the absolute errors between the exact and approximate
solutions obtained for y1(t), y2(t) and y3(t) by using the present method for k =
2,M = 10, ν1 = ν2 = ν3 = α = 1. Also, Table 11 displays the absolute errors
between the exact and approximate solutions at k = 1,M = 14 with various values
of α for y1(t), y2(t) and y3(t). The numerical results for y1(t), y2(t) and y3(t) with
k = 2,M = 10, α = 1 and ν1 = ν2 = ν3 = 0.6, 0.7, 0.8, 0.9 and the exact solutions
are plotted in Figures 4(a), 4(b) and 4(c) respectively. From these figures, it is
seen that the approximate solutions converge to the exact solutions. My results are
in good agreement with the numerical results obtained by [52]. This demonstrates
the importance of my numerical scheme in solving system of nonlinear fractional
differential equations.

Table 10. Absolute errors of y1(t), y2(t) and y3(t) at k = 2,M = 10
and ν1 = ν2 = ν3 = α = 1 for Example 7.

t y1(t) y2(t) y3(t)
0 0 0 0
0.1 0 0 5.44× 10−15

0.2 0 1.11× 10−15 1.20× 10−13

0.3 2.22× 10−16 2.91× 10−14 3.05× 10−12

0.4 0 1.39× 10−13 1.47× 10−11

0.8 7.62× 10−9 1.90× 10−5 3.57× 10−3

9. Conclusion

The aim of this work is to develop an efficient and accurate method for solving
fractional-order differential equations with initial and boundary conditions. We derive
a general formulation for the fractional-order Legendre wavelets operational matrix
of fractional order integration. This operator and collocation method are used to
reduce the problem to the solution of a system of algebraic equations. Illustrative
examples are given to demonstrate the applicability and accuracy of the proposed
method. Some of the advantages of the present approach are summarized as

• Fractional-order functions can well reflect the properties of fractional-order
differential equations.

• We can increase the accuracy of numerical solutions without increase m̂ and
CPU time.

• Original Legendre wavelets are special case of fractional-order Legendre wavelets.
• It is shown that only a small value of FLWs is needed to achieve high accuracy

and satisfactory results.
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Table 11. Comparison of absolute error of y1(t), y2(t) and y3(t) with
k = 1,M = 14 for different values of α for Example 7.

t y1(t)
α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 3.89× 10−8 5.94× 10−7 1.07× 10−6 0
0.2 4.68× 10−8 6.65× 10−7 1.27× 10−6 2.22× 10−16

0.3 4.57× 10−8 7.12× 10−7 1.24× 10−6 2.22× 10−16

0.4 5.52× 10−8 7.93× 10−7 1.98× 10−6 2.22× 10−16

0.5 6.53× 10−8 9.20× 10−7 8.16× 10−7 2.22× 10−16

0.6 6.21× 10−8 9.34× 10−7 2.84× 10−6 2.22× 10−16

0.7 6.80× 10−8 1.08× 10−6 1.25× 10−6 0
0.8 9.10× 10−8 1.25× 10−6 2.86× 10−6 0
0.9 8.41× 10−8 1.22× 10−6 1.16× 10−6 0
t y2(t)

α = 0.4 α = 0.6 α = 0.8 α = 1
0.1 7.13× 10−5 1.53× 10−6 5.43× 10−6 0
0.2 7.36× 10−5 8.93× 10−6 4.94× 10−6 0
0.3 7.09× 10−5 2.14× 10−6 6.22× 10−6 0
0.4 6.35× 10−5 6.96× 10−6 7.57× 10−6 4.44× 10−16

0.5 8.31× 10−5 1.69× 10−5 5.96× 10−6 0
0.6 7.38× 10−5 1.17× 10−5 1.17× 10−5 4.44× 10−16

0.7 4.87× 10−5 1.21× 10−5 8.28× 10−6 0
0.8 9.00× 10−5 2.58× 10−5 1.43× 10−5 8.88× 10−16

0.9 6.97× 10−5 2.46× 10−5 1.10× 10−5 0
t y3(t)

α = 0.4 α = 0.6 α = 0.8 α = 1
0.1 6.33× 10−2 2.57× 10−3 1.56× 10−5 7.26× 10−14

0.2 6.53× 10−2 1.87× 10−3 1.24× 10−5 1.59× 10−14

0.3 6.30× 10−2 1.53× 10−3 1.95× 10−5 4.06× 10−14

0.4 5.68× 10−2 1.07× 10−3 2.03× 10−5 2.49× 10−14

0.5 7.34× 10−2 3.83× 10−3 2.46× 10−5 8.44× 10−15

0.6 6.55× 10−2 4.83× 10−3 3.47× 10−5 3.02× 10−14

0.7 4.42× 10−2 2.01× 10−3 3.61× 10−5 5.24× 10−14

0.8 7.92× 10−2 5.79× 10−3 5.29× 10−5 1.07× 10−14

0.9 6.21× 10−2 9.49× 10−3 5.83× 10−5 1.12× 10−13
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Figure 4. Comparison of y1(t), y2(t) and y3(t) for k = 2,M =
10, α = 1 with ν = ν1 = ν2 = ν3 = 0.6, 0.7, 0.8, 0.9 and the exact
solution, for Example 7.
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