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Abstract Financial market modeling and prediction is a difficult problem and drastic changes
of the price causes nonlinear dynamic that makes the price prediction one of the

most challenging tasks for economists. Since markets always have been interesting

for traders, many traders with various beliefs are highly active in a market. The
competition among two agents of traders, namely trend followers and rational agents,

to gain the highest profit in market is formulated as a dynamic evolutionary game,

where, the evolutionary equilibrium is considered to be the solution to this game.
The evolutionarily stablity of the equilibrium points is investigated inspite of the

prediction error of the expectation.
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1. Introduction

The evolution of financial market is a complicated phenomenon which is one of
the most difficult modeling and prediction issues. The main reason for this diffi-
culty is the complex nonlinearity caused by on-normality in returns, particularly fat
tails, heterogeneity of expectations among traders and complex evolving nature of the
financial markets [13]. Although traditional finance is built on the rationality para-
digm and perfect Efficient Market Hypothesis (EMH), laboratory experiments with
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human subjects have shown that individuals often do not behave fully rational but
tend to use heuristics, in making economic decisions under uncertainty [25]. Rational
economic models have two remarkable features. First, rational traders boost some ob-
jective function based on perceived constraints. Second, traders should have perfect
knowledge about economic system such as precise equations of the environment and
expectations of other traders, namely Rational Expectations (REs). However, REs are
unlikely to be satisfied in most economic environments. In an efficient market where
all traders are rational and it is common knowledge, there will be no trade since ratio-
nal traders would buy (sell) an underpriced (overpriced) asset, thus driving its price
back to the fundamental value; i.e., there would be no deviation from fundamental
value in asset price [1]. On the other hand, considering a heterogeneous financial
market consisting of rational traders, any rational agent has to know the beliefs of
all other non-rational agents, which seems highly unrealistic. Besides, laboratory ex-
periments have shown that individuals often do not behave rationally. Also, bounded
rational agents try to maximize their outcome by altering their forecasts to eliminate
systematic forecast errors.Furthermore, there is no need for complicated structure of
the whole economy. Moreover, a rational agent model has difficulty in explaining
fat tail and volatility facts. It is worth mentioning that, if agents were all behaved
rational the market price would quickly converge to its fundamental value [24].

Nowadays, financial markets are viewed as evolutionary systems with boundedly
rational interacting agents. Agents base their investment decisions on their forecast
of market price and tend to choose strategies which were successful in the past and
driven by evolutionary selection. However, the simple models that could be stud-
ied with mixture of analytical and computational tools are preferred. Heterogeneous
Agent Models (HAMs) are class of models with interacting agents which adapt their
heterogeneous beliefs in response to the arrival of new information, and therefore
switch between different trading strategies [7,12]. HAMs are basically built on Evolu-
tionary game theory (EGT). EGT was originally developed for biology [9,19] reveals
strategic interactions with dynamic adjustment process of players that can switch
between strategies. A typical evolutionary game has two main components which are
payoff matrix and the dynamic rule of the agents. Note that, payoff matrix indicates
the outcome of corresponded strategy. Over time, under dynamic rule of evolutionary
strategies, lower associated payoffs will be replaced by strategies with higher payoffs,
till the strategies converge towards evolutionarily stable strategy (ESS). ESS is from
the set of available strategies that is robust to evolutionary pressures and uninvadable
by any other strategy [23]. Simply put, in evolutionary games, players change their
strategies slowly to achieve the solution eventually [18]. When the solution to an evo-
lutionary game has more than one equilibriums, a refined solution is required which
ensures that the equilibrium is stable [19]. In fact, in ESS no player can increase his
payoff by choosing a different action, given other players actions [22]. In society the
strategies which perform better than average are the dominant ones in the long run.
These dominant strategies will become the set of rules that are adopted by the ma-
jority of the population [26]. Thereupon, considering the mentioned specific features
of the evolutionary game theory, in the last few years it has been extensively used
to model economic issues such as studying the dynamics of the labor market [2, 3],
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studying the interaction between firms and workers [10], macroeconomic monetary
policy [8] and neuro-economics [20].

In a HAM model for a typical financial market, heterogeneity easily generates large
trading volume consistent with empirical observations which is an immediate advan-
tage of a HAM compared to a representative rational agent model [12]. HAMs also can
explain nonlinearity factors such as excess volatility, high trading volume, temporary
bubbles, sudden crashes, clustered volatility and fat tails in the returns distribu-
tion [7, 16]. Other important stylized facts of financial markets that have motivated
more work on HAMs are: (i) asset prices follow a near unit root process, (ii) asset
returns are unpredictable with almost no autocorrelations, (iii) the returns distribu-
tion has fat tails, and (iv) financial returns exhibit long range volatility clustering,
i.e. slow decay of autocorrelations of squared returns and absolute returns [24].

Despite HAM’s theoretically appealing features, there are many different alterna-
tive model specifications available in the literature; each producing potentially dif-
ferent results. Adaptive Belief Systems (ABSs) of Brock and Hommes [5] are a class
of HAMs which are nonlinear dynamic asset-pricing models with evolutionary strat-
egy switching. Two important features of the ABS are that agents are boundedly
rational and that they have heterogeneous expectations. An ABS is in fact a stan-
dard discounted value asset-pricing model derived from mean-variance maximization,
extended to the case of heterogeneous beliefs. Strategy choice is thus based on evolu-
tionary selection or reinforcement learning, with agents switching to more successful
(i.e., profitable) rules. An ABS model is an evolutionary competition between trading
strategies. Different groups of traders have different expectations about future prices
and future dividends. Agents can either invest in a risk free asset or in a risky asset.
A feature of an ABS is that the model can be formulated in terms of deviations from
a benchmark fundamental [13].

A number of researches have investigated the stability of evolutionary dynamics
and they emphasized that the large fraction of fundamentalists tends to stabilize
price, whereas, a large fraction of chartists tends to destabilize price. Brock, et al. [6]
investigated whether a fully rational agent can employ additional hedging instruments
to stabilize markets. It turns out that the composition of the population on irrational
traders and the information gathering costs for rationality may affect the answer. In
this paper, the stability analyze of the dynamic is being reconsidered. We emphasize
the role of heterogeneous beliefs in a market with two groups of traders having different
expectations about future price. The traders of the first agent are rational that could
predict the future price with neglectable error. The traders of the second agent
are technical analysts who believe that asset prices could be predicted by technical
trading rules, extrapolation of trends and other patterns observed in past prices. In
this paper, an important question in heterogeneous agents modeling is investigated.
The question is whether irrational traders can survive in the market or they would be
driven out of the market by rational investors and lose their wealth. In this regard, in
section 2, a new approach of modeling heterogeneous evolutionary dynamic of asset
pricing models with fully rational agents is proposed and the stability condition of
the model is studied in section 3. In section 4, a numerical analyze is applied to the
model to clarify stability of ESS.
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2. Evolutionary dynamic formulation of the asset pricing model in
heterogeneous market

In this paper, the asset pricing model with heterogeneous beliefs using evolutionary
selection of expectation (BH model) as introduced by Brock and Hommes is used [12].
The BH model consists of several agents where they could either invest in a risk free
asset or engage risky asset investment. The risk free investment pays a fixed rate of
return r ; on the contrary, the risky asset pays an uncertain dividend. Equation (2.1)
depicts the wealth dynamic, wherein Pt stands for the price of share of the risky asset
and yt is the stochastic dividend process of the risky asset at time t.

Wt+1 = RWt + (Pt+1 + yt+1 −RPt)Zt, (2.1)

where, R = 1 + r denotes the gross rate of risk free return and Zt denotes the number
of shares of the risky asset purchased at time t. In a multi agent system with H
different agents of traders, each agent tries to maximize the mean-variance equation
(2.2) with respect to Zh,t which is the number of shares purchased by agent type h.

max
Zh,t

Eh,t[Wt+1]− a

2
Vh,t[Wt+1], (2.2)

where Eh,t and Vh,t stand for belief or forecast of trader of agent h about conditional
expectation and conditional variance respectively and a is risk-aversion parameter.
Consider, Zs, shows the constant supply of outside risky shares per investor and
nh,t denotes the fraction of agent type h at time t. Assuming a constant conditional
variance for all trader types as Vh,t = σ2, the equilibrium of demand and supply yields
(2.3).

RPt =

H∑
h=1

nh,t Eh,t[Pt+1 + yt+1]− Zsaσ2. (2.3)

The term Zsaσ2 is the risk premium for traders to hold risky assets. Suppose, p∗

denotes the common belief about the fundamental price which is equal for all trader
types and xt, the deviation from the fundamental price, defined as xt = Pt − p∗. In
case of E[yt] = y, we assume that for all trader types we have Eh,t[yt+1] = E[yt+1] = y
and all conditional believes Eh,t[Pt+1] are in the form of (2.4),

Eh,t[Pt+1] = Eh,t[p
∗] + Eh,t[xt+1] = p∗ + fh,t(xt−1, xt−2, . . . , xt−L). (2.4)

The term, fh,t(xt−1, xt−2, . . . , xt−L), which is the heterogeneous part of the condi-
tional expectation, is called forecasting rule which differs agents. Now we could
re-evaluate the equilibrium of supply and demand equation knowing that Rp∗ =
Et[p

∗ + yt+1], for the special case of zero supply of outside shares, i.e. Zs = 0, which
yields (2.5).

Rxt =

H∑
h=1

nh,tEh,t[xt+1] ≡
H∑
h=1

nh,tfh,t. (2.5)

Evolving of nh,t describes how believes are updated over time, which is evaluated
through the multi-nominal logit model of (2.6) called Gibbs probabilities based on
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the discrete choice models.

nh,t =
eβUh,t−1∑H
h=1 e

βUh,t−1

, (2.6)

where, β shows the intensity of choice which depends on the sensitivity of traders
to select the optimal prediction strategy and Uh,t is the realized profit of trader
type h which is a natural candidate for evolutionary fitness. Let 0 ≤ η ≤ 1 be
memory parameter of fitness function which shows the impact of past realized fitness
on strategy selection. Then, the fitness function can be written as

Uh,t = (xt −Rxt−1)

(
fh,t−1 −Rxt−1

aσ2

)
+ η.Uh,t−1. (2.7)

2.1. Evolutionary model with fully rational agents. After studying the evolu-
tionary dynamic formulation of Heterogenous market, an evolutionary dynamic with
a rational agent will be investigated. Suppose that the traders of the first agent are
rational with perfect foresight that have perfect knowledge of heterogeneous market
equilibrium equation and beliefs of all other traders and they try to have a perfect
prediction of future price. This agent’s forecasting rule is obtained by

f1,t = xt+1. (2.8)

The second agent is trend follower which believes that price varies in a very simple
manner with respect to previous data. They use linear forecasting rule that is given
by

f2,t = g.xt−1. (2.9)

Substituting the beliefs of the agents with perfect foresight (2.8) and trend followers
(2.9) into (2.5) would establish

R.xt = n1,t−1.xt+1 + n2,t−1.g.xt−1, (2.10)

where, nh,t−1 is the fraction of agent type h at time t−1. Let m be the difference of n1

and n2 (m = n1 − n2). Knowing that n1 + n2 = 1 and n1,t = 1+mt
2 and n2,t = 1−mt

2 ,
(2.10) could be rewritten as

Rxt =
1 +mt−1

2
.xt+1 +

1−mt−1

2
.g.xt−1. (2.11)

Carrying xt+1 to the other side of the equation, (2.11) leads to

xt =
2R

1 +mt−2
.xt−1 +

mt−2 − 1

1 +mt−2
.g.xt−2. (2.12)
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Evaluating fitness function for both agents through (2.7) and substituting them in
(2.6), the dynamic of m is

m = n1 − n2 =
eβU1,t−1∑H
h=1 e

βUh,t−1

− eβU2,t−1∑H
h=1 e

βUh,t−1

=
eβU1,t−1 − eβU2,t−1∑H

h=1 e
βUh,t−1

= tanh

[
1

2
β (U1,t−1 − U2,t−1)

]
.

(2.13)

Consequently, the dynamic of m can be written as

m =n1 − n2

= tanh

[
1

2
β

(
(xt −Rxt−1)

(
xt+1 −Rxt−1

aσ2

)
−(xt −Rxt−1)

(
g.xt−1 −Rxt−1

aσ2

))]
= tanh

[
β

2

{
1

aσ2

[(
2R

1 +mt−2
−R

)
.xt−1 +

mt−2 − 1

mt−2 + 1
.g.xt−2

]
×[

2R

1 +mt−2
.xt−1 +

mt−2 − 1

1 +mt−2
.g.xt−2

]
− C

}]
.

(2.14)

Note that, (2.12) and (2.14) represent dynamics of a nonlinear system and if the states
of the system are considered as in (2.15), the dynamic of the system could be easily
analyzed.

X(k) =


X1(k)
X1(k)
X1(k)
X1(k)

 =


mt−2

mt−1

xt−2

xt−1

 . (2.15)

Accordingly, the nonlinear state space equations can be written as

X1(k + 1) = X2(k), (2.16a)

X2(k + 1) = tanh

[
β

2

{
1

aσ2

[( 2R

1 +X1(k)
−R

)
.X4(k) +

X1(k)− 1

1 +X1(k)
.g.X3(k)

]
×

[ 2R

1 +X1(k)
.X4(k) +

(X1(k)− 1

1 +X1(k)
− 1
)
.g.X3(k)

]
− C

}]
,

(2.16b)

X3(k + 1) = X4(k), (2.16c)

X4(k + 1) =
2R

1 +X1(k)
.X4(k) +

mt−2 − 1

1 +X1(k)
.g.X3(k). (2.16d)
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Equilibrium and stability analysis.
Economic equilibrium is a condition or state in which economic forces are balanced.
It may also be defined as the point at which supply equals demand for a product,
with the equilibrium price existing where the hypothetical supply and demand curves
intersect. In regards to product pricing, equilibrium exists when the price for a
product reaches a point at which the demand for the product at that price equals the
level of production or the associated current supply. This point does not suggest that
all who may want the product have the ability to purchase it. Instead, it is the point
at which all those who would like the product, and can afford to purchase the item,
have the opportunity to do so [27]. To find an equilibrium of a pricing model, the
fixed points of the EGT model in (2.16) should be evaluated.

Definition 2.1. An equilibrium point E is evolutionary stable state (ESS) of a
system if the system in that state cannot be invaded by any new mutant strategies [21].

Theorem 2.2. If E is an ESS then it is strictly stable equilibrium point of the
discrete dynamical system [23].

For evaluating the fixed points (equilibrium points) of the system, the equality
X(k + 1) = X(k) ought to be solved, with X = [X1;X2;X3;X4] as

X1 = X2, (2.17a)

X2 = tanh

[
β

2

{
1

aσ2

[( 2R

1 +X1

−R
)
.X4 +

X1 − 1

1 +X1

.g.X3

]
×

[ 2R

1 +X1

.X4 +
(X1 − 1

1 +X1

− 1
)
.g.X3

]
− C

}]
,

(2.17b)

X3 = X4, (2.17c)

X4 =
2R

1 +X1

.X4 +
m− 1

1 +X1

.g.X3. (2.17d)

Now, considering X1 = X2 = m and X3 = X4 = x, and solving (2.17), we obtain

m = tanh

[
β

2

{
1

aσ2

[( 2R

1 +m
−R

)
.x+

m− 1

1 +m
.g.x

]
×

[ 2R

1 +m
.x+

(m− 1

1 +m
− 1
)
.g.x̄

]
− C

}]
,

(2.18a)

x =
2R

1 +m
.x+

m− 1

1 +m
.g.x. (2.18b)
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Let meq = tanh(−βC/2), m∗ = 1 − 2R−1
g−1 , xeq = 0 and x∗ =

√
2C+ln( g−RR−1 )√
βD(R−1)(g−1)

be the

positive solution of 1− 2R−1
g−1 = tanh

{
β
2

[
D (g − 1) (R− 1) (x∗)

2 − C
]}

. Suppose,

E1 =


meq

meq

xeq

xeq

 , E2 =


m∗

m∗

x∗

x∗

 , E3 =


m∗

m∗

−x∗
−x∗

 . (2.19)

• For g < R, E1 is the unique equilibrium.
• For g > 2R− 1, there are three equilibrium E1, E2 and E3.
• For R < g < 2R− 1:

– If m∗ < meq, E1 is the unique equilibrium.
– If m∗ < meq, there are three equilibrium E1, E2 and E3.

There are many evidences witnesses the fact that at equilibrium, price is equal to
fundamental value and it could be concluded that the fixed point E1 is the only stable
equilibrium of the model. To be specific, it could be concluded that the fundamental
value of a security is the equilibrium risk adjusted price of the security. Since there
is still some disagreement among economists about the correct model to adjust for
risk, the fundamental value of a security is conditional on the investigators choice of
an asset-pricing model [4]. According to another point of view, at equilibrium, price
is equal to fundamental value, that bubbles are a temporary departure from this
equilibrium and that their collapse represents a correction, a necessary or inevitable
return to equilibrium [17]. Above all, Walras theory certificates the fact that at
equilibrium, price is equal to fundamental value [11].

Consider a discrete time nonlinear system of the form

x (k+1) =f(x (k) ). (2.20)

Lemma 2.3. System in (2.20) is asymptotically stable in fixed point E if the eigen-
values of the Jacobian matrix stays inside unit disk (See Appendix A for proof).

Here, the Jacobian matrix of the nonlinear dynamic in (2.16) is formed at the fixed
point E1.

J =


∂X1[k+1]
∂X1[k] · · · ∂X1[k+1]

∂X4[k]

...
. . .

...
∂X4[k+1]
∂X1[k] · · · ∂X4[k+1]

∂X4[k]



=


0 1 0 0
0 0 0 0
0 0 0 1

0 0 g(1+tanh(βC/2) )
tanh(βC/2) −1

2R
tanh(βC/2) −1

 .

(2.21)
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The eigenvalues of the Jacobian matrix of (2.21) are as
λ1

λ2

λ3

λ4

 =


0
0

−R+
√
R2−g+g.tanh2(Cβ2 )

tanh(Cβ2 )−1

−R−
√
R2−g+g.tanh2(Cβ2 )

tanh(Cβ2 )−1

 , (2.22)

where, 1 ≤ R ≤ 2, β ≥ 0, C ≥ 0 and 0 ≤ tanh
(
Cβ
2

)
≤ 1. To establish stable

equilibrium, g has to be evaluated in such way that eigenvalues stay inside unit circle.

2.2. Evolutionary model with partly rational agents. A heterogeneous evo-
lutionary model of pricing, including an agent with perfect foresight has been in-
vestigated earlier. However, many researchers think the perfect forecast assumption
is unrealistic. Possessing rational forecast under homogeneous expectations would
require knowledge of the law of motion. But it is even more demanding in the het-
erogeneous world, where one should also know what others expect. In other words,
a perfect forecaster would has to know the whole dynamic of the system and the ex-
pectations of other agents about future price to make a precise two step ahead (2SA)
predict of future price. Besides, a mistaken 2SA predict could affect the stability of
equilibrium points of the model. Here, it is being assumed that the future price has
been estimated with a reliable method and the robustness of the model with respect
to estimation error is discussed. Suppose, 2SA price is forecasted with error ε which
means (2.8) changes into

f1,t = xt+1 + εt. (2.23)

This error parameter causes some variations in state space equations as

X1(k + 1) = X2(k), (2.24a)

X2(k + 1) = tanh

[
β

2

{
1

aσ2

[( 2R

1 +X1(k)
−R
)
.X4(k) +

X1(k) − 1

1 +X1(k)
.g.X3(k) + ε[k]

]
×

[ 2R

1 +X1(k)
.X4(k) +

(X1(k)− 1

1 +X1(k)
− 1
)
.g.X3(k) + ε[k]

]
− C

}]
,

(2.24b)

X3(k + 1) = X4(k), (2.24c)

X4(k + 1) =
2R

1 +X1(k)
.X4(k) +

mt−2 − 1

1 +X1(k)
.g.X3(k) + ε[k]. (2.24d)

Suppose ε [k] is small enough, such that the fixed points of the system stay unchanged.
Consider a discrete time nonlinear system of the form

X [k + 1] = f(X [k] , d [k]), (2.25)

where, d (k) is the disturbance or time varying parameter.

Lemma 2.4. The system in (2.25) is stable in equilibrium point E if the eigenvalues
of the Jacobian matrix stays inside unit disk (See Appendix B for proof).
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The eigenvalues of the Jacobian matrix of the system (2.24) in E1 iscalculated.


λ1

λ2

λ3

λ4

 =



0
0

R−R.Γ+A+R.∆−R.∆.Γ−tanh

(
β(C−Dε2)

2

)
.A

(∆+1).(Γ−1).

(
tanh

(
β(C−Dε2)

2

)
−1

)
R−R.Γ−A+R.∆−R.∆.Γ+tanh

(
β(C−Dε2)

2

)
.A

(∆+1).(Γ−1).

(
tanh

(
β(C−Dε2)

2

)
−1

)


, (2.26)

where, A =
√
R2.Γ2.∆2 − 2R2.∆.Γ +R2 − g.∆2∆.Γ2 + g.∆2 + g.Γ2 − g and Γ =

tanh
(
Cβ
2

)
and ∆ = tanh

(
βDε2

2

)
. As it is shown in (2.26), the J matrix, has four

eigenvalues which contains two zero eigenvalues that are permanently inside unit disk.

3. Numerical Analysis

To model behavior of an economical system based on its time series data set, the
set of unknown parameters β, R, g, D, C and p∗ should be evaluated. For a set of
time series like gold market price or asset price, considering (2.22), the condition in
(3.1) should be satisfied.

Min PT =
1

2

T∑
t=1

(d (t)−o (t) )
2

Subject to : |λ3|< 1& |λ4|< 1, (3.1)

where, d(t) and o(t) denote the predicted and observed value of price at time t respec-
tively and PT indicates the estimation error over time. For numerical analysis, the
parameters β, R , g , D , C and p∗ are assumed to be β = 0.27, R= 1.02, g= 1.047,
D= 1717.8, C= 0.18 and p∗= 0.73. Assuming these values, the stability condition of
three fixed points of the dynamic will be studied. For equilibrium point E1, the char-
acteristic polynomial of the Jacobian matrix would be d (λ) =λ4−1.9938λ3+0.9972λ2

which means the eigenvalues of the matrix are λ1= 0, λ2= 0, λ3= 0.9969 − 0.0581i
and λ4= 0.9969 + 0.0581i. It is clear that all eigenvalues stay inside the unit cir-
cle that proves the stability of the system in E1 and therefore, E1 is an ESS of
the model. For E2 and E3, the solutions of the characteristic polynomial would be
λ1= 1.067+i0.027, λ2= 1.067−i0.027, λ3=0.14+i 0.22 and λ4= 0.14−i 0.22, which
means two of four eigenvalues of the matrix are not inside the unit circle that proves
the instability of the system in E2 and E3. Thus, E1 is the only stable equilibrium
and a regular ESS of the system.

3.1. Evolutionary equilibrium with respect to varying parameters. In this
section, the stability of E1 will be discussed whereas parameters vary. As shown in
previous section, two of eigenvalues are always constant and equal to zero. Therefore
studying λ3 and λ4 is adequate. As a first step, parameter β changes while, g, D, C
and p∗ are constant. As depicted in Figure 2(a), if β remains in [0.26 1.94] area,
system stays stable. It means that for large values of β, i.e. high intensity of choice,
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Figure 1. Magnitude of eigenvalues with respect to varying pa-
rameters. Numerical analysis: Case β= 0.27, R = 1.02, g = 1.047,
D = 1717.8, C = 0.18 and p∗= 0.73.
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system becoms unstable. Figure 2(b) shows that for small amounts of risk free re-
turn, 1 ≤ R ≤ 1.02 the system stays stable. But as the amount of risk free return
grows, investors would rather to invest on risk free asset which makes the system
unstable. Figure 2(c) demonstrates the variation of eigenvalues with respect to C.
This parameter shows the benefit that rational agents get. Note that, a rational agent
would incur furthur expense to get information for being rational. The stable area
for parameter C is 0.17 ≤ C ≤ 0.71. According to Figure 2(d), if the parameter g,
which is affected by the belief of technical traders, remains in the range [1.04 1.05],
system stays stable.

3.2. Model Robustness to Prediction Error. According to (2.22), it is quite
clear that the Jacobian matrix of an evolutionary model with partly rational agents
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Figure 2. Magnitude of the eigenvalues of system with partly ra-
tional agent.
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has only two nonzero eigenvalues. Analyzing the eigenvalues with respect to varying
parameter ε, one could conclude that these two eigenvalues will stay inside unit circle
for small ε. That means one could claim that if any agent’s prediction error is less
than 0.02, the equilibrium remains stable; which is depicted in Figure 2.

4. Conclusion

In this paper a new approach of modeling an evolutionary dynamic consisting of
rational agent has been proposed. This approach has been used to solve the prob-
lem with future dependency of modelling evolutionary dynamics with rational agent.
Furthermore, the stability of the dynamic with partly rational agent which has impre-
cise prediction, has been analyzed. The analysis of stability of the equilibrium leads
into finding the maximum value for prediction error that does not affect the stability.
Moreover, proposed approach could be used in a case that an agent has a complicated
belief that may cause complexity in dynamic and stability analysis of the model. This
approach could be applied to management and decision making problems consisting
of fully rational agents with complicated dynamics.

Appendix A.

Recall that, if a function ψ : R≥0 → R≥0 is continuous, strictly increasing and
ψ(0) = 0 then it is a K-function. Furthermore, it is a K∞-function if it is a K-
function and also ψ(s) → ∞ as s → ∞. If ψ(s) > 0 for all s> 0, and ψ(0) = 0, it is
a positive definite function. A function β : R≥0 × R≥0 → R≥0 is a KL-function if for
each fixed s≥0, the function β(s, .) is decreasing and β(s, t) → 0 as t → ∞, and for
each fixed t ≥ 0, the function β(., t) is a K-function. Note that in a stable system,
every state trajectory remains bounded; and no matter what the initial state is, the
state trajectory eventually becomes small.
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Definition A.1. A nonlinear dynamic system of (2.20) is asymptotically stable (AS)
if there exist a KL-function, β : R≥0 × R≥0 → R≥0 such that, for each ξ ∈ Rn, it
holds |x(k, ξ)| ≤ β (|ξ| , k) for each k ∈ Z+.

Definition A.2. A continuous function V :Rn→R≥0 is called a lyapunov function for
a nonlinear dynamic system if the following holds: There exist K∞-function α1 and
α2 such that

α1( |ξ| )≤V (ξ)≤α2( |ξ| ), ∀ξ∈Rn. (A.1)

There exist a K∞-function α3 such that

V (f(ξ))−V (ξ)≤α3 (|ξ|) , ∀ξ∈Rn. (A.2)

Theorem A.3. The linear discrete-time system is considered as

x (k+1) = Ax (k) , (A.3)

where, the eigenvalues of the matrix A are located strictly inside the unit disk. For
a symmetric and positive-definite matrix Q, P > 0 is the unique solution to the
matrix ATPA − A = −Q. The matrix V (x) = xTPx is positive-definite and radi-
ally unbounded function which satisfies the condition of Definition A.2 with α1 (r) =
λmin(P )r2, α2 (r) = λmax(P )r2 and α3 (r) = 1

2λmin(Q)r2. Therefore, V is a Lya-
punov function for the system in (2.20) [14].

Appendix B.

It is proven that a discrete-time system with disturbances or time-varying param-
eters, taking values in a compact set, is uniformly asymptotically stable (UAS ) with
respect to a closed, not necessarily compact, invariant set A if and only if there exists
a smooth Lyapunov function V with respect to the set A [15]. The system presented
in (2.25) could be presented as a form of (2.26) assuming d (k) = ε [k]. The mentioned
system is stable in fixed point E if the eigenvalues of the Jacobian matrix stays inside
unit disk based on Theorem A.3 and the closed and invariant set A is the Region of
Attraction (ROA) of the system.
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