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Abstract A numerical technique based on the collocation method using Legendre multiwavelets
are presented for the solution of forced Duffing equation. The operational matrix

of integration for Legendre multiwavelets is presented and is utilized to reduce the
solution of Duffing equation to the solution of linear algebraic equations. Illustra-
tive examples are included to demonstrate the validity and applicability of the new
technique.
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1. Introduction

In this paper, we consider the following forced Duffing equation [4]

u′′(t) + σu′(t) + f(t, u) = 0, 0 < t < 1, σ ∈ R− 0, (1.1)

with integral boundary conditions

µ1u(0)− µ2u
′(0) =

∫ 1

0
h1(s)u(s)ds,

µ3u(1)− µ4u
′(1) =

∫ 1

0
h2(s)u(s)ds,

(1.2)

where f : [0, 1]×R→ R and µi are nonnegative constant.
The Duffing equation is a well known nonlinear equation of applied science which

is used as a powerful tools to discuss some important practical phenomena such as
orbit extraction, nonuniformity caused by an infinite domain, nonlinear mechanical
oscillators, ets. An important application of the Duffing equation is in the field of
the prediction of diseases. The numerical solutions of the forced Duffing equations
with two-point boundary conditions have been widely investigated [18, 21, 24]. How-
ever, there are few references on the forced Duffing equation with integral boundary
conditions [19].
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The existence and uniqueness of the solution of the forced Duffing equation with
integral boundary conditions are presented by means of a constructive method [6].
Dehghan presented some effective methods for solving problems with nonlocal condi-
tions [12–17].

Wavelets theory is a relatively new and emerging area in mathematical research.
It has been applied in a wide range of engineering disciplines; in particular, wavelets
are very successfully used in signal analysis for waveform representation and segmen-
tations, time-frequency analysis and fast algorithms for easy implementation [8, 9].

Wavelets permit the accurate representation of a variety of functions and operators.
Moreover wavelets establish a connection with fast numerical algorithms [5]. Publi-
cations on integral equation methods have shown a marked preference for orthogonal
wavelets [22].

Different variations of wavelet bases (orthogonal, biorthogonal, multiwavelets) have
been presented and the design of the corresponding wavelet and scaling functions has
been addressed [7, 10, 11, 20]. Multiwavelets are generated by more than one scaling
function [1,20]. Multiwavelets have some advantages in comparison to single wavelets.
For example, such features as short support, orthogonality, symmetry and vanishing
moments are known to be important in signal processing and numerical methods. A
single wavelets cannot possess all these properties at the same time. On the other
hand, a multiwavelets system can have all of them simultaneously [25]. This suggests
that multiwavelets could perform better in various applications.

In this paper, we use Legendre (Alpert) multiwavelets for solving forced Duffing
equation with integral boundary conditions. These multiwavelets constructed in [1]
and also considered in [2] and [3]. Our method consists of reducing forced Duffing
equation equation to a set of algebraic equations by expanding unknown function
as Legendre multiwavelets with unknown coefficients. The properties of these multi-
wavelets are then utilized to evaluate the unknown coefficients.

The paper is organized as follows: Section 2 is devoted to the basic formulation of
the Legendre multiwavelets required for our subsequent development. In Section 3
the proposed method is used to approximate the Duffing equation. In Section 4, we
report our numerical finding and demonstrate the accuracy of the proposed numerical
scheme by considering numerical examples. Section 5, ends this paper with a brief
conclusion

2. Legendre multiwavelets systems

2.1. Multiresolution analysis. For functions ϕm ∈ L2(R), m = 0, . . . , r, let a
reference subspace or sample space V0 be generated as the L2-closure of the linear
span of the integer translates of ϕm, namely:

V0 = closL2 ⟨ϕm(.− k) : k ∈ Z⟩ , m = 0, . . . , r,

and consider other subspace

Vj = closL2

⟨
ϕmj,k : k ∈ Z

⟩
, j ∈ Z,m = 0, . . . , r,

where ϕmj,k = ϕm(2jx− k), j, k ∈ Z, m = 0, . . . , r.
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Definition 1. Functions ϕm ∈ L2(R), is said to generate a multiresolution analysis
(MRA) if they generate a nested sequence of closed subspaces Vj that satisfy

i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ,
ii) closL2

(∪
j∈Z Vj

)
= L2(R),

iii)
∩
j∈Z Vj = 0,

iv) f(x) ∈ Vj ⇐⇒ f(x+ 2−j) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,
v) {ϕm(.− k)}k∈Z , form a Riesz basis of V0.

(2.1)

If ϕm generate an MRA, then ϕm are called scaling functions. In case the different
integer translate of ϕm are orthogonal (with respect to the standard inner product <

f, g >=
∫∞
−∞ f(x)g(x)dx for two functions in L2(R)), denoted by ϕm(.−k)⊥ϕm̃(.− k̃)

for m ̸= m̃, k ̸= k̃, the scaling functions are called an orthogonal scaling functions.
As the subspaces Vj are nested, there exist complementary orthogonal subspaces

Wj such that

Vj+1 = Vj
⊕

Wj , j ∈ Z,

where
⊕

denotes orthogonal sums.
This give rise to an orthogonal decomposition of L2(R), namely:

L2(R) =
⊕
j∈Z

Wj .

Definition 2. Functions ψm ∈ L2(R) are called wavelets, if they generate the com-
plementary orthogonal subspaces Wj of an MRA, i.e.,

Wj = closL2 < ψmj,k, k ∈ Z >, j ∈ Z,m = 0, . . . , r,

where ψmj,k = ψm(2jx− k), j, k ∈ Z.

Obviously, ψmj,k⊥ψm̃j̃,k̃ for j ̸= j̃, m ̸= m̃ and k ̸= k̃ if < 2j/2ψmj,k, 2
j̃/2ψm̃

j̃,k̃
>=

δj,j̃δk,k̃δm,m̃ then ψm are called orthonormal wavelets.
Now we define Legendre scaling functions and its corresponding multiwavelets ac-

cording to the above MRA.

2.2. Construction of Scaling Functions. Legendre multiwavelets system with
multiplicity r consist of r scaling functions and r wavelets. The r-th order Legendre
scaling functions are the set of r+1 functions ϕ0(x), ..., ϕr(x) where ϕi(x) is a polyno-
mial of i-th order and all ϕ’s form orthonormal basis, that is [2, 24], for i = 0, 1, ..., r,

ϕi(x) =

i∑
k=0

aikx
k, for i = 0, 1, ..., r. (2.2)

The coefficients aik are chosen so that∫ 1

0

ϕi(x)ϕk(x)dx = δi,k, for i, k = 0, 1, ..., r, (2.3)

where

δi,k =

{
1, i = k,
0, i ̸= k.
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The scaling functions ϕi(x) for i is even, odd have symmetry, anti-symmetry prop-
erties, respectively. The two scale relations for Legendre scaling functions of order r,
are in the form [2]:

ϕi(x) =

r∑
j=0

pi,jϕ
j(2x) +

r∑
j=0

pi,r+j+1ϕ
j(2x− 1), i = 0, 1, . . . , r. (2.4)

The coefficients {p} are determined uniquely by substituting the equations (2.2) into
(2.4). We would like to mention two remarks on the two-scale relations.

1. since ϕi(x) is a i-th order polynomial, the right hand side of (2.4) has at most
i-th order scaling functions. Therefore, pi,j = pi,r+j+1 = 0 for i < j.

2. The two-scale relations for the Legendre scaling function of the order n which is
lower than r is a subset of the first n two-scale relations for ϕi for i = 0, 1, ..., n form
r-th order two scale relations.

2.3. Construction of Wavelets. The two-scale relations for the r-th order Legendre
multiwavelets are in the form [2]:

ψi(x) =
r∑
j=0

qi,jϕ
j(2x) +

r∑
j=0

qi,r+j+1ϕ
j(2x− 1). (2.5)

As we have 2(r + 1)2 unknown coefficients {q} in (2.5), use the following 2r(r +
1) vanishing moment conditions (2.6) and 2(r + 1) orthonormal conditions (2.7) to
determine them.

1. Vanishing moments∫ 1

0

ψi(x)xj = 0, for i = 0, 1, ..., r j = 0, 1, ..., i+ r. (2.6)

2. Orthonormality∫ 1

0

ψi(x)ψj(x) = δi,j , for i, j = 0, 1, ..., r. (2.7)

For example the cubic Legendre scaling functions consist of the four functions in
(2.8). 

ϕ0(x) = 1, 0 ≤ x < 1,

ϕ1(x) =
√
3(2x− 1), 0 ≤ x < 1,

ϕ2(x) =
√
5(6x2 − 6x+ 1), 0 ≤ x < 1,

ϕ3(x) =
√
7(20x3 − 30x2 + 12x− 1), 0 ≤ x < 1.

(2.8)

The closed form solution to the cubic Legendre multiwavelets ψ0(x), ψ1(x), ψ2(x)
and ψ3(x) are in (2.9)-(2.12) which are determined using the condition (2.6) and (2.7).
Figures 1 and 2 show the plots of cubic Legendre multiwavelets.

ψ0(x) =

 −
√

15
17 (224x

3 − 216x2 + 56x− 3), 0 ≤ x < 1
2 ,√

15
17 (224x

3 − 456x2 + 296x− 61), 1
2 ≤ x < 1,

(2.9)
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Figure 1. The plots of cubic Legendre multiwavelets ψ0 (left), and ψ1 (right).
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Figure 2. The plots of cubic Legendre multiwavelets ψ2 (left), and ψ3 (right).
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ψ1(x) =


√

1
21 (1680x

3 − 1320x2 + 270x− 11), 0 ≤ x < 1
2 ,√

1
21 (1680x

3 − 3720x2 + 2670x− 619), 1
2 ≤ x < 1,

(2.10)

ψ2(x) =

 −
√

35
17 (256x

3 − 174x2 + 30x− 1), 0 ≤ x < 1
2 ,√

35
17 (256x

3 − 594x2 + 450x− 111), 1
2 ≤ x < 1,

(2.11)

ψ3(x) =


√

5
42 (420x

3 − 246x2 + 36x− 1), 0 ≤ x < 1
2 ,√

5
42 (420x

3 − 1014x2 + 804x− 209), 1
2 ≤ x < 1.

(2.12)

2.4. Function Approximation. It can be verified that Vj ⊕Wj = Vj+1, thus we

can write Vj = V0 ⊕ (⊕j−1
i=0Wi) and we have two kind of basis sets for J ∈ N

ΦJ(x) =
[
ϕ0J,0(x), ..., ϕ

r
J,0(x), | · · · , ϕ0J,(2J−1)(x), ..., ϕ

r
J,(2J−1)(x)

]T
, (2.13)

ΨJ(x) =
[
ϕ00,0(x), ..., ϕ

r
0,0(x), |ψ0

0,0(x), . . . , ψ
r
0,0(x)|, (2.14)

. . . |ψ0
J−1,0(x), . . . , ψ

r
J−1,0(x)|, . . . , ψ0

J−1,2J−1−1(x), . . . , ψ
r
J−1,2J−1−1(x)

]T
.
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Now any function f(x) on [0, 1] can be approximated using scaling functions as

f(x) =

2J−1∑
k=0

r∑
m=0

cJ,kϕ
m
J,k(x) = CTΦJ(x), (2.15)

and the corresponding wavelet functions as

f(x) =

r∑
m=0

cm0,0ϕm0,0(x) +
J−1∑
j=0

2j−1∑
k=0

dmj,kψ
m
j,k(x)

 = DTΨJ(x), (2.16)

where

cmJ,k =

∫ 1

0

f(x)ϕmJ,k(x)dx, (2.17)

dmj,k =

∫ 1

0

f(x)ψmj,k(x)dx, (2.18)

and D and C are (n× 1) vectors with n = (r + 1)2J given by

D =
[
c00,0, ..., c

r
0,0|d00,0, ..., dr0,0|...|d0J−1,0, ..., d

r
J−1,0|, ..., d0J−1,2J−1−1, ...d

r
J−1,2J−1−1

]T
,

(2.19)

C =
[
c0J,0, ..., c

r
J,0|...|c0J,2J−1, ..., c

r
J,2J−1

]T
. (2.20)

2.5. The Operational Matrix of Integral. The integral of vectors ΨJ(x) and
ΦJ(x) can be expressed as∫ x

0

ΨJ(t)dt = IψΨJ(x), (2.21)∫ x

0

ΦJ(t)dt = IϕΦJ(x), (2.22)

where Iψ and Iϕ are (n × n) operational matrices of integral for Legendre scaling
functions and multiwavelets. The matrix Iψ can be obtained by the following process.
Let

a0 = 1, ai =
√
a2i−1 + 2, for i = 1, 2, . . . , r,

bi =
1

ai−1ai
, for i = 1, 2, . . . , r,

Ar =



0 b1 0
0 b2 0

0 b3 0
. . .

. . .
. . .

0 br−2 0
0 br−1

0


r×r

,
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Br =
1

2J

 1 · · · 0
...

...
0 · · · 0


r×r

,

Mr =
1

2J+1

(
Ar −ATr + 2JBr

)
.

Now it can be shown that

Iϕ =


Mr Br · · · Br

. . .
. . .

...
Mr Br

0 Mr


n,n

,

where Iϕ is the operational matrix of Legendre scaling functions.
The matrix Iψ can be obtained by considering

ΨJ = GΦJ+1, (2.23)

where G is a (n× n) matrix, which can be calculated as follows.
Equations (2.4) give

Φj = PjΦj+1, (2.24)

where Pj , j = 1, 2, ..., J is a (r2j−1, r2j) and members of Pj are the coefficient at
(2.4).

From (2.5) we have

Ψj = QjΦj+1, (2.25)

where Qj , j = 1, 2, ..., J is a (r2j−1, r2j) and members of Qj are the coefficient at
(2.5).

Using expressions (2.23), (2.24) and (2.25) we get

G =



P1 × P2 × ...× PJ
Q1 × P2 × ...× PJ

...
QJ−2 × PJ−1 ××PJ

QJ−1 × PJ
QJ


n×n

. (2.26)

Using expressions (2.21) (2.22) and (2.23) we have∫ x

0

ΨJ(t)dt = G

∫ x

0

ΦJ+1(t)dt = GIϕΦJ+1(x) = GIϕG
−1ΨJ(x). (2.27)

Comparing Eqs. (2.21) and (2.27) we get

Iψ = GIϕG
−1. (2.28)
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3. Description of Numerical Method

In this section, we solve forcing Duffing equation of the form in (1.1), by using
Legendre multiwavelets.

For this purpose, we first assume

z(t) = f(t, u(t)), . (3.1)

Using Eq. (2.16) we get

z(t) = ZTΨJ(t), (3.2)

where Z is a (n× 1) unknown vector defined similarly to D in (2.19). Let

u′′(t) = UTΨJ(t), (3.3)

by integrating from both sides of Eq.(3.3) and by using (2.21) we get

u′(t)− u′(0) = UT
∫ t

0

ΨJ(x)dx = UT IψΨJ(t), (3.4)

now we put

u′(0) = α,

thus

u′(t) = UT IΨΨJ(t) + α. (3.5)

Again by integrating from both sides of Eq. (3.5) we have

u(t)− u(0) = UT I2ψΨJ(t) + αt. (3.6)

Suppose

u(0) = β,

so we get

u(t) = UT I2ψΨJ(t) + αt+ β. (3.7)

Using Eq. (2.19) we get

α = ΛΨJ(t). (3.8)

where Λ is a (n× 1) vector as

Λ = [α, 0, . . . , 0]T .

Using Eqs. (3.2)− (3.8), in Eq. (1, 1), we get

UTΨJ(t) + σUT IΨΨJ(t) + σΛΨJ(t) + ZTΨJ(t) = 0,

or (
UT + σUT IΨ + σΛ + ZT

)
ΨJ(t) = 0.

So we get

UT + σUT IΨ + σΛ + ZT = 0. (3.9)

Using Eqs.(3.2) and (3.7) in Eq. (3.1) we have

f(t, UT I2ψΨJ(t) + αt+ β) = ZTΨJ(t). (3.10)
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Collocating Eq. (3.10) in n points ti = i/(n− 1), i = 0, · · · , n− 1 we get

f(t, UT I2ψΨJ(ti) + αti + β) = ZTΨJ(ti). (3.11)

The functions h1(s) and h2(s) in Eq. (1.2), using Eq. (2.16) may be approximated as

h1(s) = HT
1 ΨJ(s),

h2(s) = HT
2 ΨJ(s),

(3.12)

where H1 and H2 are (n× 1) vectors with the entries as

(H1)i =
∫ 1

0
h1(s)(ΨJ)i(s)ds,

(H2)i =
∫ 1

0
h2(s)(ΨJ)i(s)ds.

Applying Eqs. (3.5), (3.7) and (3.12) in Eq. (1.2) we get

µ1(U
T I2ψΨJ(0)+β)−µ2(U

T IΨΨJ(0)+α)−UT I2ψ
(∫ 1

0

ΨJ(s)Ψ
T
J (s)ds

)
HT

1

+αHT
1

∫ 1

0

sΨJ(s)ds+ βHT
1

∫ 1

0

ΨJ(s)ds = 0, (3.13)

and

µ3(U
T I2ψΨJ(1)+α+β)−µ4(U

T IΨΨJ(1)+α)−UT I2ψ
(∫ 1

0

ΨJ(s)Ψ
T
J (s)ds

)
HT

2

+αHT
2

∫ 1

0

sΨJ(s)ds+ βHT
2

∫ 1

0

ΨJ(s)ds = 0. (3.14)

The second and the third integral terms in Eqs. (3.13) and (3.14), regarding Eq. (2.6)
can be calculated as

V1 =
∫ 1

0
sΨ(s)ds = [12 ,

√
3
6 , 0, . . . , 0]

T ,

V2 =
∫ 1

0
Ψ(s)ds = [1, 0, . . . , 0]T .

(3.15)

Using Eq.(2.7) in Eqs. (3.13) and (3.14) we get

µ1(U
T I2ψΨJ(0)+β)−µ2(U

T IΨΨJ(0)+α)−UT I2ψHT
1 +αHT

1 V1+βH
T
1 V2 = 0, (3.16)

µ3(U
T I2ψΨJ(1)+α+β)−µ4(U

T IΨΨJ(1)+α)−UT I2ψHT
2 +αHT

2 V1+βH
T
2 V2 = 0. (3.17)

Equation (3.9), (3.11), (3.16) and (3.17) give a system of algebraic equations with
(2n + 2) equations and unknowns, which can be solved to find Uk and Zk, k =
1, 2, . . . , n, α and β. So the unknown function u(t) can be found using Eq. (3.7).
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Figure 3. Absolute errors for r = 4, J = 2 (left), and r = 3, J = 2 (right).
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4. Example

In this section we give some computational results of numerical experiments with
methods based on preceding section, to support our theoretical discussion. The non-
linear systems obtained by the collocation method are solved by the Newton method.

Example 1. Consider the following forced Duffing equation [19]:{
u′′(t) + u′(t) + t(1− t)u3 = f(t), 0 < t < 1,

u(0)− 2
π2u

′(0) = −
∫ 1

0
u(s)ds, u(1) + 1

π2u
′(1) = −

∫ 1

0
su(s)ds,

where

f(t) = π cos(πt)− sin(πt)
(
π2 + (−1 + t) sin(πt)2

)
.

The exact solution is u(x) = sin(πt). Table 1 and Figure 3 represents the absolute
values errors obtained in solving this test example with different values of r and J .

Table 1. Absolute errors for Example 1.
x r=2 J=3 r=3 J=2 r=4 J=2
0.0 2.3× 10−4 1.1× 10−4 3.4× 10−6

0.1 1.1× 10−4 3.1× 10−5 4.9× 10−7

0.2 1.8× 10−4 2.6× 10−5 3.9× 10−7

0.3 3.9× 10−4 8.4× 10−5 2.6× 10−6

0.4 3.8× 10−4 4.9× 10−5 4.6× 10−6

0.5 3.8× 10−4 6.3× 10−5 4.8× 10−6

0.6 3.9× 10−4 4.1× 10−5 4.9× 10−6

0.7 4.2× 10−4 1.0× 10−4 3.4× 10−6

0.8 2.3× 10−4 5.0× 10−5 1.6× 10−6

0.9 1.7× 10−4 1.6× 10−6 2.0× 10−6

1.0 1.4× 10−4 6.9× 10−5 1.8× 10−6
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Figure 4. Absolute errors for r = 4, J = 2 (left), and r = 4, J = 3 (right).
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Example 2. Consider the following forced Duffing equation:
u′′(t)− u′(t) + tu2 = f(t), 0 < t < 1,

2
3πu(0) + u′(0) = −

∫ 1

0
sin(πs2 )u(s)ds, 2

π2u(1) + u′(1) =
∫ 1

0
(s+ 2)u(s)ds,

where f(t) = π sin(πt)− π2 cos(πt) + t cos(πt)2. The exact solution is given by

u(x) = cos(πt).

Table 2 and Figure 4 present the absolute errors for different values of r and J , using
the present method.

Table 2. Absolute errors for Example 2.
x r=2 J=3 r=3 J=2 r=4 J=2
0.0 3.7× 10−5 1.6× 10−6 6.1× 10−6

0.1 1.2× 10−4 2.5× 10−5 1.6× 10−6

0.2 2.0× 10−4 9.1× 10−5 1.2× 10−6

0.3 5.2× 10−4 2.2× 10−5 5.5× 10−6

0.4 7.1× 10−4 4.2× 10−5 9.7× 10−6

0.5 5.9× 10−4 1.4× 10−5 9.9× 10−6

0.6 6.6× 10−4 5.3× 10−5 1.1× 10−5

0.7 9.0× 10−4 1.3× 10−4 1.6× 10−5

0.8 1.3× 10−3 2.1× 10−4 2.2× 10−5

0.9 1.5× 10−3 1.0× 10−4 2.6× 10−5

1.0 1.9× 10−3 1.5× 10−5 3.3× 10−5

Example 3. Consider the following forced Duffing equation:
u′′(t)− 2u′(t) + t2u2 = f(t), 0 < t < 1,

u(0) + 4
9π3u

′(0) = −
∫ 1

0
s sin(πs)u(s)ds, u(1)− 1

2π2u
′(1) = −

∫ 1

0
(2s− 1)u(s)ds,

where
f(t) = 4π2 sin(2πt)− 4π cos(2πt) + t2(1− cos(2πt)2).



54 R. NAJAFI AND B. NEMATI SARAY

Figure 5. Absolute errors for r = 4, J = 2 (left), and r = 4, J = 3 (right).
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The exact solution is u(x) = sin(2πt). The absolute errors are obtained in Table 3
and Figure 5, using the presented method, for different values of r and J .

Table 3. Absolute errors for Example 3.
x r=2 J=3 r=3 J=3 r=4 J=2
0.0 7.8× 10−5 3.0× 10−5 2.3× 10−5

0.1 2.0× 10−3 1.4× 10−4 1.1× 10−4

0.2 2.3× 10−3 3.7× 10−5 1.1× 10−4

0.3 1.9× 10−3 1.9× 10−5 9.2× 10−5

0.4 5.4× 10−4 7.9× 10−5 4.4× 10−5

0.5 2.2× 10−3 3.1× 10−5 3.3× 10−5

0.6 1.5× 10−3 5.0× 10−5 9.9× 10−5

0.7 2.4× 10−4 9.2× 10−6 3.2× 10−5

0.8 1.5× 10−3 6.1× 10−5 3.0× 10−5

0.9 2.4× 10−3 2.1× 10−4 1.0× 10−4

1.0 2.1× 10−3 1.7× 10−4 6.8× 10−5

5. Conclusion

In this article, we presented a numerical scheme for solving the forced Duffing
equation with integral boundary conditions. The Legendre multiwavelets [1–3] on
interval [0, 1] are employed to solve this equation. The obtained results show that
this approach can solve the problem effectively.
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