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Abstract In this paper, Lie symmetry analysis is applied to find a new solution for Fokker
Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solution
format of the Fokker Plank equation by the Lie algebra symmetries of our considered
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1. Introduction

The Ornstein-Uhlenbeck process is an example of a Gaussian process that has a
bounded variance and admits a stationary probability distribution. In contrast to the
Wiener process, the difference between them is in their ”drift” term. The Ornstein-
Uhlenbeck process is also one of several approaches used to model interest rates,
currency exchange rates, and commodity prices stochastically in a financial market.

In this paper we consider a financial market with price process {Xt}t for risky
asset. Let the market be the free of arbitrage possibilities and be specified by the
following stochastic differential equation

dXt = −αXtdt+ σdWt,

where {Wt}t is standard Brownian motion and the drift parameter α and the volatility
σ are assumed to be constants.The above SDE is called Ornstein-Uhlenbeck process.
Symmetry plays a very important role in various fields of nature. In fact Lie method
is an effective method in solving a large number of equations which are not solved
in the simple ways [10, 13, 14]. There are still many authors using this method
to find the exact solutions of any given system of differential equation. There are
many literatures on Lie point symmetry method and its applications in differential
equations.
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In this paper in the first section Ornstein-Uhlenbeck process and its Fokker-Plank
equation are observed. In the next section the Lie point symmetry of differential
equation is presented. By the considered method, the solution format of the Fokker
Plank equation is given in the last section.

2. Ornstein-Uhlenbeck process

Take

dXt = −αXtdt+ σdWt,

with X0 = x0, where {Wt}t is standard Brownian motion and α and σ are posi-
tive constants. There is a solution of the form Xt = g(t)Yt where dYt = h(t)dWt.
According to Ito’s formula, we have

dXt = gdYt + dgYt + dgdYt = ghdWt + g′Ytdt.

Comparing this with the original equation, we require

g′Y = −αgY, gh = σ.

So we have g(t) = Ce−αt. This gives

Yt = Y0 +
σ

C

∫ t

0

eαsdWs,

and hence

Xt = e−αt(CY0 + σ

∫ t

0

eαsdWs),

[7, 16].

Theorem 2.1. Let {Xt}t be a solution to the stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

with infinitesimal generator A given by

Af(s, y) = µ(s, y)
∂f

∂y
+

1

2
σ2 ∂

2f

∂x2
(s, y).

If the solution {Xu}u∈[t,s] has a transition density p(s, y; t, x) then p will satisfy the
Fokker-Planck equation

∂

∂t
p(s, y; t, x) = A∗p(s, y; t, x), (t, x) ∈ (0, T )×R,

where p(s, y; t, x) −→ δy as t ↓ s, and

A∗f(t, x) = − ∂

∂x
[µ(t, x)f(t, x)] +

1

2
σ2 ∂

2f

∂x2
(t, x),

[3, 12]

So obviously the Fokker-Plank equation for Ornstein-Uhlenbeck process is as fol-
lows

∂p

∂t
=

1

2
σ2 ∂

2p

∂x2
+ αp+ αx

∂p

∂x
. (2.1)
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3. Lie Symmetries

Symmetry plays a very important role in various fields of nature. There are still
many authors using this method to find the exact solutions of nonlinear differential
equations [8, 13, 14]. It is also a powerful tool for finding exact solutions of nonlin-
ear problems [14, 15]. Many eaxmples of applications to physical problems have been
demonstrated in a huge number of papers and excellent books. The general procedure
to obtain Lie symmetries of differential equations, and their applications to find ana-
lytic solutions of the equations are described in detail in several monographs on the
subject (e.g. [8, 13, 14]) and in numerous papers in the literatures (e.g. [2, 6, 10, 11]).

Consider a system of DE (PDE or ODE) in the dependent variables uα(1 ≤ α ≤ m)
and dependent variables xi(1 ≤ i ≤ n) of the form:

∆s(xi, uα, uα
i , u

α
ij , ...) = 0, 1 ≤ s ≤ k, (3.1)

where the subscripts denote partial derivatives (e.g. uα
i = ∂uα/∂xi). To determine

continuous symmetries of (3.1), it is useful to consider infinitesimal Lie transforma-
tions of the following form.

x̃i = xi + εξi +O(ε2), ũα = uα + εηα +O(ε2), (3.2)

that leave the equation system invariant to O(ε2). Lie point symmetries correspond
to the case where the infinitesimal generators ξi = ξi(xi, uα) and ηα = ηα(xi, uα)
depend only on the xi and the uα and not on the derivatives or integrals of the uα.
Generalized Lie symmetries are obtained in the case when the transformations (3.2)
also depend on the derivatives or integrals of the uα.

The infinitesimal transformations for the first and second derivatives to O(ε2) are
given by the prolongation formula

ũα
i = uα

i + εζαi , ũα
ij = uα

ij + εζαij , (3.3)

where

ζαi = Diη̂α + ξsuα
si, ζαij = DiDj η̂

α + ξsuα
sij . (3.4)

Here

η̂α = ηα − ξsuα
s , (3.5)

corresponds to the canonical Lie transformation for which x̃i = xi and ũα = uα+εη̂α.
The symbol Di in (3.4) denotes the total derivative operator with respect to xi.
Similar formula to (3.4) apply for the transformation of the higher order derivatives.

The condition for invariance of the DE system (3.1) to O(ε2) under the Lie trans-
formation (3.2) can be expressed in the following form.

Lv∆
s ≡ ṽ(∆s) = 0 whenever ∆s = 0, 1 ≤ s ≤ k, (3.6)

where

ṽ = v+ ζαi
∂

∂uα
i

+ ζαij
∂

∂uα
ij

+ · · · , (3.7)
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is the prolongation of the vector field

v = ξi
∂

∂xi
+ ηα

∂

∂uα
, (3.8)

associated with the infinitesimal transformation (3.2). The symbol Lv∆
s in (3.6)

denotes the Lie derivative of ∆s with respect to the vector field v (i.e. Lv∆
s =

d∆s

dε |ε=0).
The Lie symmetries of the Fokker Plank equation (2.1) with variables x, t and p can

be found by solving the Lie determining equation (3.6) for the infinitesimal generators
of the Lie group. In the sequel we first write down the Lie determining equations that
correspond to the point Lie group. The point Lie algebra system is briefly described,
and the symmetries are used to obtain some results for the solutions of system (3.6).

The infinitesimal Lie transformations for the system (3.1) are of the following form:

t̃ = t+ εξt, x̃ = x+ εξx, p̃ = p+ εη. (3.9)

The corresponding canonical symmetry generator η̂ is given by the formula analogous
to (3.5). Thus

η̂ = η − ξtηt − ξxηx, (3.10)

relates the canonical symmetry generator η̂ to η.
The Lie determining equations (3.6) for the infinitesimal generators of the equation

(2.1) can be written in the following form:

ξ1x = ξ2x = ξ2p = ηpp = 0, (3.11)

ξ1x =
1

2
ξ2t , ξ1tt =

1

2
α2(2ξ1 + 3xξ2t ), ξ2ttt = 4α2ξ2t ,

ηxx =
1

σ2

(
2ηt + 2αpη − 2αη − 2αxηx − 2αpξ2t

)
,

ηxx =
−2p(α− σ2)ηp + 2x(α− 2σ2)ηx + 2p(α− σ2)ξ1t + 2ηt + 2(α− σ2)ηp

σ2x2
,

ηxp =
2x

(
α− 3

2σ
2
)
ξ1t − 4ξ2t

4σ2x2
,

for the vector field

v = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂p
. (3.12)

Thus, the general vector field v in the point Lie algebra corresponding to the trans-
formations (3.2) can be written in the following form:

v =
6∑

i=1

aivi, (3.13)
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Table 1. Commutators Table of G.
[vi,vj ] v1 v2 v3 v4 v5 v6

v1 0 0 −αv3 αv4 −2αv5 2αv6

v2 0 0 0 0 0 0
v3 αv3 0 0 − 2α

σ2 v2 0 2αv4

v4 −αv4 0 2α
σ2 v2 0 −2αv3 0

v5 2αv5 0 0 2αv3 0 2αv1 − 2α2v2

v6 −2αv6 0 −2αv4 0 −2αv1 + 2α2v2 0

where the basis vector fields {vi : 1 ≤ i ≤ 6} are

v1 =
∂

∂t
, v2 = p

∂

∂p
, v3 = e−αt ∂

∂x
,

v4 = eαt
∂

∂x
− 2α

σ2
eαtxp

∂

∂p
,

v5 = −αxe−2αt ∂

∂x
+ e−2αt ∂

∂t
− αpe−2αt ∂

∂p
,

v6 = αxe2αt
∂

∂x
+ e2αt

∂

∂t
− 2α2

σ2
x2peα

2t2 ∂

∂p
.

The commutator table of the Lie algebra G spanned by the vector fields vi’s are given
in Table (1). thus these vector fields make a Lie algebra with respect to Lie bracket.

3.1. Classification of the Solutions. The one-parameter groups gi generated by
the vi are given in the following list. The entires give the transformed point exp(εvi)(x, t, p) =
(x̃, t̃, p̃):

g1 := exp(εv1)(x, t, p) = (x, t+ ε, p),

g2 := exp(εv2)(x, t, p) = (x, t, eεp),

g3 := exp(εv3)(x, t, p) = (x+ eαtε+ x, t, p),

g4 := exp(εv4)(x, t, p) =

(
e−αtε+ x, t,

−2α

σ2
xpεeαt

)
,

g5 := exp(εv5)(x, t, p) =
(
x− e−αtαxε, t+ e−2αtε, p− e−2αtαpε

)
,

g6 := exp(εv6)(x, t, p) =

(
x+ αxe2αtε, t+ e2αtε,−2α2

σ2
x2pe2αtε

)
.
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Since each group element gi is a symmetry, then, if p = f(x, t) is a solution of the
equation (2.1), so we have the following functions

p1 = f(x, t− ε), (3.14)

p2 = eεf(x, t), (3.15)

p3 = f(x− eαttε, t), (3.16)

p4 = −2α

σ2
eαtε

(
x− eαttε

)
f
(
x− eαttε, t

)
, (3.17)

p5 =
(
1− α exp

{
−α

(
t+ e−2αtε

)})
×f

(
x

1− α exp {−α (t+ e−2αtε)}
, t+ e−2αtε

)
, (3.18)

p6 =

(
x

1 + α exp {2α (t+ e2αtε)}

)2

ε (3.19)

×f

(
x

1 + α exp {2α (t+ e2αtε)}
, t+ e2αt

)
−2α2

σ2
exp

{
2α(t+ e2αt)

}
.

4. Invariant Functions

Given a group of point transformations G acting on the space of variables of the
system called E, the charachteristic of all G−invariant functions u = f(x) is of great
importance.

Definition 4.1. A function u = f(x) is said to be invariant under the group trans-
formation G if its graph {(x, f(x))} is a (locally) G−invariant subset.

For example, the graph of any invariant function for the rotation group SO(2) must

be an arc of a circle centered at the origin, so u = ±
√
c2 − x2.

The fundamental feature of Lie groups is the ability to work infinitesimally, thereby
effectively linearizing complicated invariance criteria.

Theorem 4.2. Let G be a connected Lie group of transformations acting on total
space E. A function I : E → R is invariant under G if and only if for all (x,u) ∈ E
and every infinitesimal generator v =∈ G of G,

v[I(x,u)] = 0. (4.1)

Thus, according to theorem 4.2, the invariant v = I(x,u) of a one-dimensional
group with infinitesimal generator v, obtained from (4.1), satisfy the first order,
linear, homogeneous partial differential equation

ξi(x,u)
∂v

∂xi
+ ηα(x,u)

∂v

∂uα
= 0. (4.2)

The solutions of (4.2) are effecyively found by the method of charachteristics. We
replace the partial differential equation by the charachteristic system of ordinary
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differential equations

dx1

ξ1(x,u)
= · · · = dxp

ξp(x,u)
=

du1

dη1(x,u)
= · · · = duα

ηα(x,u)
. (4.3)

The general soluition to (4.3) can be written in the form I1(x,u) = c1, ..., Ip+q−1(x,u)
= cp+q−1, where ci are constants of integrations.

Lemma 4.3. The resulting functions I1, ..., Ip+q−1 form a complete set of function-
ally independent invariants of the one-dimensional Lie algebra spanned by differential
operator v.

For example a one-dimensional Lie algebra spanned by the differential operator
v = −y∂x + x∂y + (1 + z2)∂z are obtained by solving the charachteristic system

dx

−y
=

dy

x
=

dz

1 + z2
,

thus, there are two functionally independent invariant functions r =
√
x2 + y2 and

w = (xz − y)/(yz + x). A fundamental theorem obtained from differential geometry
charachterizes the number of functionally independent invariants of a group action.

Theorem 4.4. Let G be a transformation group acting semi-regularly (all the orbits
have same dimension) on total space E with s-dimensional orbits. Let I1(x,u),...,
Ip−s(x,u), J1(x,u), ..., Jq(x,u), be a complete set of functionally independent invari-
ants for G. Then any G-invariant function u = f(x), can locally be written in the
implicit form

w = h(y), where y = I(x,u), w = J(x,u). (4.4)

Remark 4.5. A ”similarity solution” or ”group-invariant solution” which is a main
subject of next section, of a system of partial differential equations is just an invari-
ant function for a group of scalling transformations. For example, consider the one-
dimensional groupR+ acting onR3 with the transformation (x, y, u) 7→ (λx, λαy, λβu).
The independents invariants are provided by the rotios y = y/xα, w = u/xβ , so any
scale-invariant function can be written as w = h(y), or explicitely u = xβh(y/xα).

As usual, the most convenient charachterization of the invariant functions is based
on an infinitesimal conditions. Since the graph of a function is defined by the vanishing
of its components uα − fα(x), the general invariance formulation (3.6) imposes the
infinitesimal invariance conditions

0 = v(uα − fα(x)) = ηα(x,u)− ξi(x,u)
∂fα

∂xi
,

which must hold whenever u = f(x), for every infinitesimal generator v ∈ G. These
first order partial differential equations are known in the literature as the invariant
surface conditions associated with the given transformation group.
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5. Group-Invariant Solutions

When we confronted with a complicated system of partial differential equations in
some physically important problem, the discovery of any explicit solutions whatsoever
is of great interest. Explicit solutiona can be used as models for physical experiments,
as benchmarks for testing numerical methods, etc., and often reflect the asymptotic
or dominant bahaviour of more general types of solutions. The method used to find
group-invariant solutions, generalizing the well-known techniques for finding similarity
solutions, provide a systematic computational method for determining large classes of
special solutions. These group-invariant solutions are characterized by their invariance
under some symmetry group of the system of partial differential equations; the more
symmetrical the solution, the easier it is to construct. The fandamental theorem on
group-invariant solutions roughly states that the solutions which are invariant under
a given r−dimensional symmetry group of the system can all the find by solving r
fewer independent variables than the original system. In particular, if the number
of parameters is one less that the number of independent variables in the physical
system: r = p − 1, then all the corresponding group-invariamt solutions can be
found by solving a system of ordinary differential equations. In this way, one
reduces an intractable set of partial differential equations to a simpler set of ordinary
differential equations which one might stand a chance of solving explicitly. In practical
applications, these group-invariant solutions can, in most instances, be effectively
found and, often, are the only explicit solutions which are known.

5.1. Construction of Group-Invariant Solutions. Consider a system of partial
differential equations ∆ = 0 with p−independent and q−dependent variables. Let G
be a group of transformations acting on E. A solution u = f(x) of the system is
said to be G-invariant if it is left unchanged by all the group transformations in G,
meaning that for each g ∈ G, the function f and g · f agree on their common domains
of definition.

If G is a symmetry group of a system of partial differential equations ∆ = 0, then,
we can find all the G−invariant solution to ∆ by solving a reduced system of differen-
tial equations, denoted by ∆/G, which will involve fewer independent variables than
the original system ∆. To see how this reduction effected, we begin by making the
simplifying assumption that G acts projectably on M . This means that the transfor-
mations in G all takes the form (x̃, ũ) = g · (x,u) = (Ξg(x),Φg(x,u)) for g ∈ G, i.e.,
the changes in the independent variable x do not depend on the dependent variables
u. There is then a projected group action x̃ = g ·x = Ξg(x) on an open sebset Ω ⊂ X.
We make the regularity assumption that both the action of G on E and the projected
action of G on Ω is regular, i.e., all the orbit dimension of the action are same as s,
where s is strictly less than p. (The case s = p is fairly trivial, while if s > p, no
G−invariant functions exist, Usually s will be the same as the dimension of G itself,
but this need not be the case.) Under these assumption there exist p− s functionally
independent invariants y1 = η1(x), ..., yp−s = ηp−s(x) of the projected group action
on Ω ⊂ X. Each of this functions is also an invariant of the full group action on E
, and furthermore, we can find q additional invariant of the action of G on E, of the
form v1 = ζ1(x,u), ...,vq = ζq(x,u), which, together with the η′s provide a complete
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set of p+q−s functionally independent invariants for G on E, We write this complete
collection on invariants as

y = η(x), v = ζ(x,u). (5.1)

In the construction of the reduced system of differential equations for theG− invariant
solutions to ∆, then y′s will play the role of the new independent variables, and the
v′s the role of the new dependent variables. Note in particular that there are s few
independent variables y1, ..., yp−s which will appear in this reduced system, where s
is the dimension of the orbits of G.

There in a one-to-one correspondence between G−invariant function u = f(x) on
E and arbitrary functions v = h(y) involving the new variables. To explain this
correspondence, we begin by invoking the inplicit function theorem to solve the system
y = η(x) for p−s of the independent variables, say x̃ = (xi1 , ..., xip−s), in the terms of
the new variables y1, ..., yp−s and the nremaining s old independent variables, denoted
as x̂ = (xj1 , ..., xjs). Thus we have the solutions

x̃ = ρ(x̂,y), (5.2)

for some well-defined function ρ. The first p − s of the old independent variables
x̃ are known as principle variables, and the remaining s of these variables x̂ are
the parametric variables, as they will, enter parametrically into all the subsequent
fromulae. The preciese manner in which oner splits the variables x into principle and
parametric variables is restricted only by the requirement that the (p − s) × (p − s)
submatris (∂ηj/∂x̃i) of the full Jacobian matrix ∂η/∂x is invertible, so that the
implicit function theorem is applicable; otherwise, the choice is entirely arbitrary.
We need to make a further transversality assumption on the action of G on E, that
allows us to solve the other system of invariants v = ζ(x,u) for all the derpendent
variables u1, ..., uq interms of x1, ..., xp, and v1, ..., vq, and hence in terms of new
variables y,v and parametric variables x̂:

u = µ̃(x,v) = µ̃(x̂, ρ(x̂,y),v) = µ(x̂,y,v), (5.3)

near any point (x0,u0) ∈ E.
If v = h(y) is any smooth function, then (5.3) coupled with (5.1) produces a

corresponding G−invariant function on E, of the form

u = f(x) = µ(x̂, η(x),h(η(x))). (5.4)

Conversely, if u = f(x) is any G−invariant function on E, then it is not too difficult to
see that there necessarily exist a function v = h(y) such that f and the corresponding
function (5.4) locally agree. Thus, we have seen howG−invariance of functions sereves
to decrease the number of variables upon which they depend.

We are now interested in finding all the G−invariant solutions to some system of
partial differential equations (5.4). In other words, we want to know when a function
of the form (5.3) corresponding to a function v = h(y) is a solution to ∆. This will
impose certain constrains on the function h; these are found by computing the for-
mulae for the derivatives of v = h(y) with respect to y, and then substituting these
into the system of differential equations ∆.Thus we need to know how the deriva-
tives of the functions v = h(y) are related to the derivatives of the corresponding
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G−invariant function u = f(x). However, this is an easy application of the chain
rule. Differentiating (5.4) with respect to x leads to asystem equation of the form

∂u

∂x
=

∂

∂x
[µ(x̂,y, )] =

∂µ

∂x̂
+

∂µ

∂y

∂η

∂x
+

∂µ

∂v

∂v

∂y

∂η

∂x
,

since y = η(x). Here, ∂u/∂x, etc., denoted Jacobian matrices of first order derivatives
of indicated variables. Moreover, using (5.2), we can rewrite ∂η/∂x in terms of y anf
parametric variables x̂, Thus we obtain an equation of the form

∂u

∂x
= µ1

(
x̂,y,v,

∂v

∂y

)
,

expressing the first order derivatives of any G−invariant function u with respect
to x in teroms of y,v, the first order derivatives of v with respect to y together
with parametric variables x̂. Continuing to differentiate using the chain rule, and
substituting to (5.3) whenever necessary, we are led to general formulae

u(n) = µ(n)(x̂,y,v(n)),

for all the derivatives of such a u up to order n with respect to x in terms of y,v,
the derivatives of v with respect to y up to order n, and the ubiquitous parametric
variable x̂.

Once the relevant formulae relating derivatives of u with respect to x to those of v
with respect to y have been determined, the reduced system of differential equations
for the G−invariant solutions to the system ∆ is determined by substituting these
expressions into the system whenever they occur. In general, this leads to system of
differential equations of the form

∆̃ν

(
x̂,y,v(n)

)
= 0, , ν = 1, .., ℓ,

still involving parametric variables x̂. If G is a symmetry group for ∆, this resulting
system will in fact always be equivalent to a system of equations denoted by

(∆/G)ν(y,v
(n)) = 0, ν = 1, ..., ℓ,

which are independent of the parametric variables, and thus constitute a genuine
system of differential equations for v as a function of y. This is the reduced system
∆/G for the G−invariant solutions to the system ∆. Every solution v = h(y) of
∆/G will corresponds, via (5.3), to a G−invariant solution to ∆, and moreover every
G−invariant solution can be constructed in this manner.

5.2. Group-Invariant Solution of The Equation (2.1). In this part we will find
all group-invariant solution correspond to Lie symmetries of the equation (2.1).

Consider the symmetry v1 which is translation on the parameter t. Theorem 4.2
shows that the invariant of this inifinetimal is p = v(y) where y = x. Substituiting
these new variables to (2.1), we obtain the reduced equation

1

2
σ2 d

2v

dy2
+ αr

dv

dy
+ αv = 0. (5.5)
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Table 2. Group-Invarint Solutions
Symmetry Invariants Group− Invarint Solution

v1 x = y, p = v p = e
− α

σ2 x2
(
erf

(√
−α
σ

x
)
C1 + C2

)
v2 Any solution is a group− invariant solution.
v3 t = y, p = v p = C1e

αt

v4 x = y, p = ve
α
σ2 y2

p = C1e
− α

σ2 x2

v5 t = y, p = vx p = eαt
(
C1 + C2xe

αt
)

v6 x = eα(t−y), p = ve
−α3

σ2 (t− y)2 p = e
− α

σ2
(
C1 + C2xe

−αt
)

The solution of the equation (5.5) is

v = e−
α
σ2 y2

(
erf

(√
−α

σ
y

)
C1 + C2

)
, (5.6)

where erf is the error function. Replacing the variables in the (5.6) leads us to an
group-invariant solution

p = e−
α
σ2 x2

(
erf

(√
−α

σ
x

)
C1 + C2

)
. (5.7)

A similar procedure gives another group-invariant solution for the equation (2.1). The
results come in the Table 2.

5.3. Some New Solutions for the Equation (2.1). In this part we use the general
form of the solutions (15-20) arises from one-parameter groups to find new solutions
fo the equation (2.1). It is noteworthy we only work on the solution (5.7) an its
obtained solutions. The same method would be applied for all solutions specially
group-invariant solution.

1. For the case (15), if (5.7) be a considered solution then no new solution is
obtained.

2. For the case (16), if (5.7) be a considered solution then

p = e−
α
σ2 x2+ε

(
erf

(√
−α

σ
x

)
C1 + C2

)
,

is a new solution.
3. For the case (17), if (5.7) be a considered solution then

p = exp
{
− α

σ2

(
x− e−αtε

)2}(
erf

(√
−α

σ
x

)
C1 + C2

)
,

is a new solution.
4. For the case (18), if (5.7) be a considered solution then

p = −2αε

σ2
eαt

(
x− eαtεt

)
exp

{
− α

σ2

(
x− eαtε

)2}
×
(
erf

(√
−α

σ
x

)
C1 + C2

)
,

is a new solution.
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5. For the case (19), if (5.7) be a considered solution then

p =
(
1− α exp

{
−α(t+ e−2αtε)

})
× exp

{
− α

σ2

(
x2

(1− α exp{−α(t+ e−2αtε)})2

)}
×
(
erf

(√
−α

σ

x

1− α exp{−α(t+ e−2αtε)}

)
C1 + C2

)
,

is a new solution.
6. For the case (20), if (5.7) be a considered solution then

p =

(
x

1 + α exp {2α (t+ e2αtε)}

)2

ε

× exp

{
−α

σ

(
x2

(1 + α exp{2α(t+ e2αtε)})

)}
×
(
erf

(√
−α

σ

x

(1 + α exp{2α(t+ e2αtε)})

)
C1 + C2

)
−2α2

σ2
exp{2α(t+ e2αtε)},

is a new solution.

Conslusion

As we know partial differential equations plays a vast roll in sciences such as fi-
nancial mathematics. In this paper we used a geometrical method called Lie theory
of differential equations to find exact solutions for a kind of Fokker-Plank equation.
Doing as well as the last section we can find another new solutions. Some packages
like Maple and Mathematica is usefull for our mail goal.
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