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Abstract In the present paper, a numerical method is considered for solving one-dimensional
heat equation subject to both Neumann and Dirichlet initial boundary conditions.
This method is a combination of collocation method and radial basis functions
(RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial

basis functions is used to reduce the problem to a set of algebraic equations. The re-
sults of numerical experiments are presented to confirm the validity and applicability
of the presented scheme.

Keywords. Radial basis functions, Heat conduction, Dirichlet and Neumann boundary Conditions.

2010 Mathematics Subject Classification. 65M99, 35K20.

1. Introduction

Partial differential equations have a wide range of applications in chemistry and
physics. Theory and numerical schemes for solving initial boundary value problems
have attracted the attention of researchers. Yousefi proposed Bernstein Tau tech-
nique to solve the one-dimensional parabolic equation in [22] and Tohidi presented
the solution of this problem by the Legendre collocation method in [17]. Numerical
solutions of parabolic equation with an initial-boundary value problem that combines
Neumann and Dirichlet conditions were investigated in [1,2,3,4,5,21]. The general
form of equation is given as:

ut(x, t) = uxx(x, t) +Q(x, t), 0 < x < L, 0 < t ≤ T, (1.1)

with the initial condition:

u(x, 0) = f(x), 0 ≤ x ≤ L, (1.2)
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and the boundary conditions

u(0, t) = g0(t), u(L, t) = g1(t), 0 < t ≤ T, (1.3)

ux(0, t) = g2(t), ux(L, t) = g3(t), 0 < t ≤ T, (1.4)

where Q(x, t), f(x), g0(t), g1(t), g2(t) and g3(t) are suitably given functions. He
in [9,10] and Cheniguel in [5] proposed the homotopy perturbation method (HPM)
to solve initial boundary value problems. Mohebbi presented a class of new finite
difference schemes to solve the one-dimensional heat and advection-diffusion equations
in [13]. Sun in [16] proposed a class of new finite difference methods, CBVM, to solve
the one dimension heat equations.
The organization of this article is as follow. We describe radial basis functions and
their properties in Section 2. In Section 3, the use of this basis is discussed for solving
one-dimensional heat equation. In Section 4, we give some computational results of
numerical experiments with RBFs method to support our theoretical discussion. The
conclusion is presented in Section 5.

2. Radial basis function approximation

Polynomials (e.g., Legendre and Chebyshev) are very efficient tools for interpolat-
ing a set of points in one-dimensional domains but in irregular domains and higher-
dimensional the use of these functions is not effective. The main benefit of radial
basis functions is that this method is independent of the dimension of the problem
and needs neither domain nor surface discretization. The method is meshless and is
not difficult.

2.1. Definition of RBF. Let R+ = {x ∈ R, x ≥ 0}, ∥.∥2 denotes the Euclidean
norm and φ : R+ → R be a continuous function with φ(0) ≥ 0. A radial basis
function on Rd is a function of the form:

ϕi(x) = φ(∥x− xi∥2),
which depends only on the distance between x ∈ Rd and a fixed point xi ∈ Rd. So
that the radial basis function ϕi is radially symmetric about the center xi.
Let x1, x2, · · · , xN ∈ Ω ⊂ Rd be a given set of scattered data. A radial basis function
interpolation problem may be described as:

Sf (x) =
N∑
i=1

λiϕi(x),

for given data fi = f(xi), i = 1, 2, · · · , N , where λi are chosen in order to Sf (xj) = fj ,
j = 1, 2, · · · , N , that the interpolation conditions provide the linear system:

Aλ = f,

where for i, j ∈ {1, 2, · · · , N}, Aij = ϕi(xj), λ = [λ1, λ2, · · · , λN ]T and f = [f1, f2, · · · , fN ]T .
Let r be the Euclidean distance between a fixed point xi ∈ Rd and x ∈ Rd, i.e.
∥x− xi∥2. Some well-known RBFs are listed in Table 1. The kind of RBFs, we will

be mostly interested in, are the Gaussians φ(r) = e−ε2r2 . Other families of radial
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Table 1. Some well-known functions that generate RBFs.

Name of Radial Basis Function Definition

Multiquadric(MQ) φ(r) =
√
ε2 + r2

Inverse Quadratic(IQ) φ(r) = 1
(ε2+r2)

Inverse Multiquadric(IMQ) φ(r) = 1√
ε2+r2

Gaussian(GA) φ(r) = e−ε2r2

Thin Plate Splines(TPS) φ(r) = r2log(r)

basis functions are the Matérn functions, also known as Sobolev splines. Examples
are listed in Table 2. Another RBFs are the Laguerre-Gaussians. The definition of

Table 2. Matérn functions.

name Definition
basic φ(r) = e−εr

linear φ(r) = (1 + εr)e−εr

quadratic φ(r) = (1 + εr + (εr)2

3 )e−εr

cubic φ(r) = (15 + 15εr + 6(εr)2 + (εr)3)e−εr

Laguerre-Gaussians functions family comes from the generalized Laguerre polynomi-
als of degree n and order s/2 [14]. Specific examples are listed in Table 3.
The shape parameter ε, which appears in tables affects both the accuracy of the esti-
mate and the conditioning of the interpolation matrix [15]. Almost, for fixed values of
the shape parameter ε, the condition number increases with N . For a fixed number N ,
smaller shape parameters produce more accurate approximations, but they are also
associated with a poorly conditioned A. However, many researchers have attempted
to develop algorithms for choosing optimal values of the shape parameter but the
optimal choice of the shape parameter is still an open question and it is most often
selected by brute force. Franke [7] suggested ε2 = 1.25D/

√
N in MQ basis, where D

is the diameter of the smallest circle containing all data points and N is the number of

data points. Hardy [8] recommended the use of ε2 = 0.815d where d = (1/N)
∑N

i=1 di
and di is the distance from the data point xi to its nearest neighbor. Recently, Forn-
berg developed a Contour-Padé algorithm that is capable of stably computing the
RBF approximation for all ε > 0 [6]. Micchelli [12] and Wendland [18] showed that
the interpolation matrix for the RBFs is invertible for distinct interpolation points.
We have the following theorem about the convergence of RBFs interpolation.

Theorem 2.1. Assume {xi}Ni=1 are N nodes in Ω ⊂ Rd which is convex, let:

h = max
x∈Ω

min
1≤i≤N

∥x− xi∥2,

when ϕ̂(η) < c(1+ | η |)−2l+d, for any y satisfing
∫
(ŷ(η))2/ϕ̂(η)dη <∞, we have:

∥y(α)N − y(α)∥ < chl−α,
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Table 3. Laguerre-Gaussians radial functions.

s n=1 n=2

1 φ(r) = ( 32 − (εr)2)e(−εr)2 φ(r) = ( 158 − 5
2 (εr)

2 + 1
2 (εr)

4)e(−εr)2

2 φ(r) = (2− (εr)2)e(−εr)2 φ(r) = (3− 3(εr)2 + 1
2 (εr)

4)e(−εr)2

3 φ(r) = ( 52 − (εr)2)e(−εr)2 φ(r) = ( 358 − 7
2 (εr)

2 + 1
2 (εr)

4)e(−εr)2

where ϕ is RBFs and the constant c depends on the RBFs, ϕ̂ and ŷ are supposed to
be the Fourier transforms of ϕ and y respectively, y(α) denotes the αth derivative of
y, yN is the RBFs approximation of y, d is space dimension, l and α are nonnegative
integers.

Proof. A complete proof is given by authors [19,20].

2.2. Function approximation. Let X = L2(Ω) where Ω = [0, L]× [0, T ] and

{ψ11(x, t), ..., ψ1M (x, t), ψ21(x, t), ..., ψ2M (x, t), ..., ψN1(x, t), ..., ψNM (x, t)} ⊂ X

be the set of LG-RBFs where ψij(x, t) = (2−ε2((x−xi)2+(t−tj)2))e−ε2((x−xi)
2+(t−tj)

2)

and

Y = span{ψ11(x, t), ..., ψ1M (x, t), ψ21(x, t), ..., ψ2M (x, t), ..., ψN1(x, t), ..., ψNM (x, t)},
suppose that y be an arbitrary element in X. Since Y is a finite dimensional vector
space, y has the unique best approximation out of Y as yNM ∈ Y , that is [11]:

∀g ∈ Y, ∥y − yNM∥2 ≤ ∥y − g∥2.
Since yNM ∈ Y , there exist unique coefficients c11, ..., c1M , c21, ..., c2M , ..., cN1, ..., cNM

such that:

y ≃ yNM =
N∑
i=1

M∑
j=1

cijψij(x, t) = CTΨNM (x, t) = ΨT
NM (x, t)C,

where C and ΨNM (x, t) are vectors with the form:

C = [c11, ..., c1M , c21, ..., c2M , ..., cN1, ..., cNM ]T , (2.1)

ΨNM (x, t) = [ψ11(x, t), ..., ψ1M (x, t), ψ21(x, t)..., ψNM (x, t)]T . (2.2)

3. The operational matrix of derivative

Let xi = L i
N , i = 1, 2, ..., N, and tj = T j

M , j = 1, 2, ...,M. The unknown function
u(x, t) in (1.1)-(1.4) can be approximated as:

u(x, t) =
N∑
i=1

M∑
j=1

cijψij(x, t) = CTΨNM (x, t). (3.1)

The differentiation with respect to x of vectors ΨNM in (2.2) can be expressed as:

∂

∂x
ΨNM (x, t) = DN (x)ΨNM (x, t) +DN (x)ΦNM (x, t), (3.2)
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where DN (x) is the operational matrix of derivative with respect to x and

ΦNM (x, t) = [ϕ11(x, t), ..., ϕ1M (x, t), ϕ21(x, t), ..., ϕNM (x, t)]T , (3.3)

where ϕij(x, t) is the GA-RBFs, i.e. ϕij(x, t) = e−ε2((x−xi)
2+(t−tj)

2). The matrix
DN (x) can be obtained as:

∂

∂x
ΨNM (x, t) =



−2ε2(x− x1)(ψ11(x, t) + ϕ11(x, t))
...

−2ε2(x− x1)(ψ1M (x, t) + ϕ1M (x, t))
−2ε2(x− x2)(ψ21(x, t) + ϕ21(x, t))

...
−2ε2(x− x2)(ψ2M (x, t) + ϕ2M (x, t))

...
−2ε2(x− xN )(ψN1(x, t) + ϕN1(x, t))

...
−2ε2(x− xN )(ψNM (x, t) + ϕNM (x, t))



. (3.4)

By comparing (3.2) and (3.4), we can write:

∂

∂x
ΨNM (x, t) =


M1(x) 0 ... 0

0 M2(x) ... 0

...
...

. . .
...

0 0 ... MN (x)





ψ11(x, t) + ϕ11(x, t)
...

ψ1M (x, t) + ϕ1M (x, t)
ψ21(x, t) + ϕ21(x, t)

...
ψ2M (x, t) + ϕ2M (x, t)

...
ψN1(x, t) + ϕN1(x, t)

...
ψNM (x, t) + ϕNM (x, t)



,

(3.5)

where Mi(x) = −2ε2(x− xi)IM , i = 1, 2, ..., N and IM is the M ×M identity matrix.
Thus we have:

DN (x) =


M1(x) 0 ... 0

0 M2(x) ... 0

...
...

. . .
...

0 0 ... MN (x)

 . (3.6)
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Similarly, the differentiation of vectors ΨNM with respect to t in (2.2) can be ex-
pressed as:

∂

∂t
ΨNM (x, t) = DM (t)ΨNM (x, t) +DM (t)ΦNM (x, t), (3.7)

whereDM (t) = diag(N1(t), N2(t), ..., NM (t)) andNi(t) = −2ε2(t−ti)IN , i = 1, 2, ...,M .
Also:

∂2

∂x2ΨNM (x, t) =

(−2ε2 + (−2ε2(x− x1))
2)ψ11(x, t) + (−2ε2 + 2(−2ε2(x− x1))

2)ϕ11(x, t)
...

(−2ε2 + (−2ε2(x− x1))
2)ψ1M (x, t) + (−2ε2 + 2(−2ε2(x− x1))

2)ϕ1M (x, t)
(−2ε2 + (−2ε2(x− x2))

2)ψ21(x, t) + (−2ε2 + 2(−2ε2(x− x2))
2)ϕ21(x, t)

...
(−2ε2 + (−2ε2(x− x2))

2)ψ2M (x, t) + (−2ε2 + 2(−2ε2(x− x2))
2)ϕ2M (x, t)

...
(−2ε2 + (−2ε2(x− xN ))2)ψN1(x, t) + (−2ε2 + 2(−2ε2(x− xN ))2)ϕN1(x, t)

...
(−2ε2 + (−2ε2(x− xN ))2)ψNM (x, t) + (−2ε2 + 2(−2ε2(x− xN ))2)ϕNM (x, t)



.

(3.8)

So we can write:

∂2

∂x2
ΨNM (x, t) = (R+D2

N (x))ΨNM (x, t) + (R+ 2D2
N (x))ΦNM (x, t), (3.9)

where

R =


−2ε2 0 ... 0

0 −2ε2 ... 0

...
...

. . .
...

0 0 ... −2ε2

 . (3.10)

Using Eqs. (3.7) and (3.9) in Eq. (1.1), we obtain:

CT (DM (t)−D2
N (x)−R)ΨNM (x, t) + CT (DM (t)− 2D2

N (x)−R)ΦNM (x, t)
−Q(x, t) = 0,

(3.11)

and using Eqs. (3.1) and (3.2) in (1.2)-(1.4) yields:

CTΨNM (x, 0)− f(x) = 0, (3.12)

CTΨNM (0, t)− g0(t) = 0, (3.13)

CTΨNM (L, t)− g1(t) = 0, (3.14)
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CTDN (0)ΨNM (0, t) + CTDN (0)ΦNM (0, t)− g2(t) = 0, (3.15)

CTDN (L)ΨNM (L, t) + CTDN (L)ΦNM (L, t)− g3(t) = 0. (3.16)

We collocate (3.11) in (N − 2)× (M − 1) interior points {(xl, ts) | l = 2, ..., N − 1, s =
2, ...,M}, so we have:

CT (DM (ts)−D2
N (xl)−R)ΨNM (xl, ts) + CT (DM (ts)− 2D2

N (xl)−R)ΦNM (xl, ts)
−Q(xl, ts) = 0.

(3.17)

Now, collocating (3.12) in N points xl, l = 1, 2, ..., N, leads to:

CTΨNM (xl, 0)− f(xl) = 0. (3.18)

By collocating (3.13) and (3.14) or (3.15) and (3.16) in (M-2) points ts, s = 2, 3, ...,M,
we have:

CTΨNM (0, ts)− g0(ts) = 0, (3.19)

CTΨNM (L, ts)− g1(ts) = 0, (3.20)

CTDN (0)ΨNM (0, ts) + CTDN (0)ΦNM (0, ts)− g2(ts) = 0, (3.21)

CTDN (L)ΨNM (L, ts) + CTDN (L)ΦNM (L, ts)− g3(ts) = 0, (3.22)

respectively.
Eqs. (3.17)-(3.20) or Eqs. (3.17), (3.18), (3,21) and (3.22) give an N ×M system of
linear equations, which can be solved for cij , i = 1, ..., N, j = 1, ...,M.

4. Numerical examples

In this section we give some computational results of numerical experiments with
the method based on the preceding sections, to support our theoretical discussion.
In the process of computation, all the symbolic and numerical computations were
performed using Maple and shape parameters were chosen by trial and error. The
readers can see the efficiency of the proposed method from the provided figures and
tables in the following examples.

Example 1. Consider Eqs. (1.1)-(1.4) with L = 1, T = 1 and [17,22]

Q(x, t) = (π2 + 1)et sin(πx), (4.1)

f(x) = sin(πx), g0(t) = 0, g1(t) = 0, (4.2)

with the exact solution

u(x, t) = et sin(πx). (4.3)
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Table 4. Absolute values of error for u from Example 1.

(x, t) Method [17] Method [22] Present method
M=N=10, ε=0.6 M=N=16, ε=0.8

(0.1,0.1) 2.3106E–06 7.8747E–05 8.1463E–07 6.5626E–08
(0.2,0.2) 2.5218E–06 2.0530E–04 5.53440E–07 2.4356E–08
(0.3,0.3) 2.8753E–06 3.1140E–04 5.6466E–07 8.6643E–09
(0.4,0.4) 3.2063E–06 3.7870E–04 2.9014E–07 8.0138E–08
(0.5,0.5) 3.5608E–06 4.0294E–05 2.6930E–07 5.6300E–08
(0.6,0.6) 3.9745E–06 3.8488E–04 1.0142E–07 2.8247E–09
(0.7,0.7) 4.4678E–06 3.2818E–04 1.9319E–07 4.6188E–08
(0.8,0.8) 5.0163E–06 2.3840E–04 2.3859E–08 9.4859E–08
(0.9,0.9) 6.0805E–06 1.2546E–04 4.0823E–07 6.7650E–09
(1,1) 7.6345E–30 1.3177E–07 1.16E–07 2.01E–08

Figure 1. (a) Absolute errors of the solution, (b) Analytical (line)
and estimated (point) solutions with dx = dt = 0.1 and ε = 0.6 for
Example 1.

In Table 4 we give the absolute errors for Laguerre-Gaussians radial basis functions
with dx = dt = 0.1 with shape parameter ε = 0.6 and dx = dt = 0.0625 with
shape parameter ε = 0.8. The absolute errors of our method are compared with the
Bernstein Tau method [22] and Legendre collocation method [17]. The absolute errors
of estimated solution, and the exact and estimated solutions are given in Figure 1.

Example 2. Consider Eqs. (1.1)-(1.4) with L = 1, T = 1 and [5]

Q(x, t) = (π2 − 1)e−t cos(πx) + 4x− 2, (4.4)
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Table 5. Absolute values of error for u from Example 2.

x Method [5] Present method with
uex uhpm M=N=12, ε=0.9 M=N=20, ε=0.9

0.1 0.9589 0.9589 1.3085E–06 2.6748E–08
0.2 0.8490 0.8490 7.5991E–07 4.6612E–08
0.3 0.6802 0.6802 1.2073E–06 2.1270E–07
0.4 0.4742 0.4742 2.5052E–06 7.4759E–08
0.5 0.2580 0.2580 8.950E–07 2.6E–07
0.6 0.0618 0.0618 8.3476E–07 2.9476E–07
0.7 -0.0842 -0.0842 1.1426E–06 3.2698E–08
0.8 -0.1530 -0.1530 6.2009E–07 2.5991E–07
0.9 -0.1229 -0.1229 4.1145E–07 1.8548E–08
1 0.0200 0.0200 1.0656E–08 2.9656E–08

Figure 2. (a) Absolute errors of the solution, (b) Analytical (line)
and estimated (point) solutions with dx = dt = 0.0833 and ε = 0.9
for Example 2.

f(x) = cos(πx) + x2, g0(t) = e−t, g1(t) = −e−t + 4t+ 1, (4.5)

with the exact solution

u(x, t) = x2 + 4xt+ e−t cos(πx). (4.6)

In Table 5, we give the absolute errors at t = 0.004 for Laguerre-Gaussians radial
basis functions with dx = dt = 0.0833 and dx = dt = 0.05 with shape parameter
ε = 0.9. Similar to previous example, to compare our results we give the analytical
and numerical solutions for homotopy perturbation method (HPM) [5]. The absolute
errors of estimated solution, and the exact and estimated solutions are given in Figure
2.



332 M. KHAKSARFARD, Y. ORDOKHANI, AND E. BABOLIAN

Table 6. Absolute values of error for u from Example 3.

x Method [5] Present method with
uex uhpm M=N=12, ε=0.9 M=N=16, ε=1.3

0.1 0.9429 0.9429 9.8069E–06 5.6883E–08
0.2 0.8340 0.8340 1.0682E–05 1.2380E–07
0.3 0.6675 0.6675 9.9480E–06 9.7971E–08
0.4 0.4646 0.4646 1.2549E–05 5.1661E–08
0.5 0.2520 0.2520 1.3E–06 4.4E–08
0.6 0.0594 0.0594 1.1261E–05 1.6136E–07
0.7 -0.0835 -0.0835 1.0286 E–06 1.2797E–07
0.8 -0.1500 -0.1500 1.0118E–05 5.8276E–08
0.9 -0.1189 -0.1189 8.9131E–06 9.2117E–08

Figure 3. (a) Absolute errors of the solution, (b) Analytical (line)
and estimated (point) solutions with dx = dt = 0.0833 and ε = 0.9
for Example 3.

Example 3. Consider Eqs. (1.1)-(1.4) with L = 1, T = 1 and [5]

Q(x, t) = (
π2

2
)e−

π2

2 t cos(πx) + x− 2, (4.7)

f(x) = cos(πx) + x2, g2(t) = t, g3(t) = 2 + t, (4.8)

with the exact solution

u(x, t) = x2 + xt+ e−
π2

2 t cos(πx). (4.9)

In Table 6, we give the absolute errors at t = 0.004 for Laguerre-Gaussians radial basis
functions with dx = dt = 0.0833 with shape parameter ε = 0.9 and dx = dt = 0.0625
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with shape parameter ε = 1.3. The absolute errors of our method are compared with
the analytical and numerical solutions for homotopy perturbation method (HPM) [5].
The absolute errors of estimated solution, and the exact and estimated solutions are
given in Figure 3.

5. Conclusion

A RBF-based numerical method proposed to solve the heat conduction problem
with Dirichlet and Neumann boundary conditions. The Laguerre-Gaussians radial
basis functions (LG-RBFs) on intervals t ∈ [0, 1] and x ∈ [0, 1] were employed. The
method was based upon reducing the system into a set of algebraic equations. The
proposed method was tested on several examples given in the literature. The ob-
tained results showed that this approach can solve the problem effectively. Moreover,
the method is more convenient for implementation in comparison to traditional tech-
niques.
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