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Abstract In this work the mathematical model of a spatial pattern in chemical and biological

systems is investigated numerically. The proposed model considered as a nonlinear

reaction-diffusion equation. A computational approach based on finite difference
and RBF-collocation methods is conducted to solve the equation with respect to

the appropriate initial and boundary conditions. The ability and robustness of the

numerical approach is investigated using two test problems.
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1. Introduction

Generally in science phenomenon is used to discuss any sign or objective symptom;
any observable occurrence or fact. Recenely geo-referenced objects and phenomena
changing over time enjoy a lot of attention. Cadastral information systems with the
need to record history of land parcels existence and ownership, navigational systems
computing possible routes of vehicles in time, and environmental applications deal-
ing with forecast prediction, especially in ”sensitive” areas with typhoon and cyclone
problems, are some substantial examples of this new application area [14, 17]. Identi-
fying the complex relationships between ecological patterns and processes is a crucial
task. One of the central issues in developmental biology is the understanding of the
emergence of structure and form from the almost uniform mass of dividing cells that
constitutes the early embryo. Although genes play a key role, genetics says noth-
ing about the actual mechanisms which bring together the constituent parts into a
coherent pattern [11, 15, 14]

Qualitatively and quantitatively, mathematical models play a vital role in analyzing
ecological systems. In [15] the author demonstrated, theoretically, that a system of
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reacting and diffusing chemicals could spontaneously evolve to spatially heterogeneous
patterns from an initially uniform state in response to infinitesimal perturbations. In
this study it is shown that diffusion could drive a chemical system to instability,
leading to spatial pattern where no prior pattern existed. The author considered a
system of two chemicals, in which one was an activator and the other an inhibitor.
He showed that if the diffusion of the inhibitor was greater than that of the activator,
then diffusion-driven instability could result [11, 15].

Today the reaction-diffusion equations are widely used as models for spatial effects
in ecology. They support three important types of ecological phenomena. These mod-
els emphasize that simple organism movement can produce striking largescale patterns
in homogeneous environments and that in heterogeneous environments, movement of
multiple species can change the outcome of competition or predation [2]. Reaction-
diffusion invasion models exhibit more striking behavior when population growth is
not exponential but instead is regulated by density-dependent mortality. These mod-
els produce travelling waves of invaders that spread out from their ”beachhead” at a
constant velocity and shape.

Usually finding the exact solution of reaction-diffusion equations specially the non-
linear equations is a complex task and in a lot of nonlinear PDE problems, one can
not solve them analytically. In recent years considerable studies has been done in the
numerical solution of nonlinear PDEs. The investigation of exact and numerical so-
lutions for nonlinear partial differential equations (NLPDEs) plays an important role
in the study of nonlinear physical phenomena. These solutions when they exist can
help one to well understand the mechanism of the complicated physical phenomena
and dynamical processes modelled by these nonlinear evolution equations.

In this paper the radial basis functions (RBF) collocation method and finite differ-
ence approach are used to solve a system of nonlinear reaction-diffusion model arises
from the chemical systems.

Meshless methods based on the collocation method have been dominant and effi-
cient. Considerable studies can be found regards to the application of RBF functions
for solving PDE problems in literature [3, 4, 6, 7, 8, 10, 9, 18]. Numerical studies illus-
trates the advantages of using this mesh-less methods to solve initial and/or boundary
value problems [9, 10]. The large number of recent research works on mesh-less meth-
ods especially RBF collocation method for solving nonlinear PDE’s demonstrates the
popularity that the methods have recently enjoyed.

This paper is organized as follows:
In section 2, the mathematical formulation of a spatial pattern in chemical and

biological systems is presented. In section 3, a general form of the model introduced
in section 2 is considered with appropriate initial and boundary conditions and a
numerical procedure based on finite difference and RBF methods is established to
solve this problem. Section 4 contains some test problems.

2. Reaction-diffusion modelling

In this section we review the mathematical formulation of a spatial pattern in
chemical and biological systems. Suppose that we have the simple autocatalytic
process E + F → 2F in an unstirred reactor initially full of chemical E but with



118 S. TOUBAEI, M. GARSHASBI, AND M. JALALVAND

no chemical F . Therefor, there will be no reaction. Now if one seeds the reaction
domain with some F at various local sites and if E can diffuse but F be immobilized,
reaction will only occur where there has been seeding, with high concentrations of F
building up at these points. Eventually, E would disappear and we would be left with
”spots” of F . However, with this assumption that there is a supply of E across the
domain and also a decay step for F to limit its growth, it is possible to get a balance
between supply and diffusion away of E balancing the decay of F in the spots, to give
steady-state, long-lived pattern, with high E concentrations in between the spots and
high F concentration in the spots [11]. For mathematical modelling of these systems,
generally the following reaction-diffusion equation is obtained [11, 14]

∂u

∂t
= D

∂2u

∂x2
+ F (x, t, u, c), (2.1)

where u is a vector representing chemical concentrations, D denotes the matrix of
diffusion coefficients (assumed constant), and the second term represents chemical
reactions, with kinetic parameters c, such as rate constants, production and degrada-
tion terms. The form of the F = (f, g) have been made and studied for many specific
forms [5, 11, 12, 16].

Here we focus on a two-chemical system, in which u = (u1, u2) denotes the chemical
concentrations and F = (f, g) has the specific forms of the kinetics f and g [11, 12, 16].
As reported in [11], when a sequence of reactions are occurred as follows

X 
 E, 2X + Y → 3X, F → Y, (2.2)

according to the law of mass action, the production of X may occur at the rate

k1a− k1u+ k3u
2
1u2. (2.3)

Furthermore the production of Y can occur at the rate

k4b− k3u
2
1u2, (2.4)

where u1, u2, a and b are the concentrations of X,Y,E and F , respectively, and
k1, ..., k4 are rate constants. Now if one assumes that X and Y diffuse with diffusion
coefficients D1 and D2 respectively, and that E and F are in abundance so that a
and b can be assumed approximately constant, the reaction diffusion system satisfied
by u1 and u2 may be written as


∂u1

∂t = D1
∂2u1

∂x2 + k1a− k1u+ k3u
2
1u2

∂u2

∂t = D2
∂2u2

∂x2 + k4b− k3u
2
1u2

. (2.5)

Boundary conditions are usually taken as zero flux, that is, the domain boundary is
assumed impermeable to the chemicals, but in this study we consider the proposed
problem in general form with appropriate initial and boundary conditions. A numeri-
cal procedure based on RBF collocation and finite difference approaches is established
to solve equation (2.5).
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3. Numerical solution

Consider the equation (2.5) in more general form to be solved over in domain
Ω = [0, 1]× [0, 1] with enclosing initial and boundary conditions

∂u1

∂t
= D1

∂2u1

∂x2
− k1u+ k3u

2
1u2 + F (x, t), (x, t) ∈ Ω, (3.1)

∂u2

∂t
= D2

∂2u2

∂x2
− k3u

2
1u2 +G(x, t), (x, t) ∈ Ω, (3.2)

u1(x, 0) = f(x), (3.3)

u2(x, 0) = g(x), (3.4)

∂u1

∂x
(0, t) = ϕ1(t), (3.5)

∂u1

∂x
(1, t) = ψ1(t), (3.6)

∂u2

∂x
(0, t) = ϕ2(t), (3.7)

∂u2

∂x
(1, t) = ψ2(t), (3.8)

It is considered that all functions in this problem are L2 known functions. To establish
our proposed numerical procedure first we discretize the equations (3.1) and (3.2) by
using the forward difference rule for time derivatives and the well known Crank-
Nicolson scheme for other terms between successive time levels n and n+ 1. Suppose
∆t denotes the time step size, tn = t0 + n∆t, Un

1 = u1(x, tn), Un
2 = u2(x, tn),

F (x, tn) = Fn and G(x, tn) = Gn. Discretizing these equations obtains

Un+1
1 − Un

1

∆t
= D1

Un+1
1xx + Un

1xx

2
− k1

Un+1
1 + Un

1

2

+k3
(U2

1 )
n+1

U2
n+1 + (U2

1 )
n
U2

n

2
+ Fn, (3.9)

Un+1
2 − Un

2

∆t
= D2

Un+1
2xx + Un

2xx

2
− k3

(U2
1 )

n+1
U2

n+1 + (U2
1 )

n
U2

n

2
+Gn. (3.10)

By linearizing the nonlinear terms using the following formula which readily obtained
by applying the Taylor expansion [13]

(UV )n+1 = Un+1V n + UnV n+1 − UnV n. (3.11)

The equations (3.9) and (3.10) may reform as

2Un+1
1 −D1∆tUn+1

1xx + k1∆tUn+1
1 − k3∆t(2Un

1 U
n
2 U

n+1
1 + (Un

1 )2Un+1
2 )

= 2Un
1 +D1∆tUn

1xx − k1∆tUn
1 − k3∆t(Un

1 )2Un
2 + Fn, (3.12)

2Un+1
2 −D2∆tUn+1

2xx + k3∆t(2Un
1 U

n
2 U

n+1
1 + (Un

1 )2Un+1
2 )

= 2Un
2 +D2∆tUn

2xx + k3∆t(Un
1 )2Un

2 +Gn. (3.13)
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3.1. The RBF collocation approach. In this section, a computational procedure
based on the collocation and RBF expansion methods is established to solve the
problem (3.12)-(3.13) with respect to the initial an boundary conditions (3.3)-(3.8).

At collocation points xi, i = 0, 1, ..., N over [0, 1] such that xi, i = 1, ..., N − 1
are interior points and xi, i = 0, N are boundary points, we apply the following
approximation

u1(x, tn) = Un
1 '

N∑
j=0

λnj φ(rj), u2(x, tn) = Un
2 '

N∑
j=0

γnj φ(rj), (3.14)

where n is the number of time iterations, N is the number of the data points, λnj and
γnj , j = 0, 1, ..., N, are the unknown coefficients to be determined later, rj = |x− xj |
is the Euclidean norm between the points x and xj . The function φ(r) can be used as

different RBFs such as φ(r) =
√
r2 + ε2 (MQ) or φ(r) = 1√

r2+ε2
(IMQ). In sequence

our computations are conducted based on MQ functions.
The coefficients λnj and γnj , j = 0, 1, ..., N in equation (3.14) can be determined

using collocation approach. To this end for each time iteration n = 1, 2, ..., the 2N+2
unknown coefficients need to be determined from the boundary conditions given at
x0 and xN and collocating Un

1 and Un
2 at the remaining N − 1 distinct uniformly

distributed interior points xi in [x1, xN−1] as

u1(xi, tn) = Un
1i '

N∑
j=0

λnj φ(rij), u2(xi, tn) = Un
2i '

N∑
j=0

γnj φ(rij), (3.15)

where rij = |xi − xj |. Computing the first and second derivatives of the approximate
solutions and substituting the equations (3.15) into equations (3.12) and (3.13) at the
collocation points xi and using the boundary conditions one may obtain the following
linear equations

{2 + k1∆t− 2k3∆t(

N∑
j=0

λnj φ(rij))(

N∑
j=0

γnj φ(rij)}{
N∑
j=0

λn+1
j φ(rij)}

−D1∆t

N∑
j=0

λn+1
j φ′′(rij)− k3∆t(

N∑
j=0

λnj φ(rij))
2(

N∑
j=0

γn+1
j φ(rij))

= Fn
i + (2− k1∆t)

N∑
j=0

λnj φ(rij) +D1∆t

N∑
j=0

λnj φ
′′(rij)

−k3(

N∑
j=0

λnj φ(rij))
2(

N∑
j=0

γnj φ(rij)), i = 1, ..., N − 1, (3.16)
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{2 + k3∆t(

N∑
j=0

λnj φ(rij))
2}{

N∑
j=0

γn+1
j φ(rij)} −D2∆t

N∑
j=0

γn+1
j φ′′(rij)

+2k3∆t(

N∑
j=0

λnj φ(rij))(

N∑
j=0

γnj φ(rij))(

N∑
j=0

λn+1
j φ(rij))

= Gn
i + (2 + k3∆t(

N∑
j=0

λnj φ(rij))
2)(

N∑
j=0

γnj φ(rij))

+D2∆t

N∑
j=0

γnj φ
′′(rij), i = 1, ..., N − 1. (3.17)

Furthermore according to the boundary conditions one may write

N∑
j=0

λn+1
j φ′(r0j) = ϕ1(tn+1), (3.18)

N∑
j=0

λn+1
j φ′(rNj) = ψ1(tn+1), (3.19)

N∑
j=0

γn+1
j φ′(r0j) = ϕ2(tn+1), (3.20)

N∑
j=0

γn+1
j φ′(rNj) = ψ2(tn+1). (3.21)

Equations (3.16)-(3.21) determine a system of (2N+2)(2N+2) linear equations which
can be written as

AXn+1 = b, (3.22)

where

Xn+1 = [λn+1
0 , λn+1

1 , · · · , λn+1
N , γn+1

0 , γn+1
1 , · · · , γn+1

N ], (3.23)

and the elements of the coefficient matrix A and the right hand side vector b can be
easily read from the equations (3.16)-(3.21). Here the singular value decomposition
(SVD) approach is used to solve the equation (3.22).

4. Numerical Experiments

In this section, we implement the proposed method to solve the model equations
presented in Section 2 based on MQ functions.

To investigate the ability and effectiveness of the proposed method, two numerical
examples are considered. The discrete L2 and L∞ error norms by using differences
between the analytical and numerical results at the node points have been computed
to verify the accuracy of the numerical results. For test problems whose analytical
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solution is known, the following error norms will be used to measure the error between
the analytical and numerical solutions

L2 =

√√√√h

N∑
j=0

|U j
exact − U

j
appr|2, (4.1)

L∞ = max
j
|U j

exact − U j
appr|, (4.2)

at the data points xj where h = 1
N . In the concept of RBFs it had been shown that the

accuracy of the RBFs solution, depends heavily on the choice of the shape parameter
ε spatially in the MQ or inverse IMQ basis functions. Recently some authors have
focused on determination of optimal values for the shape parameters in RBFs for
some special problems [3, 4]. Determination of suitable shape parameter is extracted
experimentally for the RBFs used in this study. In our experiments the optimal value
of ε is to be found numerically for each radial basis function and for each problem
separately.

Example 1. In the problem (3.1)-(3.8) let

D1 = 1, D2 = 1, k1 = 1, k3 = 1,

f(x) = 2 +
1

1 + ex
, ϕ1(t) = − e3t

(1 + e3t)
2 , ψ1(t) = − e1+3t

(1 + e1+3t)
2 ,

g(x) =
x

1 + ex
, ϕ2(t) =

1− e3t(−1 + t)

(1 + e3t)
2 , ψ2(t) =

1− e1+3tt

(1 + e1+3t)
2 .

With these assumptions the exact solutions are considered as

u1(x, t) = 2 +
1

1 + e3t+x
, u2(x, t) =

t+ x

1 + e3t+x
.

The functions F (x, t) and G(x, t) can be extracted form the exact solutions.
This numerical example is studied by using mesh size h = 0.05 and the time step

∆t = 0.01.
Tables 1 and 2 respectively report the L2 and L∞ error norms between the exact

and approximate u1 and u2 at some time levels and for some shape parameters.
Throughout the simulation, the L∞ and L2 error norms decrease with the smaller

time step size. Nevertheless increasing time levels, degrease the accuracy of the solu-
tions. The behavior of L2-error norm at t = 0.5 for computing u1 and u2 are shown
in Figures 1 and 2.
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Table 1. The values of L∞ and L2 error norms versus the shape
parameter in Example 1 at some times for u1.

Time RBF shape parameter ε L∞ error norm L2 error norm
0.25 2.0976× 10−2 3.9831× 10−2

0.3 MQ 0.45 4.0554× 10−3 5.6789× 10−3

0.65 3.4831× 10−4 4.8876× 10−4

0.95 1.6641× 10−2 3.0643× 10−2

0.25 4.6973× 10−2 5.3856× 10−2

0.5 MQ 0.45 8.6754× 10−3 9.9759× 10−3

0.65 7.8841× 10−4 8.8996× 10−4

0.95 3.9641× 10−2 4.4843× 10−3

0.25 7.0976× 10−2 8.8831× 10−2

0.7 MQ 0.45 9.0754× 10−2 9.9779× 10−2

0.65 3.2841× 10−3 4.8906× 10−3

0.95 8.9641× 10−2 9.0643× 10−2

Table 2. The values of L∞ and L2 error norms versus the shape
parameter in Example 1 at some times for u2.

Time RBF shape parameter ε L∞ error norm L2 error norm
0.25 3.1236× 10−2 3.9941× 10−2

0.3 MQ 0.45 2.3554× 10−3 3.5789× 10−3

0.65 1.4431× 10−4 2.8326× 10−4

0.95 4.3641× 10−3 9.6743× 10−3

0.25 4.7893× 10−2 5.2836× 10−2

0.5 MQ 0.45 6.6754× 10−3 7.9756× 10−3

0.65 5.8741× 10−4 6.8456× 10−4

0.95 2.3641× 10−2 3.2843× 10−2

0.25 8.3976× 10−2 8.9733× 10−2

0.7 MQ 0.45 2.0754× 10−2 3.3779× 10−2

0.65 4.2231× 10−3 5.1896× 10−3

0.95 9.6941× 10−2 9.9943× 10−2

Example 2. In the problem (3.1)-(3.8) let

D1 = 4, Dv = 1, k1 = 2, k3 = 2,

F (x, t) = 4 sinh(3t+ x) tanh2(3t+ x) + sech2(3t+ x)
(
3 + 8 tanh3(3t+ x)

)
,

G(x, t) = 6 cosh(3t+ x)− 2(1 + 3 cosh(3t+ x)) tanh3(3t+ x)

+ sech2(3t+ x)
(
3 + 2 tanh3(3t+ x)

)
,

f(x) = tanh(x), ϕ1(t) = sech2(3t), ψ1(t) = sech2(1 + 3t),

g(x) = 2 sinh(x) + tanh(x), ϕ2(t) = 2 cosh(3t) + sech2(3t),

ψ2(t) = 2 cosh(1 + 3t) + sech2(1 + 3t).
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Figure 1. The L2-error norm between the exact and approximate
solutions for u1(x, t) with respect to the shape parameter ε at t = 0.5
for Example 1.

Figure 2. The L2-error norm between the exact and approximate
solutions for u2(x, t) with respect to the shape parameter ε at t = 0.5
for Example 1.

With these assumptions the exact solutions can be obtained as

u1(x, t) = tanh(3t+ x), u2(x, t) = 2 sinh(3t+ x) + tanh(3t+ x).

This numerical example is studied by using mesh size h = 0.05 and the time step
∆t = 0.01.

Tables 3 and 4 respectively demonstrate the L∞ and L2 error norms between the
exact and approximate u1 and u2 at some time levels and for some shape parameters.

For this problem, similar to the the previous problem, different shape parameters
are investigated via our computation. Throughout the simulation it was seen that the
L∞ and L2 error norms decrease with the smaller time step size. In addition increasing
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Table 3. The values of L∞ and L2 error norms versus the shape
parameter in Example 2 at some times for u1.

Time RBF shape parameter ε L∞ error norm L2 error norm
0.15 1.3462× 10−3 1.9833× 10−3

0.3 MQ 0.35 7.3454× 10−3 9.8989× 10−3

0.55 5.3431× 10−2 5.0876× 10−2

0.75 8.5641× 10−2 9.9643× 10−2

0.15 3.3173× 10−3 3.8836× 10−3

0.5 MQ 0.35 8.8854× 10−3 9.9959× 10−3

0.55 7.3441× 10−2 8.0996× 10−2

0.75 9.0964× 10−2 9.9893× 10−2

0.15 7.4576× 10−3 8.8981× 10−3

0.7 MQ 0.35 2.0754× 10−2 3.1977× 10−2

0.55 8.0841× 10−2 9.1890× 10−2

0.75 4.9741× 10−1 5.1645× 10−1

Table 4. The values of L∞ and L2 error norms versus the shape
parameter in Example 2 at some times for u2.

Time RBF shape parameter ε L∞ error norm L2 error norm
0.15 2.3236× 10−3 2.9341× 10−3

0.3 MQ 0.35 2.9854× 10−3 3.1789× 10−3

0.55 3.8431× 10−2 3.9832× 10−2

0.75 4.7643× 10−2 5.6735× 10−2

0.15 3.0786× 10−3 3.2846× 10−3

0.5 MQ 0.35 4.2754× 10−3 4.8956× 10−3

0.55 5.3471× 10−2 5.8846× 10−2

0.75 7.0341× 10−2 7.2943× 10−2

0.15 6.0376× 10−3 6.6738× 10−3

0.7 MQ 0.35 7.0734× 10−2 7.3459× 10−2

0.55 9.4331× 10−2 9.8896× 10−2

0.75 4.0946× 10−1 4.9967× 10−1

time levels, degrease the accuracy of the solutions. The behavior of L2-error norm at
t = 0.5 for computing u1 and u2 are shown in Figures 3 and 4.

5. Conclusion

In this study a mathematical model of a spatial pattern in chemical and biological
systems is considered as a nonlinear reaction-diffusion equation. A numerical ap-
proach based on RBF collocation and finite difference methods is established to solve
the proposed model numerically. To this end an important type of RBFs namely
MQ are used. The numerical results show a good agreement between the exact and
numerical solutions.
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Figure 3. The L2-error norm between the exact and approximate
solutions for u1(x, t) with respect to the shape parameter ε at t = 0.5
for Example 2.

Figure 4. The L2-error norm between the exact and approximate
solutions for u2(x, t) with respect to the shape parameter ε at t = 0.5
for Example 2.
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