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Abstract In this paper, the differential transform method and Padé approximation DTM-Padé

is applied to obtain the approximate analytical solutions of the MHD flow and heat

transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The
similarity solution is used to reduce the governing system of partial differential equa-

tions to a set of nonlinear ordinary differential equations which are then solved by

DTM-Padé and validity of our solutions is verified by the numerical results (fourth-
order Runge-Kutta scheme with the shooting method). The stretching velocity of

sheet is assumed to have a power-law variation with the horizontal distance along

the plate. It was shown that the differential transform method (DTM) solutions
are only valid for small values of independent variable but the obtained results by

the DTM-Padé are valid for the whole solution domain with high accuracy. Finally,

the analytical solutions of the problem for different values of the fixed parameters
are shown and discussed. Furthermore, it is found that permeability parameter of

medium has a greater effect on the flow and heat transfer of a nanofluid than the
magnetic parameter.
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Prescribed temperature.
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1. Introduction

Today, the research in Micro and Nano Fluids becomes one of the hottest areas in
engineering. At Micro and Nano scale, conventional ideas of classical fluid mechan-
ics do not apply, and the traditional approaches to fluid mechanics problems need
to be changed to correctly reflect the importance of the interaction between a fluid
and a solid boundary. Conventional heat transfer fluids, for example oil, water, and
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ethylene glycol mixtures, are poor heat transfer fluids because of their poor ther-
mal conductivity. Many attempts have been taken by various investigators during
the recent years to enhance the thermal conductivity of these fluids by suspending
nano/micro particles in liquids [1, 23, 47, 48]. Researchers have observed that ther-
mal conductivity of nanofluid is much higher than that of the base fluids even for
low solid volume fraction of nanoparticles in the mixture [14, 15, 37, 38]. The effect
of temperature on thermal conductivity in a model has been considered by Kumar
et al. [25]. Patel et al. [39] improved the model given in [25] by incorporating the
effect of micro-convection due to particle movement. Nano and micro-fluidics is a
new area with significant potential for novel engineering applications, especially for
the development of new biomedical devices and procedures [27]. Napoli et al. [33]
reviewed applications of nanofluidic phenomena to various nanofabricated devices,
in particular those designed for biomolecule transport and manipulation. There has
been significant interest in nanofluids. This interest is due to its diverse applications,
ranging from laser-assisted drug delivery to electronic chip cooling. Nanofluids are
made of ultrafine nanoparticles (<100 nm) suspended in a base fluid, which can be
water or an organic solvent. Nanofluids possess superior thermo-physical properties
like high thermal conductivity, minimal clogging in flow passages, long term stabil-
ity and homogeneity. Industrial applications of nanofluid are included in electronics,
automotive and nuclear applications. Nanobiotechnology is also a fast developing
field of research and application in many domains such as in medicine, pharmacy,
cosmetics and agro-industry. Many industrial processes involving nanofluid flow and
nanoparticle volume fraction, the diffusing species can be generated / absorbed due to
chemical reaction with the ambient fluid which can greatly affect the flow and hence
the properties and quality of the final product [45]. Different industrial applications
of internal heat generation include the polymer production and the manufacturing
of ceramics or glassware, phase change processes, thermal combustion processes, the
development of a metal waste from spent nuclear fuel [30]. A review of convective
transport in nanofluids was conducted by Buongiorno [8]. Rohni et al. [44] investi-
gated the unsteady flow of a nanofluid over a continuously shrinking surface with wall
mass suction. Godson et al. [18] presented the recent experimental and theoretical
studies on convective heat transfer in nanofluids, their thermo-physical properties and
applications and clarified the challenges and opportunities for future research.

Convective flow in porous media has received the attention of researchers during the
last several decades owing to its many applications in mechanical, chemical, and civil
engineering. Examples include fibrous insulation, food processing and storage, ther-
mal insulation of buildings, geophysical systems, electro- chemistry, metallurgy, the
design of pebble bed nuclear reactors, underground disposal of nuclear or non-nuclear
waste, cooling system of electronic devices etc. Excellent reviews of the fundamental
theoretical and experimental works can be found in the books by Nield and Bejan
[35], Vadasz [50], Vafai [51]. The Cheng–Minkowycz problem [10] was investigated
by Nield and Kuznetsov [36] for nanofluid where the model involves the effect of
Brownian motion and thermophoresis. The classical problem of free convective flow
in a porous medium near a horizontal flat plate was first investigated by Cheng and
Chang [11]. Following him ,many researchers such as Chang and Cheng [12], Shiunlin
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and Gebhart [49], Merkin and Zhang [31], and Chaudhary et al. [9] have extended
the problem in various aspects. Gorla and Chamkha [19] presented a similarity anal-
ysis of free convective flow of nanofluid past a horizontal upward facing plate in a
porous medium numerically. Khan and Pop [24] extended this problem for nanofluid.
Very recently, Aziz et al. [5] extended the same problem for a water-based nanofluid
containing gyrotactic microorganisms.

The study of magnetohydrodynamic (MHD) flow has received a great deal of re-
search interest due to its importance in many engineering studies and industries, such
as modern metallurgy, plasma studies, the boundary layer control in aerodynamics,
MHD power generators, cooling of nuclear reactors, petroleum industries, and crystal
growth. Bluman et al. [7] studied MHD stagnation point flow towards a stretch-
ing sheet numerically. Their analysis showed that velocity at a point increases with
an increase in the magnetic field when the free stream velocity is greater than the
stretching velocity. Rashidi et al. [41] presented series solutions for convective heat
transfer for a micropolar fluid in the presence of uniform magnetic field. Mukhopad-
hyay [32] analyzed the effect of magnetic field on MHD boundary layer flow and heat
transfer adjacent to an exponentially stretching sheet. Convection heat transfer and
fluid flow through porous medium are another important field of research that have
many important applications in geophysical fields such as geothermal and petroleum
resources. Solid matrix heat exchanges, drying of porous solids, thermal insulation
and enhanced oil recovery are some of industrial applications of boundary layer prob-
lems in porous medium. Several excellent books and review articles by Nield and
Bejan [35] and Aziz and Pop [5] have appeared recently dealing with this area, which
review the present understanding of the basic mechanisms involved.

Most scientific problems and phenomena such as boundary-layer problem occur
nonlinearly. We have difficulty usually finding their exact analytical solutions. Ex-
plicit solutions to the nonlinear equations are of fundamental importance. Except
a limited number of these problems that have precise analytical solution, most of
them do not have analytical solution, so these nonlinear equations should be solved
using other methods. In recent decades, much attempt has been done to the newly
developed methods to introduce an analytic solution of these equations. The basic
technique that we used is the DTM, which is based on Taylor series expansion. In
1986, Zhou [53] employed the basic ideas of DTM for solving linear and nonlinear
problems in electrical circuit problems. It gives exact values of the nth derivative of
an analytical function at a point in terms of known and unknown boundary conditions
in a fast manner. The differential transform is an iterative procedure for obtaining
analytic Taylor series solutions of differential equations. Ayaz [2] applied it to the
system of differential equations. Jang et al. [22] presented the two-dimensional DTM
for solution of partial differential equations. This method was successfully applied to
various application problems [3, 4, 6, 16, 17, 18, 20, 40, 42, 46, 54]. On the other
hand, if the DTM is used to solve differential equations with the boundary conditions
at infinity, the obtained results will be incorrect (when the boundary-layer variable
go to infinity, the obtained series solutions are divergent). In addition, power series
aren’t useful for large values of η, say η →∞ (when η is independent variable of prob-
lem). Kuznetsov [26] and others have formally shown that power series in isolation
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are not useful for handling boundary value problems. This can be attributed to the
possibility that the radius of convergence may not be sufficiently large to contain the
boundaries of the domain. Therefore, the combination of the series solution through
the DTM or any other series solution method with the Padé approximation provides
an effective tool for handling boundary value problems on infinite or semi-infinite
domains. The MHD boundary-layer flow is investigated by employing the modified
Adomian decomposition method (ADM) and the Padé approximation by Liao et al.
[28].

Therefore, the present study focuses on using any combination of speed and tem-
perature boundary conditions by employing the most general power-law velocity and
temperature distributions considering various working nanofluid with different val-
ues of nanoparticle solid volume fraction. In addition, effects of suction/injection,
magnetic field and permeability of medium are investigated and discussed. With a
similarity transformation, the Navier–Stokes equations have been reduced to a set of
nonlinear ordinary differential equations.

The differential transform method and Pade’approximation are applied to solve the
ODEs. The validity of our solutions is verified by the numerical results (Runge-Kutta-
Fehlberg fourth-fifth order and shooting method). The effect of relevant parameters on
dimensionless fluid velocity, temperature, nanoparticle volume fraction is investigated
and shown graphically and discussed. The obtained results are then compared with
the results of Cortell [13], Rohni et al. [44], Hady et al. [21] and Hamad [20] to
support their validity.

2. Formulation of the Problem

Consider the two-dimensional laminar boundary layer flow of an electrically con-
ducting fluid over a permeable stretching sheet in a porous medium filled by a
nanofluid as shown in FIGURE 1. Cartesian coordinates x and y are defined such
that the x-axis is measured along the stretching sheet and the y-axis is measured
normal to it. It is assumed that the sheet is stretched with the nonlinear velocity
uw = U0x

n in a quiescent nanofluid where U0 > 0 is the stretching parameter and n
is nonlinear velocity parameter. The surface temperature Tw is assumed to vary as
a power-law function of the distance along the plate, i.e., Tw = T0x

m + T∞ where
T0 is the characteristic temperature of the nanofluid and m is nonlinear temperature
parameter. It is also assumed that the velocity of the mass transfer is vw(x) with
vw(x) > 0 for suction and vw(x) < 0 for injection, respectively. It is further assumed
that the base fluid (i.e. water) and the nanoparticles are in thermal equilibrium and
no slip occurs between them. The basic steady conservation of mass, momentum and
energy equations for a nanofluid under a vertical magnetic field through porous media
are

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= νnf

∂2u

∂y2
− νnf

K
u− σB0

2

ρnf
u, (2.2)
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Figure 1. The schematic of the problem and coordinate system.

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
. (2.3)

The boundary conditions are taken to be

u = uw(x), v = vw(x), T = Tw(x) at y = 0, u→ 0, T → T∞, as y →∞,
(2.4)

where

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

, (ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s,

(2.5)

µnf =
µf

(1− φ)2.5
, ρnf = (1− φ)ρf + φρs, νnf =

µnf
ρnf

, αnf =
knf

(ρCp)nf
.

(2.6)

In order to obtain similarity solutions of Eqs. (2.1)-(2.3) with the boundary conditions
(2.4), we introduce the following similarity variables

ψ = (
2νfxuw
n+ 1

)1/2f(η), η = (
(n+ 1)uw

2νfx
)1/2y, θ(η) =

T − T∞
Tw − T∞

, (2.7)

where ψ is the stream function defined as u = ∂ψ
∂y and ν = ∂ψ

∂x . Substituting (2.7)

into Eqs. (2.1)-(2.3), we obtain the following ordinary differential equations

f ′′′+(1−φ)2.5(1−φ+
φρs
ρf

){ff ′′− 2n

n+ 1
f ′2}− 2

U0(n+ 1)
{(1−φ)2.5M+κ}f ′ = 0,

(2.8)
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knf
kf

θ′′ + Pr

(
(1− φ)(1 + φ

(ρCp)s
(ρCp)f

) )

{
fθ′ − 2m

n+ 1
f ′θ} = 0, (2.9)

Subject to the boundary conditions

f(0) = −f0

√
2

n+ 1
, f ′(0) = 1, θ(0) = 1, f ′(∞)→ 0, θ(∞)→ 0,

(2.10)

Where f0 =Constant if we take νw = (U0νfx
n − 1)1/2. The parameter f0 is the

suction/injection parameter with f0 > 0 and f0 < 0 corresponding to mass injection
and mass suction, respectively. The skin friction coefficient Cf and the local Nusselt
number Nux are the physical quantities of interest which are defined as

Cf =
τw

ρfu2
∞
, Nux =

xqw
kf (Tw − T∞)

, (2.11)

where

τw = µnf (
∂u

∂y
)y=0, qw = −knf (

∂T

∂y
)y=0. (2.12)

Substituting (2.7) into Eqs. (2.11)) and (2.12) ,we obtain

Cf (Rex)1/2 = (
n+ 1

2
)1/2 f ′′(0)

(1− φ)2.5
, Nux(Rex)−1/2 = −knf

kf
(
n+ 1

2
)1/2θ′(0),

(2.13)

Where Rex = u∞x
νf

is the local Reynolds number.

3. Basic idea of the DTM

Consider a function u(x) which is analytic in a domain T and let x = x0 represent
any point in T . The function u(x) is then represented by a power series whose centre
is located at x0. The differential transform of the function u(x) is given by (see ref
[16])

U(k) =
1

k!

[
dku(k)

dxk

]
x=x0

, (3.1)

where u(x) is the original function and U(k) the transformed function. The inverse
transformation is defined as follows

u(x) =

∞∑
k=0

(x− x0)kU(k). (3.2)

Considering Eq. (3.2), it is noticed that the concept of differential transform is derived
from Taylor series expansion. However, this method does not evaluate the derivatives
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symbolically. In actual applications, the function u(x) is expressed by a finite series
and Eq. (3.1) can be rewritten as follows:

u(x) ∼=
i∑

k=0

(x− x0)kU(k). (3.3)

Which means that u(x) =
∑∞
k=m+1 (x− x0)kU(k) is negligibly small. Usually, the

value of i is decided by convergence of the series coefficients.

4. The Padé approximants

Suppose that we are given a power series
∑∞
i=0 aix

i, representing a function f(x),
so that

f(x) =

∞∑
i=0

aix
i. (4.1)

The Padé approximant is a rational fraction and the notation for such a Padé ap-
proximant is [41]

[L,M ] =
PL(x)

QM (x)
, (4.2)

where PL(x) is a polynomial of degree at most L and QM (x) is a polynomial of degree
at most M . We have

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . . , (4.3)

PL(x) = p0 + p1x+ p2x
2 + p3x

3 + ...+ pLx
L, (4.4)

QM (x) = q0 + q1x+ q2x
2 + q3x

3 + ...+ qMx
M , (4.5)

Notice that in Eq. (4.2), there are L+1 numerator coefficients and M+1 denominator
coefficients. Since we can clearly multiply the numerator and denominator by a
constant and leave [L,M ] unchanged, we impose the normalization condition

QM (0) = 1. (4.6)

So, there are L+1 independent numerator coefficients and M independent denomina-
tor coefficients, making L+M + 1 unknown coefficients in all. This number suggests
that normally the [L,M ] ought to fit the power series Eq. (4.1) through the or-
ders 1, x, x2, ..., xL+M . Using the conclusion given in [41], we know that the [L,M ]
approximant is uniquely determined. In the notation of formal power series,

∞∑
i=0

aix
i =

p0 + p1x+ p2x
2 + p3x

3 + ...+ pLx
L

q0 + q1x+ q2x2 + q3x3 + ...+ qMxM
+O(xL+M+1). (4.7)

small By cross–multiplying Eq. (4.7), we find that

(a0 + a1x+ a2x
2 + a3x

3 + ...)(1 + q1x+ q2x
2 + ...+ qMx

M )
= p0 + p1x+ p2x

2 + p3x
3 + ...+ pLx

L +O(xL+M+1).
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(4.8)

From Eq. (4.8), one can obtain the set of equations

a0 = p0,
a1 + a0q1 = p1,
a2 + a1q1 + a0q2 = p2,
...
aL + aL−1q1 + ...+ a0qL = pL,

(4.9)

and 
aL+1 + aLq1 + ...+ aL−M+1qM = 0,
aL+2 + aL+1q1 + ...+ aL−M+2qM = 0,

...
aL+M + aL+M−1q1 + ...+ aLqM = 0.

(4.10)

Where an = 0 for n < 0 and qj = 0 for j > M .
If Eqs. (4.9) and (4.10) are nonsingular, then we can solve them directly

[L,M ] =

∣∣∣∣∣∣∣∣∣
aL−M+2 aL−M+2 . . . aL+1

...
...

. . .
...

aL aL+1 . . . aL+M∑L
j=M aj−Mx

j
∑L
j=M−1 aj−M+1x

j . . .
∑L
j=0 ajx

j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
aL−M+1 aL−M+2 . . . aL+1

...
...

. . .
...

aL aL+1 . . . aL+M

xM xM−1 . . . 1

∣∣∣∣∣∣∣∣∣

(4.11)

If the lower index on a sum exceeds the upper, the sum is replaced by zero. Alternate
forms are

[L,M ] =
∑L−M
j=0 ajx

j + xL−M+1wTL/MW
−1
L/MwL/M

=
∑L+n
j=0 ajx

j + xL+n+1wT(L+1)/MW
−1
L/Mw(L+n)/M ,

(4.12)

for

WL,M =

 aL−M+1 − xaL−M+2 . . . aL − xaL+1

...
. . .

...
aL − xaL+1 . . . aL+M1 − xaL+M

 , (4.13)

wL,M =


aL−M+1

aL−M+2

...
aL

 . (4.14)

The construction of [L,M ] approximants involves only algebraic operations [41]. Each
choice of L degree of the numerator and M degree of the denominator, leads to an
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approximant. The major difficulty in applying the technique is how to direct the
choice in order to obtain the best approximant. This needs the use of a criterion for
the choice depending on the shape of the solution. We construct the approximants
using Mathematica software in the following sections. More importantly, the diagonal
approximant is the most accurate approximant; therefore ,we will construct only the
diagonal approximants in the following discussions.

5. Analytical approximations by means of the DTM Padé

The fundamental mathematical operations performed by DTM are listed in Table
1. Taking differential transform of Eqs. (2.8), (2.9), we obtain

(k + 1)(k + 2)(k + 3)F [k + 3]+

(1− φ)2.5(1− φ+ φρs/ρf )(
∑k
r1=0 [F [r1](k + 2− r1)(k + 1− r1)F [k + 2− r1]]−

2n
n+1

∑k
r1=0[F [r1 + 1](r1 + 1)(k + 1− r1)F [k + 1− r1]])−

2
U0(n+1){(1− φ)2.5M + κ}(k + 1)F [k + 1] = 0,

(5.1)

knf

kf
(k + 1)(k + 2)Θ[k + 2] + Pr

(
(1− φ)(1 + φ

(ρCp)s
(ρCp)f

)
(
∑k
r1=0[F [r1](k + 1− r1)Θ[k + 1− r1]]

− 2m
n+1

∑k
r1=0 [Θ[r1](k + 1− r1)F [k + 1− r1]]) = 0,

(5.2)

where F (k) and Θ(k) are the differential transform of f(η) and θ(η), respectively.
By applying the DTM into Eq. (2.10), differential transform of boundary conditions
is thus determined into a recurrence equation that finally leads to the solution of a
system of algebraic equations. As for a problem with the boundary conditions at the
infinity, differential transform of infinity boundary conditions is indeterminate; thus,
we must consider the boundary conditions (Eqs. (2.10)) as follows

f(0) = −f0

√
2

(n+1) , f ′(0) = 1, f ′′(0) = α,

θ(0) = 1, θ′(0) = ω.
(5.3)

Therefore, problem changes to an initial conditions problem. The differential trans-
form of the boundary conditions is as follows

F (0) = −f0

√
2

(n+1) , F (1) = 1, F (2) = α
2 ,

Θ(0) = 1, Θ(1) = ω.
(5.4)

Moreover, substituting Eqs. (5.4) into Eqs. (5.1), (5.2) and by recursive method,we
can calculate other values of F [k] and Θ[k]. Hence, substituting all F [k], Θ[k] into
Eq. (3.3), the series solutions are obtained. After the series solutions are found, the
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Padé approximation [41, 43] must be applied. Using asymptotic boundary condition
(f ′(∞) → 0, θ(∞) → 0), we can obtain α and ω. For analytical solution, the con-
vergence analysis was performed and in Eq. (4.2), the i value is selected equal to 50.
After the DTM solutions were found , the Padé approximant must be applied. The
order of Padé approximation is selected as a reason to agreeable accuracy of solu-
tion; on the other hand, if the order of Padé approximation increases, the accuracy of
the solution increases. For example, election of cu as nanoparticle in the water and
φ = 0.1, n = 2.0, U0 = 1.0, M = 1.0, κ = 0.1, P r = 6.2, m = 4.0 and f0 = 0.1
and suitable order of Padé approximation [L,M ] lead to the analytical solutions as
follows:

f ′(η)[10,10] ≈ (1.0 + 0.824767η − 0.0450612η2 − 0.212118η3 − 0.0065524η4

+0.028038η5 − 0.00158693η6 − 0.00389942η7 + 0.00142907η8

−0.00028584η9 + 0.0000133662η10)/(1.0 + 3.39521η + 5.30164η2

+5.02857η3 + 3.23024η4 + 1.48195η5 + 0.497618η6 + 0.12268η7

+0.0217099η8 + 0.00257913η9 + 0.000166409η10),

(5.5)

θ(η)[10,10] ≈ (1.0 + 1.00464η + 2.80042η2 + 0.948566η3 + 1.59213η4

−0.220317η5 + 0.228846η6 − 0.209529η7 + 0.0612429η8

−0.00885532η9 + 0.000495686η10)/(1.0 + 3.93975η + 8.81264η2

+13.2084η3 + 13.6918η4 + 10.0885η5 + 5.39006η6 + 2.09237η7

+0.57634η8 + 0.104508η9 + 0.00971635η10).

(5.6)

6. Comparisons and verification

It is worth citing that for impermeable medium (κ = 0) and in the absence of
magnetic field (M = 0) and solid volume fraction (φ = 0) our problem reduces to
Refs. [13, 20, 21, 44]. The results for the skin friction coefficient and the local Nusselt
are compared with those reported in Refs [13, 20, 21, 44] for different values of n and
f0 when Pr = 1.0 and m = 2n (Table 2). The thermophysical properties of the base
fluid and the nanoparticles are listed in Table 3. Also, we compared our results with
those given by Hamad [20] for different values of φ and M and for three different types
of nanoparticle in the water when f0 = κ = m = 0.0, U0 = n = 1.0, pr = 6.2
(Table 4). The quantitative comparisons are found to be in excellent agreement and
thus give confidence that the numerical results obtained are accurate.

7. Results and Discussion

Graphical representation of results is very useful to discuss the physical features
presented by the solutions. This section describes the influence of some interesting
parameters on the velocity and temperature fields. Similarity Eqs. (2.8) and (2.9)
with boundary conditions in Eq. (2.10) were solved analytically by DTM-Padé and
numerically using Runge–Kutta fourth order method along with shooting technique.
FIGURES 2 and 3 show the profiles f ′(η) and θ(η) obtained by the DTM-Pade’with
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various values of L and M (Padé parameters) in comparison with the simple DTM and
numerical solutions obtained by the fourth-order Runge-Kutta method respectively,
for cu as nanoparticle in the water and φ = 0.1, n = 2.0, U0 = 1.0, M = 1.0, κ =
0.1, P r = 6.2, m = 4.0 and f0 = 0.1. It is observed that the results of suitable
order of Padé approximation [L,M ] are very close to the numerical solutions which
confirm the validity of these methods. Also, it can be concluded that obtained results
by the DTM are only valid for small values of independent variable (η) but the
results obtained by the DTM-Padé have good agreement with the numerical results
for all values of η. In the following figures, the effects of various physical parameters
on the dimensionless velocity and temperature profiles will be investigated. These
results have been obtained by the 50th order of the DTM with suitable order of
Padé approximation and have been validated by numerical results. FIGURES 4 and
5 ,respectively, represent that the comparison of solutions of f ′(η) and θ(η) for fix
values φ = 0.1, n = 2.0, U0 = 1.0, M = 1.0, κ = 0.1, P r = 6.2, m = 4.0 and
different values of suction/ injection parameter f0. It is observed that the temperature
is greater in status of injection than suction but velocity of the fluid does not vary
sensibly (FIGURE 5). The effects of the nanoparticle volume fraction φ are depicted
in FIGURES 6 and 7, when f0 = 0.1, n = 2.0, U0 = 1.0, M = 1.0, κ = 0.1, P r =
6.2, m = 4.0. If φ increases, f ′(η) and specially θ(η) increase.

The dimensionless velocity and dimensionless temperature profiles for different val-
ues of nonlinear velocity parameter n with constant values f0 = 0.1, φ = 0.1, U0 =
1.0, M = 1.0, κ = 0.1, P r = 6.2, m = 4.0 are presented in FIGURES 8 and 9. It is
observed that the velocity of the fluid decreases with the increase of n but temperature
increases extremely. In FIGURES 10 and 11 ,respectively, comparison of solutions of
f ′(η) and θ(η) for f0 = 0.1, φ = 0.1, n = 2.0, M = 1.0, κ = 0.1, P r = 6.2, m = 4.0
and different values of stretching velocity coefficient U0 are shown. As the stretch-
ing velocity coefficient increases, the velocity distribution f ′(η) increases while tem-
perature θ(η) decreases. The dimensionless velocity and dimensionless tempera-
ture profiles for different values of magnetic field parameter M with constant val-
ues f0 = 0.1, φ = 0.1, n = 2.0, U0 = 1.0, κ = 0.1, P r = 6.2, m = 4.0 are
presented in FIGURES 12 and 13. It is observed that the velocity of the fluid
decreases with the increase of magnetic parameter,and the value of temperature
profiles increase with the increase of magnetic parameter. FIGURE 14 presents
velocity profiles for different values of permeability parameter of medium κ when
f0 = 0.1, φ = 0.1, n = 2.0, U0 = 1.0, M = 1.0, P r = 6.2, m = 4.0. It is obvious
that velocity decreases at each point with the increasing values of permeability pa-
rameter of medium κ. FIGURE 15 shows the temperature increases as κ increases.
It is expected that presence of porous medium causes higher restriction to the fluid,
thus the flow becomes slower and reduces the velocity boundary layer thickness and
enhances the temperature. The effects of the Prandtl number on the f ′(η) and θ(η)
obtained by the DTM-Padé and numerical solutions, are depicted in FIGURES 16
and 17 ,respectively, for fixed values f0 = 0.1, φ = 0.1, n = 2.0, U0 = 1.0, M =
1.0, κ = 0.1, m = 4.0. It is clear that with increase of Prandtl number θ(η) decreases
extremely (FIGURE 17), but there is no effect on the velocity f ′(η) (FIGURE 16).
This is in agreement with the physical fact that the thermal boundary-layer thickness
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decreases with the increasing Pr. Ultimately, FIGURES 18 and 19 depict the effect
of temperature exponent parameter m on velocity and temperature functions when
f0 = 0.1, φ = 0.1, n = 2.0, U0 = 1.0, M = 1.0, κ = 0.1, P r = 6.2. It is seen
that with an increase in the temperature exponent parameter, the velocity does not
change prominently whereas the temperature decreases extremely. In FIGURES 4-19,
the comparison of the solutions obtained by the DTM-Padé and numerical method
show that the results obtained by the DTM-Padé have good agreement with the
numerical results for all values of η.

These figures show that the boundary conditions (9) are satisfied and approached
infinity asymptotically. Also, FIGURES 20 and 21 show the effects of the type of
nanoparticle on velocity and temperature profiles, respectively. It is seen that the
highest velocity is achieved for Al2O3 working fluid (FIGURE 20). FIGURE 21 shows
that the highest temperature is achieved for Cu. It is noted that the Cu nanoparticles
have high values of thermal diffusivity; therefore, this increases the temperature which
will affect the performance of Cu fluid. It is expected that presence of porous medium
causes higher restriction to the fluid, thus, the flow becomes slower, reduces the
velocity boundary layer thickness and enhances the temperature.

8. Conclusions

This paper studied the magnetohydrodynamics flow and heat transfer of a nanofluid
over a nonlinearly stretching permeable sheet in porous medium. The surface temper-
ature Tw is assumed to vary as a power-law function of the distance along the plate.
The governing partial differential equations have been transformed by a similarity
transformations developed by Lie group analysis into a system of ordinary differential
equations, which are solved analytically by DTM-Padé and numerical method small
(fourth-order Runge-Kutta scheme with the shooting method). The DTM combined
with Padé approximants are also shown to be a promising tool in solving two-point
boundary value problems consisting of systems of nonlinear differential equations.
Without using Padé approximation, the analytical solution obtained by the DTM,
can’t satisfy boundary conditions at infinity. The effects of the governing parameters
f0, φ, n, U0, M, κ, Pr and m and the type of nanoparticle on the fluid flow and
heat transfer characteristics are investigated and discussed.

From the present investigation, it may be concluded that:

• (i) The velocity f ′(η) increases with the increasing φ, U0 and decreases with
the increasing n, M and κ.

• (ii) The temperature θ(η) increases with φ, n,M, κ and decreases with U0, P r, m.
• (iii) Parameters of Pr, f0 and m do not affect velocity profile.
• (iv) The temperature is greater in status of injection than suction.

Overall, the DTM-Padé approach again demonstrates very good correlation with the
established numerical quadrature (shooting) method, and therefore provides a very
useful benchmark for computational techniques such as finite differences[52], finite
elements [29] and network electrical simulation methods [34]. As discussed, nonlinear
stretching velocity is a fact in industrial applications and we can control the nanofluid
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flow and heat transfer in such processes by changing in the various pertinent param-
eters. Finally, the agreement between analytical and numerical results of the present
study with previous published results is excellent.
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Figure 2. Comparison between the numerical, DTM and the DTM-
padé solution of f ′(η) for different values of Padé parameters and cu
as nanoparticle in the water.

Figure 3. Comparison between the numerical, DTM and the DTM-
padé solution of θ(η) for different values of Padé parameters and cu
as nanoparticle in the water.
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Figure 4. Effect of suction/injection parameter f0 on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.

Figure 5. Effect of suction/injection parameter f0 on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.
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Figure 6. Effect of nanoparticle volume fraction φ on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.

Figure 7. Effect of nanoparticle volume fraction φ on the dimen-
sionless temperature profile obtained by the DTM-padé and numer-
ical method.
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Figure 8. Effect of nonlinear velocity parameter n on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.

Figure 9. Effect of nonlinear velocity parameter n on the dimen-
sionless temperature profile obtained by the DTM-padé and numer-
ical method.
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Figure 10. Effect of stretching velocity coefficient U0 on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.

Figure 11. Effect of stretching velocity coefficient U0 on the di-
mensionless temperature profile obtained by the DTM-padé and nu-
merical method.
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Figure 12. Effect of magnetic field parameter M on the dimen-
sionless velocity profile obtained by the DTM-padé and numerical
method.

Figure 13. Effect of magnetic field parameter M on the dimension-
less temperature profile obtained by the DTM-padé and numerical
method.
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Figure 14. Effect of permeability parameter of medium κ on the
dimensionless velocity profile obtained by the DTM-padé and numer-
ical method.

Figure 15. Effect of permeability parameter of medium κ on the
dimensionless temperature profile obtained by the DTM-padé and
numerical method.
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Figure 16. Effect of Prandtl number Pr on the dimensionless ve-
locity profile obtained by the DTM-padé and numerical method.

Figure 17. Effect of Prandtl number Pr on the dimensionless tem-
perature profile obtained by the DTM-padé and numerical method.
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Figure 18. Effect of temperature exponent parameter m on the
dimensionless velocity profile obtained by the DTM-padé and nu-
merical method.

Figure 19. Effect of temperature exponent parameter m on the
dimensionless temperature profile obtained by the DTM-padé and
numerical method.
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Figure 20. Effect of the type of nanoparticle on the dimensionless
velocity profile obtained by the DTM-padé and numerical method.

Figure 21. Effect of the type of nanoparticle on the dimension-
less temperature profile obtained by the DTM-padé and numerical
method.



96 HABIB-OLAH. SAYEHVAND AND AMIR BASIRI PARSA

Table 1. Nomenclature

B0 strength of magnetic field
Cf skin friction factor
F differential transform of f
f dimensionless velocity functions
f0 suction/injection parameter
K permeability of the porous medium
kf thermal conductivity of base fluid
ks thermal conductivity of nanoparticle material
knf effective thermal conductivity of nanofluid
M magnetic parameter
m nonlinear temperature parameter
n nonlinear velocity parameter
Nu Nusselt number
qw conduction heat transfer
T Temperature
T0 characteristic temperature
u velocity in x -direction
U0 stretching parameter
v velocity in y -direction
x distance along the surface
y distance normal to the surface
Greek letters
αm thermal diffusivity of the nanofluid
φ solid volume fraction of the nanoparticles
η similarity variable
τw skin friction
µf dynamic viscosity of base fluid
µnf dynamic viscosity of nanofluid
Θ differential transform of θ
θ dimensionless temperature
σ electric conductivity
ρf density of base fluid
ρs density of nanoparticle material
ρnf density of nanofluid
(ρC)f effective heat capacity of base fluid
(ρC)s effective heat capacity of nanoparticle material
(ρC)nf effective heat capacity of nanofluid
ν kinematics viscosity
ψ stream function
Subscript, Superscript
∞ conditions far away from the surface
′ differentiation with respect to η
f base fluid
s nanoparticle material
nf Nanofluid
w Wall
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Table 2. The operations for the one-dimensional differential trans-
form method.

Original function Transformed function
w(x) = u(x)± v(x) W (k) = U(k)± V (k)
w(x) = λu(x) W (k) = λU(k), λ is a constant

w(x) = xr W (k) = δ(k − 1), where δ(k − 1) =

{
1, if k = r
0, if k 6= r

w(x) = du(x)
dx W (k) = (k + 1)U(k + r)

w(x) = dru(x)
dxr W (k) = (k + 1)(k + 2)...(k + r)U(k + r)

w(x) = u(x)v(x) W (k) =
∑k
r=0 U(r)V (k − r)

w(x) = du(x)
dx

dv(x)
dx W (k) =

∑k
r=0 (r + 1)(k − r + 1)U(r + 1)V (k − r + 1)

w(x) = u(x)dv(x)
dx W (k) =

∑k
r=0 (k − r + 1)U(r)V (k − r + 1)

w(x) = u(x)dv(x)
dx

dz(x)
dx W (k) =

∑k
r=0

∑k−r
t=0 (t+ 1)(k − r − t+ 1)× U(r)V (t+ 1)Z(k − r − t+ 1)

Table 3. Comparition of the results for the skin friction coefficient
and the local Nusselt with those reported in Refs [50-53] for different
values of n and f0 when φ = 0, M = 0, κ = 0, P r = 1.0 and
m = 2n.

Physical properties Base fluid(water) Cu Al2O3 TiO2

Cp(J/kgK) 4179 385 765 686.2
ρ(kg/m3) 997.1 8933 3970 4250
k(W/mK) 0.613 400 40 8.954

α× 10−7(m2/s) 1.47 1163.1 131.7 30.7

Table 4. Thermophysical properties of the base fluid and the
nanoparticles.

n 0f

(0)f  (0)

Cortell 

[31] 

Rohni et 

al. [44] 

Present 

Work 
Cortell 

[31] 

Rohni et 

al. [44] 

Present 

work 

Numerical DTM-Padé Numerical DTM-Padé 

57.0 

-3 -3721611 -37211524 -372115. -3721130

5 -57101.1 -5710110. -57104563 -57104561 -376062. -3760140 -3760142 -3760142

3 -5700530 -57005300 -570234.. -5702342.

370 

-3 -3701132 -37011630 -3701166 -3701116

5 -3752301 -37523253 -3752322 -3752304 -3741111 -3741110 -374111. -374111.

3 -57.3120 -57.3120. -57.61464 -57.61430

35 

-3 -3740442 -37404044 - 3740402 -374042.

5 -3761400 -376140.0 -3761411 -3761413 -3..60114 -37.60101 -37.6014 -37.600.

3 -375012. -375012.0 -3752.00 -3752..1
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Table 5. Comparison of the results with those given by Hamad [20]
for different values of φ andM for three different types of nanoparticle
in the water when f0 = κ = m = 0.0, U0 = n = 1.0, P r = 6.2.

M


(0)f  (0)

Cu 2 3Al O 2TiO Cu 2 3Al O 2TiO

0 

0.0 
Hamad [00] -0.0.1.1 -0.999.. -0.00910 -0.1100. -0.190.0 -0.10919

Present work 
Numerical -0.0.1.1 -0.999.0 -0.00911 -0.11000 -0.190.1 -0.10910

DTM-Padé -0.0.1.1
-0.999.0

-0.00911 -0.11001 -0.190.0 -0.10911

0.0 
Hamad [00] -0.00901 -0.91190 -0.9.019 -0.00090 -0.0.009 -0.10901

Present work 
Numerical -0.00901 -0.91191 -0.9.010 -0.00099 -0.0.009 -0.1090.

DTM-Padé -0.00901 -0.91191 -0.9.010 -0.00099 -0.0.009 -0.10909

0 

0.0 
Hamad [00] -0.111.1 -0.10990 -0.11.00 -0.1991. -0.10910 -0.11.99

Present work 
Numerical -0.111.1 -0.10991 -0.11.00 -0.19919 -0.10910 -0.11.90

DTM-Padé -0.111.1 -0.10990 -0.11.00 -0.19919 -0.10910 -0.11.90

0.0 
Hamad [00] -0.11190 -0.00900 -0.01000 -0.01100 -0.00110 -0.01001

Present work 
Numerical -0.1119. -0.00901 -0.01001 -0.01101 -0.00110 -0.01001

DTM-Padé -0.1119. -0.0090. -0.01001 -0.01100 -0.00110 -0.01001

0 

0.0 
Hamad [00] -0..0.99 -0.19099 -0.199.1 -0.11100 -0.11000 -0.19091

Present work 
Numerical -0..0.90 -0.19099 -0.199.1 -0.11100 -0.11001 -0.19091

DTM-Padé -0..0.90 -0.19000 -0.199.1 -0.11101 -0.11001 -0.19091

0.0 
Hamad [00] -0.10001 -0.11190 -0.11191 -0.00190 -0.011.1 -0.001.1

Present work 
Numerical -0.1000. -0.11191 -0.11199 -0.00191 -0.011.. -0.001.9

DTM-Padé -0.10001 -0.11191 -0.11199 -0.00190 -0.011.1 -0.001.
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