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Abstract The aim of this paper is to extend the split-step idea for the solution of fractional par-
tial differential equations. We consider the multidimensional nonlinear Schrödinger

equation with the Riesz space fractional derivative and propose an efficient numerical

algorithm to obtain it’s approximate solutions. To this end, we first discretize the
Riesz fractional derivative then apply the Crank-Nicolson and a split-step methods

to obtain a numerical method for this equation. In the proposed method there is no

need to solve the nonlinear system of algebraic equations and the method is conver-
gent and unconditionally stable. The proposed method preserves the discrete mass

which will be investigated numerically. Numerical results demonstrate the reliability,

accuracy and efficiency of the proposed method.
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1. Introduction

In recent years there has been a growing interest in the field of fractional calculus
[4, 6, 18, 19]. Fractional differential equations have attracted increasing attention
because they have applications in various fields of science and engineering. Many
phenomena in fluid mechanics, viscoelasticity, chemistry, physics, finance and other
sciences can be described very successfully by models using mathematical tools from
fractional calculus, i.e., the theory of derivatives and integrals of fractional order.
Some of the most applications are given in the book of Oldham and Spanier [17],
the book of Podlubny [18] and the papers of Metzler and Klafter [15], Bagley and
Trovik [3]. The fractional Schrödinger equation was discovered by Nick Laskin [13] as
a result of extending the Feynman path integral, from the Brownian-like to Levy-like
quantum mechanical paths. Some authors [8, 10] discussed the physical applications
of fractional Schrödinger equation and obtained the exact solutions with several kinds
of potentials. However, the exact solutions of fractional differential equations often
contains some special functions, such as Fox functions, which are not studied very
well. The numerical methods for fractional differential equations become important
tools to understand the behaviors of the equations [20].
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The Riesz fractional operator for 1 < α ≤ 2 is defined as follows [9, 12]

∂αu(x, t)

∂|x|α
= − 1

2 cos(απ/2)Γ(2− α)

d2

dx2

∞∫
−∞

|x− ξ|1−αu(ξ, t)dξ, (1.1)

where Γ(.) is the gamma function. We consider the one-dimensional Schrödinger
equation with Riesz space fractional

i
∂u(x, t)

∂t
= κ

∂αu(x, t)

∂|x|α
+ γu(x, t)|u(x, t)|p + f(x, t), a < x < b, 0 ≤ t ≤ T, (1.2)

with initial condition

u(x, 0) = φ(x), a < x < b, (1.3)

and boundary conditions

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T, (1.4)

where p > 0 is a real constant, i2 = −1 and the complex wave function u(x, t) may
represent a probability amplitude, the amplitude of an electric field or the velocity
field of a fluid. Some numerical methods for the solution of fractional Schrödinger
equation are proposed in the literature. The authors of [20] proposed the Crank-
Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the
Riesz space fractional derivative. The stability and convergence of this scheme are
discussed in the L2 norm. Wei et al. [24] presented and analyzed an implicit fully
discrete local discontinuous Galerkin (LDG) finite element method for solving the
one-dimensional time-fractional Schrödinger equation. Authors of [2] showed that it
is possible to obtain numerical solutions to quantum mechanical problems involving a
fractional Laplacian, using a collocation approach based on sinc functions, which dis-
cretizes the Schrödinger equation on a uniform grid. Homotopy perturbation method
is proposed in [25] for the solution of fractional nonlinear Schrödinger equation. The
meshless technique based on collocation and radial basis functions for solving the
time fractional nonlinear Schrödinger equation arising in quantum mechanics is given
in [16]. Another recently numerical methods for fractional Schrödinger equation are
given in [14, 23], which both of them need to solve nonlinear system of algebraic
equations.
In this paper we propose a split-step finite difference method for the solution of one
and two dimensional nonlinear Schrödinger equation with the Riesz space fractional
derivatives. To the best knowledge of author, there is no application of split-step
scheme for the solution of nonlinear fractional partial differential equations. We ap-
ply the Crank-Nicolson and split-step methods to obtain a numerical algorithm for
this equation. We prove that the proposed method is convergent and unconditionally
stable. The method preserves the discrete mass which will be investigated numerically
and there is no need to solve the nonlinear system of algebraic equations. The pro-
posed method can be easily extended to the coupled and three-dimensional nonlinear
Schrödinger equations with the Riesz space fractional derivatives.
The rest of this paper is organized as follows: In Section 2 we introduce the new
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method based on the finite difference method and a split-step scheme. In Section 3
we prove the unconditional stability and convergence of proposed method. We extend
our approach to two dimensional nonlinear Schrödinger equation with the Riesz space
fractional derivatives in Section 4. The results of numerical experiments are compared
with analytical solution for confirming the good accuracy of the proposed scheme and
investigating the conserved discrete mass quantities in Section 5. We conclude this
article with a brief conclusive discussion in Section 6.

2. Derivation of proposed method

For positive integer numbers M and N , let h = b−a
M denotes the step size of spatial

variable, x, and τ = T
N denotes the step size of time variable, t. So we define

xj = a+ jh , j = 0, 1, 2, ...,M,

tk = kτ , k = 0, 1, 2, ..., N.

The exact and approximate solutions at the point (xj , tk) are denoted by ukj and Ukj
respectively. First we state some definitions and properties of fractional derivatives
which are used later.

Lemma 1 [5]. Let gk = (−1)kΓ(α+1)
Γ(α2−k+1)Γ(α2 +k+1) for k = 0,∓1,∓2, ... and α > 1, then

g0 ≥ 0,

g−k = gk ≤ 0, |k| ≥ 1. (2.1)

Lemma 2 [5]. Let f ∈ C5(R) and all derivatives up to order five belong to L1(R)
and

∆α
hf(x) =

∞∑
k=−∞

(−1)
k
Γ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1)
f(x− kh),

be the fractional centered difference, then

−h−α∆α
hf(x) =

∂αf(x)

∂|x|α
+O(h2), (2.2)

when h→ 0 and ∂αf(x)
∂|x|α is the Riesz fractional derivative for 1 < α ≤ 2.

If

f∗(x) =

{
f(x), x ∈ [a, b],

0, x /∈ [a, b],

such that f∗ ∈ C5(R) and all derivatives up to order five belong to L1(R), then from
Lemma 2 we have [5]

∂αf∗(x)

∂|x|α
= −h−α

∞∑
k=−∞

gkf
∗(x− kh) +O(h2).
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Since f∗(x) = 0 for x /∈ [a, b], we get

∂αf(x)

∂|x|α
= −h−α

x−a
h∑

k=− b−ah

gkf(x− kh) +O(h2). (2.3)

Now we want to use (2.3), Crank-Nicolson and split-step methods to get an algorithm
to the solution of Schrödinger equation with the Riesz space fractional derivative.
Split step methods, also known as fractional step methods, are efficient and extensively
used for numerical solutions of differential equations, especially for higher dimensional
ones [22]. The basic idea is based on splitting a complex problem into simpler sub-
problems, whose sub-operators are chosen with respect to different physical processes.
Then, each sub-equation is solved efficiently with suitable methods [21, 26]. In this
method we decompose the problem into linear and nonlinear subproblems on each
time step. To this end, we rewrite the fractional PDE (1.2) as follows

i
∂u

∂t
= (L+N )u(x, t), (2.4)

where Lu(x, t) = κ∂
αu(x,t)
∂|x|α +f(x, t) is the linear part and Nu(x, t) = γ|u(x, t)|pu(x, t)

is the nonlinear part of equation. The main idea in the split-step method, is solving
the linear subproblem

i
∂u

∂t
= Lu(x, t), (2.5)

and nonlinear subproblem

i
∂u

∂t
= Nu(x, t), (2.6)

in a given sequential order. Using the standard Strang splitting idea for solving (2.4)
we obtain [6, 21]

u(x, t+ τ) = e−iNτ/2e−iLτe−iNτ/2u(x, t). (2.7)

After time-splitting, the nonlinear equation (2.6) can be solved exactly, while the lin-
ear equation (2.5) can be solved by using an appropriate numerical scheme. We can
use the Crank-Nicolson (CN) difference scheme to the linear part. Also we approxi-
mate the Riesz fractional derivative using the fractional centered derivative approach.
Using (2.3), we can discretize the Eq. (2.5) as follows

i
Un+1
j − Unj

τ
= −1

2
κh−α

j−1∑
k=j−M+1

gkU
n+1
j−k −

1

2
κh−α

j−1∑
k=j−M+1

gkU
n
j−k + f

n+ 1
2

j ,

(2.8)



58 AKBAR MOHEBBI

or

Un+1
j − i

2
τκh−α

j−1∑
k=j−M+1

gkU
n+1
j−k = Unj +

i

2
τκh−α

j−1∑
k=j−M+1

gkU
n
j−k − iτf

n+ 1
2

j ,

j = 1, 2, ...,M − 1, n = 0, 1, ..., N − 1,

(2.9)

where f
n+1

2

j = f(xi, tn+ 1
2
), tn+ 1

2
= nτ+ τ

2 . We can write the above difference scheme

in matrix-vector form as follows

(I −A)Un+1 = (I +A)Un − iτFn+ 1
2 ,

where Un+1 =
(
Un1 , U

n
2 , ..., U

n
M−1

)T
, Fn+ 1

2 =
(
f
n+1

2

1 , f
n+1

2

2 , ..., f
n+1

2

M−1

)
. Also A is the

(M − 1)× (M − 1) symmetric matrix

A =
iτκ

2hα


g0 g−1 g−2 . . . g−M+1

g1 g0 g−1 . . . g−M+2

g2 g1 g0 . . . g−M+3

...
...

...
. . .

...
gM−1 gM−2 gM−3 . . . g0

 .

Now from relation (2.7) we can state the following split-step finite difference scheme
for the solution of Eqs. (1.2)-(1.4) from time t = tn to t = tn+1:

U∗j = e−i(γ|U
n
j |pτ)/2 Unj , j = 0, 1, 2, ...,M, (2.10)

U∗∗j −
i

2
τκh−α

j−1∑
k=j−M+1

gkU
∗∗
j−k = U∗j +

i

2
τκh−α

j−1∑
k=j−M+1

gkU
∗
j−k − iτf

n+ 1
2

j ,

j = 1, 2, ...,M − 1, U∗∗0 = U∗∗M = 0, (2.11)

Un+1
j = e−i(γ|U

∗∗
j |pτ)/2 U∗∗j , j = 0, 1, 2, ...,M. (2.12)

3. Stability and convergence of method

In this section we analyze the stability and convergence of algorithm (2.10)-(2.12).
First we introduce the following notations:

u
n+ 1

2
j =

un+1
j + unj

2
, (un, vn) = h

M−1∑
j=1

unj v
n
j , ‖un‖2 = (un, un) .

For stability analysis we assume that f(x, t) = 0. We can state the following lemma.
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Lemma 3 [20]. The following relation holds

Im

M−1∑
j=1

M−1∑
k=1

gj−k
U∗∗k + U∗k

2

U∗∗k + U∗k
2

 = 0,

where“ Im” means taking the imaginary part.

Lemma 4 [5]. Let ū be the exact solution of

i
∂u(x, t)

∂t
= κ

∂αu(x, t)

∂|x|α
+ f(x, t), (3.1)

and U be the solution of difference scheme (2.11), then we have

‖ūn − Un‖ ≤ C1T (τ2 + h2). (3.2)

Lemma 5 [11]. Let u be the exact solution of (1.2)-(1.4) and v be the solution
of Strang splitting scheme (2.7) then we have

‖vn − un‖ ≤ C2τ
2. (3.3)

Theorem 1. The difference scheme (2.10)-(2.12) is unconditionally stable.

Proof. From Eq. (2.10) we can write

‖U∗‖ = ‖Un‖ ,
also (2.12) gives∥∥Un+1

∥∥ = ‖U∗∗‖ ,
so it is sufficient to show that

‖U∗‖ = ‖U∗∗‖ .
We can rewrite expression (2.11) as follows

U∗∗j −
i

2
τκh−α

M−1∑
k=1

gj−kU
∗∗
k = U∗j +

i

2
τκh−α

M−1∑
k=1

gj−kU
∗
k ,

or

i
U∗∗j − U∗j

τ
+ κh−α

M−1∑
k=1

gj−k
U∗∗k + U∗k

2
= 0.

Taking the inner product of above relation with U∗∗+U∗

2 gives(
i
U∗∗ − U∗

τ
,
U∗∗ + U∗

2

)
+ κh−α

M−1∑
j=1

M−1∑
k=1

gj−k
U∗∗k + U∗k

2

U∗∗k + U∗k
2

 = 0,
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Computing the imaginary part of above relation using Lemma 3, we obtain

‖U∗‖ = ‖U∗∗‖ ,

and as a result we have

‖Un‖ =
∥∥U0

∥∥ ,
which shows the unconditional stability of method. �

Corollary 1. Difference scheme (2.10)-(2.12) for the numerical solution of Schrödinger
equation with the Riesz space fractional derivative (1.2)-(1.4), preserves the discrete
mass when f(x, t) = 0.

Theorem 2. The difference scheme (2.10)-(2.12) for the numerical solution of problem
(1.2)-(1.4) is convergent with the convergence order O(τ2 + h2).

Proof. Let u be the exact solution of (1.2)-(1.4), v be the solution of Strang splitting
method (2.7) and U be the solution of difference scheme (2.10)-(2.12). Note that
the solution of Strang splitting scheme (2.7) is obtained from the following sequential
subproblems

i
∂u

∂t
= γ|u(x, t)|pu(x, t), t ∈ [tn, tn+1/2], (3.4)

i
∂u

∂t
= κ

∂αu(x, t)

∂|x|α
+ f(x, t), t ∈ [tn, tn+1], (3.5)

i
∂u

∂t
= γ|u(x, t)|pu(x, t), t ∈ [tn+1/2, tn+1]. (3.6)

Since the nonlinear subproblems (3.4) and (3.6) are solved exactly, so from Lemma 4
we can obtain

‖vn − Un‖ ≤ C1T (τ2 + h2). (3.7)

Lemma 5 gives

‖un − Un‖ ≤ ‖vn − un‖+ ‖vn − Un‖ ≤ C(τ2 + h2),

which completes the proof. �

4. Extension to two dimensional case

We can extend the proposed method in previous section to solve two-dimensional
Schrödinger equation with fractional Riesz derivatives. Consider the following frac-
tional partial differential equation

i
∂u(x, y, t)

∂t
= κ1

∂αu(x, y, t)

∂|x|α
+ κ2

∂αu(x, y, t)

∂|y|α
+ γu(x, y, t)|u(x, y, t)|p + f(x, y, t),

(x, y) ∈ Ω, t ∈ [0, T ], (4.1)
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with initial condition

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (4.2)

and boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T. (4.3)

The split-step method which we proposed for the Eqs. (4.1)-(4.3), consists of solving
the following sequential subproblems [21]

i
∂u(x, y, t)

∂t
= γu(x, y, t)|u(x, y, t)|p,

i
∂u(x, y, t)

∂t
= κ1

∂αu(x, y, t)

∂|x|α
+

1

2
f(x, y, t),

i
∂u(x, y, t)

∂t
= κ2

∂αu(x, y, t)

∂|y|α
+

1

2
f(x, y, t),

i
∂u(x, y, t)

∂t
= γu(x, y, t)|u(x, y, t)|p.

(4.4)

If we solve the nonlinear subproblems exactly and use the Crank-Nicolsn scheme to
the linear subproblems we obtain

U∗m,j = e−i(γ|U
n
m,j|pτ)/2 Unm,j , m, j = 0, 1, 2, ...,M, (4.5)

U∗∗m,j−
i

2
τκ1h

−α
m−1∑

k=m−M+1

gkU
∗∗
m−k,j = U∗m,j+

i

2
τκ1h

−α
m−1∑

k=m−M+1

gkU
∗
m−k,j−

i

2
τf

n+ 1
2

m,j ,

U∗∗∗m,j−
i

2
τκ2h

−α
j−1∑

k=j−M+1

gkU
∗∗∗
m,j−k = U∗∗m,j+

i

2
τκ2h

−α
j−1∑

k=j−M+1

gkU
∗∗
m,j−k−

i

2
τf

n+ 1
2

m,j ,

m, j = 1, 2, ...,M,

U∗∗∗m,j = U∗∗m,j = 0, m, j = 0,M, (4.6)

Un+1
m,j = e−i(γ|U

∗∗∗
m,j |pτ)/2 U∗∗∗m,j , m, j = 0, 1, 2, ...,M. (4.7)
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5. Numerical results

In this section we present the numerical results of the new method on several test
problems. We tested the accuracy and stability of the method described in this paper
by performing the mentioned scheme for different values of h and τ . We performed
our computations using MATLAB 10 software on a Pentium IV, 2800 MHz CPU
machine with 2 Gbyte of memory.
Also we calculated the computational order of the method presented in this article
(denoted by C-order) with the following formula:

log(E1

E2
)

log(h1

h2
)
,

in which E1 and E2 are errors correspond to grids with mesh size h1 and h2 respec-
tively.

5.1. Test problem 1. We consider the one dimensional Schrödinger equation with
Riesz space fractional derivative

i
∂u(x, t)

∂t
= κ

∂αu(x, t)

∂|x|α
+ γu(x, t)|u(x, t)|4 + f(x, t), 0 < x < 1, 0 ≤ t ≤ 1,

with the initial condition

φ(x) = x2(1− x)2,

and

f(x, t) = αeitαx2(1− x)2 +
1

Γ(5− α)
eitαx−α

(
1

(1− x)
α (x− 1)

2
xα
(
12x2 − 6xα+ (α− 1)α

)

+x2
(

12(x− 1)
2

+ (6x− 7)α+ α2
)

+ x2
(

12(x− 1)
2

+ (6x− 7)α+ α2
))

sec
(πα

2

)
−eitαx10(1− x)10.

The exact solution is given as follows

u(x, t) = eitαx2(1− x)2.

We show the absolute error, C-order and CPU time of applied method for solving this
test problem with h = τ and α = 1.1 in Table 1 and with α = 1.75 in Table 2.

Table 1

Numerical results obtained for Test problem 1 with α = 1.1 and h = τ.

h = τ L∞ C-order CPU time(s)
1
5

7.5552 × 10−3 − 0.006119
1
10

1.9446 × 10−3 1.9580 0.009084
1
20

4.1771 × 10−4 2.2189 0.014403
1
40

1.0307 × 10−4 2.0189 0.037851
1
80

2.7207 × 10−5 1.9216 0.157282
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Figure 1. Real and imaginary parts of approximate solution for
Test problem 1 with h = τ = 1/80.

Table 2

Numerical results obtained for Test problem 1 with α = 1.75 and h = τ.

h = τ L∞ C-order CPU time(s)
1
10

3.9005 × 10−3 − 0.007927
1
20

8.2339 × 10−4 2.2440 0.015199
1
40

2.0792 × 10−4 1.9855 0.038255
1
80

4.7193 × 10−5 2.1394 0.149166
1

160
1.2004 × 10−5 1.9751 0.831297

Tables 1, 2 present the good accuracy and CPU time of method and confirm that the
proposed scheme has second-order of accuracy in both space and time components.
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FIGURE 1 shows the real and imaginary parts of approximate solution with h = τ =
1/80.

5.2. Test problem 2. We consider the one dimensional Schrödinger equation with
Riesz space fractional derivative

i
∂u(x, t)

∂t
=
∂αu(x, t)

∂|x|α
+ u(x, t)|u(x, t)|2, −30 < x < 30,

with the initial condition

φ(x) = sech2(x) exp(2ix).

When α = 2 the exact solution is given as

u(x, t) = sech2(x− 4t) exp(i(2x− 3t)).

For this test problem f(x, t) = 0, so the method preserves the discrete mass. To
show this numerically, we define

Mn =

∣∣ ‖Un‖ − ∥∥U0
∥∥ ∣∣

‖U0‖
.

Table 3 presents the errors Mn with h = 0.1 and τ = 0.05 and different values of t
and α. As we see the method preserves the discrete mass for different values of t and
α.

Table 3

Errors Mn for Test problem 2 with h = 0.1 and τ = 0.05.

α t = 20 t = 40 t = 60

1.1 3.2889 × 10−13 6.7982 × 10−13 9.9421 × 10−13

1.4 2.5838 × 10−13 5.1041 × 10−13 7.3662 × 10−13

1.7 2.2204 × 10−13 3.1796 × 10−13 5.2570 × 10−13

1.9 1.5590 × 10−13 2.4011 × 10−13 3.7039 × 10−13

2 7.4476 × 10−14 1.2611 × 10−13 1.9364 × 10−13

FIGURE 2 shows the numerical solutions of Test problem 2 with h = 0.1, τ = 0.05,
α = 1.1, 1.5, 1.8, 2 at time t = 3. When α becomes smaller, the shape of the soliton
will change more quickly. When α tends to 2, the numerical solutions of the fractional
equation are convergent to the solutions of the usual classical equation.

5.3. Test problem 3. We consider the two dimensional Schrödinger equation with
Riesz space fractional derivatives

i
∂u(x, y, t)

∂t
=
∂αu(x, y, t)

∂|x|α
+
∂αu(x, y, t)

∂|y|α
+u(x, y, t)|u(x, y, t)|2+f(x, y, t), 0 < x < 1,

with the initial condition

φ(x, y) = x2(1− x)2y2(1− y)2,
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Figure 2. Numerical solutions of Test problem 2 with h = 0.1,
τ = 0.05 with α = 1.1 (top-left), α = 1.5 (top-right), α = 1.8 (down-
left) and α = 2 (down-right).

and

f(x, y, t) = αeitαx2(1− x)2y2(1− y)2 + 1
Γ(5−α)e

itαx−αy2(1− y)2
(

1
(1−x)α (x− 1)

2
xα(12x2 − 6xα

+(α− 1)α) +x2
(

12(x− 1)
2

+ (6x− 7)α+ α2
)

+ x2
(

12(x− 1)
2

+ (6x− 7)α+ α2
))

sec
(
πα
2

)
+

+ 1
Γ(5−α)e

itαy−αx2(1− x)2
(

1
(1−y)α (y − 1)

2
yα
(
12y2 − 6yα+ (α− 1)α

)
+y2

(
12(y − 1)

2
+ (6y − 7)α+ α2

)
+ y2

(
12(y − 1)

2
+ (6y − 7)α+ α2

))
sec
(
πα
2

)
−eitαx6(1− x)6y6(1− y)6.
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The exact solution is given as

u(x, y, t) = eitαx2(1− x)2y2(1− y)2.

Table 4 shows the absolute error of applied method for different values of α, h = 0.05
and τ = 0.01 and Table 5 presents the absolute error of applied method for different
values of α, h = 0.02 and τ = 0.001 .

Table 4

Errors obtained for Test problem 3 with h = 0.05 and τ = 0.01.

t α = 1.1 α = 1.5 α = 1.8

t = 0.5 3.2204 × 10−5 1.1611 × 10−4 1.7771 × 10−4

t = 1 2.9024 × 10−5 9.0795 × 10−5 1.9298 × 10−4

t = 2 3.1545 × 10−5 1.1779 × 10−4 1.5500 × 10−4

t = 5 2.5826 × 10−5 5.3080 × 10−5 2.1169 × 10−4

Table 5

Errors obtained for Test problem 3 with h = 0.02 and τ = 0.001.

t α = 1.1 α = 1.5 α = 1.8

t = 0.5 3.7006 × 10−6 1.2397 × 10−5 2.1020 × 10−5

t = 1 4.5712 × 10−6 8.1640 × 10−6 1.8986 × 10−5

t = 2 3.0990 × 10−6 1.3128 × 10−5 1.7427 × 10−5

t = 5 2.8425 × 10−6 6.2316 × 10−6 1.4689 × 10−5

Tables 4, 5 show the good accuracy and efficiency of proposed method for the solution
of this test problem.

5.4. Test problem 4. We consider the two dimensional Schrödinger equation with
Riesz space fractional derivatives

i
∂u(x, y, t)

∂t
=
∂αu(x, y, t)

∂|x|α
+
∂αu(x, y, t)

∂|y|α
+ u(x, y, t)|u(x, y, t)|2, 0 < x < 1,

with the initial condition

φ(x, y) = e

{
− (x−0.5)2

β − (y−0.5)2

β

}
.

We put β = 0.02 and as we see from FIGURE 3 the initial condition is a Gaussian
pulse with unit hight centered at x = 0.5 and y = 0.5. FIGURE 3 presents the initial
condition and numerical solutions of Test problem 4 with h = τ = 0.01 and different
values of α. Table 6 shows the errors Mn with h = τ = 0.01 and different values of t
and α. As we see the method preserves the discrete mass for different values of t and
α.
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Figure 3. Initial condition and numerical solutions of Test problem
4 with h = τ = 0.01 and different values of α.

Table 6

Errors Mn for Test problem 4 with h = τ = 0.01.

α t = 2 t = 5 t = 10

1.1 3.1613 × 10−5 3.2776 × 10−4 1.0398 × 10−3

1.4 3.7946 × 10−5 2.1293 × 10−4 8.1592 × 10−4

1.7 3.9043 × 10−5 2.5193 × 10−4 9.5731 × 10−4

1.9 3.6352 × 10−5 2.3467 × 10−4 8.9953 × 10−4

2 3.9184 × 10−5 2.3171 × 10−4 9.1790 × 10−4

6. Conclusion

We proposed a split-step finite difference method for the solution of Schrödinger
equation with the Riesz space fractional derivative. After discretization of the Riesz
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fractional derivative, we applied the Crank-Nicolson and a split-step methods to ob-
tain a numerical algorithm for this equation. We proved that the proposed method
is unconditionally stable and convergent. Numerical results corroborated the theo-
retical results and efficiency of proposed scheme. The proposed method can be easily
extended to the coupled and three-dimensional nonlinear Schrödinger equations with
the Riesz space fractional derivatives.
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