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Abstract In this paper, an approach based on statistical spline model (SSM) and colloca-
tion method is proposed to solve Volterra-Fredholm integral equations. The set of

collocation nodes is chosen so that the points yield minimal error in the nodal poly-

nomials. Under some standard assumptions, we establish the convergence property
of this approach. Numerical results on some problems are given to describe the intro-

duced method. A comparison between the numerical results and those obtained from

Lagrange and Taylor collocation methods demonstrates that the proposed method
generates an approximate solution with minimal error.
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1. Introduction

Integral equations are arisen in many real world applications in physics, biology and
engineering such as air foil theory, elastic contact problems and molecular conduction
[4, 9]. In recent years, integral equations have been a subject of extensive investigation
and several numerical methods for solving these problems have been presented.

In this paper, the following Volterra-Fredholm integral equations are considered

y(h(x)) = f(x) + λ1

∫ h(x)

a

k1(x, t)y(t)dt+ λ2

∫ b

a

k2(x, t)y(t)dt, (a ≤ x ≤ b), (1.1)

and

y(x) = f(x) + λ1

∫ h(x)

a

k1(x, t)y(t)dt+ λ2

∫ b

a

k2(x, t)y(h(t))dt, (a ≤ x ≤ b), (1.2)
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where f : [a, b] → R, h : [a, b] → [a,∞) and ki : [a, b] × [a, b] → R (i = 1, 2) are
the known functions, h is invertible, y : [a, b] → R is the unknown function, a and b
are constants and λ1 and λ2 are real numbers so that λ21 + λ22 6= 0 [10]. It is worth
mentioning that when h(x) is a linear polynomial, Eq. (1.2) is a functional integral
equation with proportional delay [3, 5].

Recently, several numerical methods based on Lagrange collocation method [9],
Taylor collocation method [10], least squares approximation [11] and Legendre col-
location method [7] have been proposed in order to solve these Volterra-Fredholm
integral equations.

The main contribution of this paper is to find an approximate solution of Eqs. (1.1)
and (1.2) by using the statistical spline model. Hence, in Section 2 we summarize the
relevant properties of statistical spline model. In Section 3, an algorithm along with its
convergence analysis is provided for approximating the solution of integral equations
(1.1) and (1.2). Finally, some numerical results are given to show the efficiency and
effectiveness of SSM in practice.

2. Statistical spline model

In general, the usual form of a spline function is given by

Sn,m(f ;x) =


pn1(x), x ∈ I1,
pn2

(x), x ∈ I2,
...

...
pnm

(x), x ∈ Im,

where pni
, i = 1, 2, . . . ,m, is a polynomial of degree ni ∈ Z+, n = max {ni}mi=1 and

{Ii}mi=1 are a specific partition of [a, b]. In usual form, {Ii}mi=1 are the predetermined
sub-intervals and one should obtain the corresponding criteria by referring to the
initial conditions of the problem.

In contrast to usual form, there is another type of spline function, such that instead
of considering {pni}

m
i=1 as the polynomials with unknown coefficients, the partition

{Ii}mi=1 are unknown and must be derived. In this type of splines, since the obtained
set D = {I1, I2, . . . , Im} is a specific partition of [a, b] so that Ii ∩ Ij = ∅ for i 6= j,

i, j = 1, 2, . . . ,m and
m⋃
j=1

Ij = [a, b], hence D can be considered as a probability space

in which the proportion of each sub-interval Ij is computed as

Pr(Ij) =
`(Ij)

`([a, b])
=
`(Ij)

b− a
, (2.1)

where ` is the length of each sub-interval. This type of spline function is called
statistical spline model (see [6]). In continuation, we briefly describe how to construct
the statistical spline model along with some further statistical concepts based on the
same notations in [6].

Without loss of generality, we suppose that n1 = n2 = . . . = nm = n. Let
x0 < x1 < . . . < xn be n + 1 distinct points of [a, b] and f ∈ Cn+1[a, b]. Then the
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Lagrange interpolation is given by

f(x) =

n∑
i=0

f(xi)Li(x;xi) + En+1(f ;x; {xi }),

where

Li(x;xi) =

n∏
j=0,j 6=i

x− xj
xi − xj

, i = 0, 1, . . . , n,

and

En+1(f ;x; {xi}) =
1

(n+ 1)!
f (n+1)(ξx)

n∏
j=0

(x− xj), a < ξx < b.

Clearly, the absolute error of the Lagrange interpolation is bounded above by

|En+1(f ;x; {xi})| ≤
Mn+1

(n+ 1)!

n∏
j=0

|x− xj |,

where Mn+1 = maxa≤x≤b
∣∣f (n+1)(x)

∣∣. Define

E∗n+1(f ;x; {xi}) =
Mn+1

(n+ 1)!

n∏
j=0

|x− xj |.

This error bound depends on two parameters including Mn+1 and
n∏
j=0

|x− xj |. The

first parameter is beyond control, but the second one is a polynomial of degree n +
1 that only depends on {xi}ni=0. Therefore, minimizing the aforementioned error
bound only depends on the distribution of the points {xi}ni=0. The key question that
naturally arises here is:

What is the best choice for the points {xi}ni=0 in order to minimize
n∏
j=0

|x− xj | as

much as possible?

The statistical spline model of degree n can be a solution to this question.
In order to construct this model, consider k monic polynomials of degree n+ 1 as

below

q̄n+1,i(x) =

n∏
j=0

(x− xj,i), for , i = 1, 2, . . . , k.

where {x0,i, x1,i, . . . , xn,i}, for i = 1, 2, . . . , k, are the sets of n + 1 distinct points in
[a, b]. Define

In,i,j := {x ∈ [a, b] : |q̄n+1,i(x)| < |q̄n+1,j(x)| , for i, j = 1, 2, . . . , k and i 6= j} .

Now, associated to the monic polynomial q̄n+1,i(x), i = 1, 2, . . . , k define the sub-
interval In,i = ∩kj=1In,i,j , for j 6= i. This definition would eventually lead to a unique
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partition D = {In,1, In,2, . . . , In,k} for the main interval [a, b]. After constructing D,
k-criterion statistical spline model is introduced by

Sn,k(f ;x) =



pn,1(x) =
n∑
j=0

f(xj,1)Lj(x;xj,1) x ∈ In,1,

pn,2(x) =
n∑
j=0

f(xj,2)Lj(x;xj,2) x ∈ In,2,

...
...

pn,k(x) =
n∑
j=0

f(xj,k)Lj(x;xj,k) x ∈ In,k.

(2.2)

It is worth to point out the specific partitionD for the main interval [a, b] is determined
so that the error bound for each criterion in different regions of [a, b] is minimized.

Now, as an important case, let us restrict ourselves to the case in which k = 3 and
[a, b] = [−1, 1]. In this case, the Chebyshev polynomials of the first and second kinds
and the monic type of Legendre polynomial are considered for 3-criterion statistical
spline model. We have the Chebyshev polynomials of the first kind

Tn(x) = cos(n arccos x) = 2n−1
[n/2]∑
k=0

(−[n/2])k(1/2− [(n+ 1)/2])k
(−n+ 1)kk!

xn−2k,

the Chebyshev polynomials of the second kind

Un(x) =
sin((n+ 1) arccos x)√

1− x2
= 2n

[n/2]∑
k=0

(−[n/2])k(1/2− [(n+ 1)/2])k
(−n)kk!

xn−2k,

and the monic type of Legendre polynomial

P̄n(x) =

[n/2]∑
k=0

(−[n/2])k(1/2− [(n+ 1)/2])k
(−n+ 1/2)kk!

xn−2k,

where (a)k =
k−1∏
i=0

(a+ i). These polynomials are the best selection of xi
,s for mini-

mizing the error bound in L∞, L1 and L2 spaces, respectively [1, 2, 6, 8]. Thus, for
constructing the statistical spline model of degree n, we choose

q̄n+1,1(x) = 2−(n+1)Tn+1(x),
q̄n+1,2(x) = P̄n+1(x),
q̄n+1,3(x) = 2−nUn+1(x)

and

{xj,l}nj=0 = {x ∈ [−1, 1] | q̄n+1,l(x) = 0} , l = 1, 2, 3. (2.3)

In order to determine the specific partition D = {In,1, In,2, In,3}, the following in-
equalities should be solved |q̄n+1,3(x)| ≤ |q̄n+1,1(x)| x ∈ αn ⊂ [−1, 1],

|q̄n+1,3(x)| ≤ |q̄n+1,2(x)| x ∈ βn ⊂ [−1, 1],
|q̄n+1,2(x)| ≤ |q̄n+1,1(x)| x ∈ γn ⊂ [−1, 1].
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For solving these inequalities numerically, an approach has been given in [6] for n =
0, 1, . . . , 6. Thus, the statistical spline model is given by

Sn,3(x) =


pn,1(x) =

n∑
i=0

f(xi,1)Li(x;xi,1) x ∈ In,1 = α′n ∩ γ′n,

pn,2(x) =
n∑
i=0

f(xi,2)Li(x;xi,2) x ∈ In,2 = β′n ∩ γn,

pn,3(x) =
n∑
i=0

f(xi,3)Li(x;xi,3) x ∈ In,3 = αn ∩ βn,

(2.4)

where α′n = [−1, 1]− αn (for example).

Remark 2.1. Note that, the interval [−1, 1] can be converted into any arbitrary
interval [a, b] by using the transformation x = b−a

2 t+ b+a
2 . Consequently, the specific

partition {In,1, In,2, In,3} and {xj,l}nj=0, l = 1, 2, 3 can be defined over any [a, b].

By referring to (2.1) we give some further statistical concepts into the definition of
statistical spline model.

Remark 2.2. The expected value, the moment of order i at the neighborhood of
any arbitrary polynomial p(x) and the variance of the statistical spline (2.2) are
respectively defined as follows [6]:

E (Sn,k(f ;x)) =
k∑
j=1

pn,j(x)Pr(In,j),

µi (Sn,k(f ;x); p(x)) =
k∑
j=1

(pn,j(x)− p(x))
i
Pr(In,j),

var (Sn,k(f ;x)) = µ2 (Sn,k(f ;x); 0)− E2 (Sn,k(f ;x)) .

In next section, an algorithm based on statistical spline model for finding an ap-
proximate solution of Eqs. (1.1) and (1.2) along with its convergence analysis are
provided.

3. Main results and description of the algorithm

We turn now to the construction of the numerical algorithm for solving integral
equation (1.1) numerically. Obviously the integral equation (1.2) could either be
solved using the same method. The main tool at our disposal is the ability to minimize
the error in the nodal polynomial. We begin by constructing statistical spline model,
on which the solution to (1.1) and (1.2) are sought, eligible.

For the sake of simplicity, we suppose that yj,i be the unknown approximate so-
lution of y(x) at xj,i for any j = 0, 1, . . . , n and i = 1, 2, . . . , k. In addition, let
{In,1, In,2, . . . , In,k} be the specific partition of [a, b] determined by the rule as given



CMDE Vol. 4, No. 1, 2016, pp. 30-42 35

in Section 2. Now, we define

Sn,k(y;x) =



n∑
j=0

yj,1Lj(x;xj,1) x ∈ In,1,
n∑
j=0

yj,2Lj(x;xj,2) x ∈ In,2
...

...
n∑
j=0

yj,kLj(x;xj,k) x ∈ In,k.

(3.1)

Then by substituting (3.1) into equations (1.1), we get

δn(x) = Sn,k(y, h(x))− f(x)− λ1
∫ h(x)

a

k1(x, t)Sn,k(y, t)dt

− λ2

∫ b

a

k2(x, t)Sn,k(y, t)dt. (3.2)

If Sn,k(y;x) = y(x), then Sn,k(y;x) is the exact solution of (1.1). Otherwise, we find
yj,i such that δn(xj,i) = 0 for collocation points xj,i, j = 0, 1, . . . , n and i = 1, 2, . . . , k,
which are defined in Section 2.

Remark 3.1. For integral equation (1.2), the relation (3.2) changes to the following

δn(x) = Sn,k(y, x)− f(x)− λ1
∫ h(x)

a

k1(x, t)Sn,k(y, t)dt

− λ2

∫ h(b)

h(a)

1

h′(h−1(u))
k2(x, h−1(u))Sn,k(y, u)du, (3.3)

where u = h(t).

Remark 3.2. According to Section 2, since the choice of {x0,i, x1,i, . . . , xn,i}, for
i = 1, 2, . . . , k are arbitrary, therefore some of them can be repeated in each criterion.
Suppose that N be the number of distinct collocation points xj,i for j = 0, 1, . . . , n
and i = 1, 2, . . . , k. It is obvious that, if xs,` = xj,i, then we put ys,` = yj,i.

Consequently, we derive a linear system of equations of order N . By solving this
linear system of equations, N unknown coefficients yj,i for j = 0, 1, . . . , n and i =
1, 2, . . . , k are obtained.

Now we establish the convergence property of the proposed computational algo-
rithm.

Theorem 3.3. Let y(x) be the exact solution of (1.1) for h(x) = x and Sn,k(y;x) be
its approximate solution which is obtained from the proposed method. Also, suppose
that f is a function defined on [a, b] and k1(x, t) and k2(x, t) are sufficiently smooth
functions on [a, b]× [a, b]. Then

‖y(x)− Sn,k(y;x)‖∞ ≤
M.Mn+1

(n+ 1)!
+ Γ max

1≤i≤k
{‖Ei‖∞} ,
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where M = max
i=1,2,...,k

{
max
x∈In,i

∣∣∣∣∣ n∏j=0

(x− aj,i)

∣∣∣∣∣
}

, Ei = (y(a0,i)− y0,i, . . . , y(an,i)− yn,i)T ,

Γ = max
0≤i≤n

{γi} and γi = max
0≤j≤n

{Lj(x; aj,i)}.

Proof. Let

S∗n,k(y;x) =



n∑
j=0

y(aj,1)Lj(x; aj,1) x ∈ In,1,
n∑
j=0

y(aj,2)Lj(x; aj,2) x ∈ In,2
...

...
n∑
j=0

y(aj,1)Lj(x; aj,k) x ∈ In,k,

(3.4)

be the exact solution of Eq. (1.1) that is obtained from the proposed computational
algorithm. Thus, we have

‖ y(x)− Sn,k(y;x) ‖∞=‖ y(x)− S∗n,k(y;x) + S∗n,k(y;x)− Sn,k(y;x) ‖∞
≤‖ y(x)− S∗n,k(y;x) ‖∞ + ‖ S∗n,k(y;x)− Sn,k(y;x) ‖∞ .

(3.5)

Using the interpolation error formula, we have

∣∣y(x)− S∗n,k(y;x)
∣∣ ≤



Mn+1

(n+1)!

∣∣∣∣∣ n∏j=0

(x− aj,1)

∣∣∣∣∣ x ∈ In,1,

Mn+1

(n+1)!

∣∣∣∣∣ n∏j=0

(x− aj,2)

∣∣∣∣∣ x ∈ In,2,

...
...

Mn+1

(n+1)!

∣∣∣∣∣ n∏j=0

(x− aj,k)

∣∣∣∣∣ x ∈ In,k.

Suppose that M = max
i=1,2,...,k

{
max
x∈In,i

∣∣∣∣∣ n∏j=0

(x− aj,i)

∣∣∣∣∣
}

and noting that M is the optimal

error bound with respect to other Lagrange collocation methods, one may write∥∥y(x)− S∗n,k(y;x)
∥∥
∞ ≤

M.Mn+1

(n+ 1)!
. (3.6)

On the other hand, from (3.1) and (3.4) we obtain:

S∗n,k(y;x)− Sn,k(y;x) =



n∑
j=0

(y(aj,1)− yj,1)Lj(x; aj,1) = ET1 .L1 x ∈ In,1,
n∑
j=0

(y(aj,2)− yj,2)Lj(x; aj,2) = ET2 .L2 x ∈ In,2,

...
...

n∑
j=0

(y(aj,k)− yj,k)Lj(x; aj,k) = ETk .Lk x ∈ In,k,
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where Ei = (y(a0,i)− y0,i, . . . , y(an,i)− yn,i)T and Li = (L0(x; a1,i), . . . , Ln(x; an,i))
T

for i = 1, 2, . . . , k. Moreover

max
a≤x≤b

∣∣S∗n,k(y;x)− Sn,k(y;x)
∣∣ = max

1≤i≤k

{
max
x∈In,i

∣∣S∗n,k(y;x)− Sn,k(y;x)
∣∣} .

Therefore, for any x ∈ In,i, we get∣∣S∗n,k(y;x)− Sn,k(y;x)
∣∣ =

∣∣ETi .Li∣∣ ≤ ‖Li‖∞‖Ei‖∞ = γi‖Ei‖∞,

where γi = max
0≤j≤n

{Lj(x; aj,i)}. So

max
a≤x≤b

∣∣S∗n,k(y;x)− Sn,k(y;x)
∣∣ ≤ max

1≤i≤k
{γi‖Ei‖∞} ≤ Γ max

1≤i≤k
{‖Ei‖∞} , (3.7)

where Γ = max
0≤i≤n

{γi}. Now substituting the error bounds (3.6) and (3.7) into (3.5)

completes the proof of the theorem. �

Similar to [10] we can state the following theorems for Eqs. (1.1) and (1.2).

Theorem 3.4. Let y(x) and y(h(x)) be the exact solutions of (1.1), Sn,k(y;x) and
Sn,k(y;h(x)) be their approximate solutions which are obtained from the proposed
algorithm. Then

‖y(h(x))− Sn,k(y;h(x))‖∞ ≤M1‖y(x)− Sn,k(y;x)‖∞,

where M1 = sup
a≤x≤b

(
|λ1|

∫ b
a
|k1(x, t)|dt+ |λ2|

∫ b
a
|k2(x, t)|dt

)
.

Proof. According to [10], let us consider

y(h(x)) = f(x) + λ1

∫ h(x)

a

k1(x, t)y(t)dt+ λ2

∫ b

a

k2(x, y)y(t)dt,

Sn,k(y;h(x)) = f(x) + λ1

∫ h(x)

a

k1(x, t)Sn,k(y; t)dt+ λ2

∫ b

a

k2(x, y)Sn,k(y; t)dt.

Hence

y (h(x))− Sn,k (y;h(x))

= λ1

∫ h(x)

a

k1(x, t) (y(t)− Sn,k(y; t)) dt+ λ2

∫ b

a

k2(x, t) (y(t)− Sn,k(y; t)) dt.

Therefore

|y(h(x))− Sn,k(y;h(x))|

≤ |λ1|
∫ h(x)

a

|k1(x, t)| |y(t)− Sn,k(y; t)| dt+ |λ2|
∫ b

a

|k2(x, t)| |y(t)− Sn,k(y; t)| dt

≤ |λ1| ‖y(t)− Sn,k(y; t)‖∞
∫ h(x)

a

|k1(x, t)| dt+ |λ2| ‖y(t)− Sn,k(y; t)‖∞
∫ b

a

|k2(x, t)| dt

≤M1‖y(t)− Sn,k(y; t)‖∞ .

�
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Theorem 3.5. Let y(x) and y(h(x)) be the exact solutions of (1.2), Sn,k(y;x) and
Sn,k(y;h(x)) be their approximate solutions which are obtained from the proposed
algorithm. Then

‖y(x)− Sn,k(y;x)‖∞ ≤M2‖y(h(x))− Sn,k(y;h(x))‖∞,

where M2 = sup
a≤x≤b

(
|λ2|

∫ b
a
|k2(x,t)|dt

1−|λ1|
∫ b
a
|k1(x,t)|dt

)
.

Proof. This inequality can be easily proved by using similar approach to the proof of
Theorem 3.3 in [10]. �

4. Numerical examples

In this section, we consider three examples as given in [10] to present the priority
and efficiency of SSM with respect to Lagrange collocation method (LCM) and Taylor
collocation method (TCM). 3-criterion statistical spline models of degree 2, 3 and 5
are applied to these examples. In this model, Chebyshev polynomials of the first and
second kinds and the monic type of Legendre polynomials, which have been presented
in Section 2, are employed. Due to (2.4) and Remark 2.1, we have

S2,3(y;x) =



2∑
i=0

yi,1Li(x;xi,1), I1 = [0, 0.089] ∪ [0.910, 1] ,

2∑
i=0

yi,2Li(x;xi,2), I2 = [0.089, 0.129] ∪ [0.870, 0.910] ,

2∑
i=0

yi,3Li(x;xi,3), I3 = [0.129, 0.870] ,

S3,3(y;x) =



3∑
i=0

yi,1Li(x;xi,1),
I1=[0,0.058] ∪ [0.250,0.321] ∪ [0.678,0.750],
∪ [0.941,1]

3∑
i=0

yi,2Li(x;xi,2),
I2=[0.058,0.078] ∪ [0.321,0.334] ∪ [0.665,0.678],
∪ [0.921,0.941]

3∑
i=0

yi,3Li(x;xi,3), I3 = [0.078, 0.250] ∪ [0.334, 0.665] ∪ [0.750, 0.921] ,

and

S5,3(y;x) =



5∑
i=0

yi,1L(x;xi,1),
I1=[0,0.031] ∪ [0.095,0.164] ∪ [0.345,0.377] ∪ [0.621,0.654]
∪ [0.835,0.904] ∪ [0.968,1],

5∑
i=0

yi,2L(x;xi,2),
I2=[0.031,0.036] ∪ [0.166,0.171] ∪ [0.379,0.381] ∪ [0.618,0.625]
∪ [0.828,0.833] ∪ [0.963,0.968],

5∑
i=0

yi,3L(x;xi,3),
I3= [0.036,0.095] ∪ [0.164,0.166] ∪ [0.171,0.345] ∪ [0.377,0.379] ∪ [0.381,0.618].
∪ [0.620,0.621] ∪ [0.654,0.828] ∪ [0.833,0.835] ∪ [0.904,0.963].

Using (2.3), we consider the collocation points in the following form

{xj,l}nj=0 = {t ∈ [0, 1] | q̄n+1,l(2t− 1) = 0} , l = 1, 2, 3.

Example 4.1. Consider the problem

y(x) = f(x) +

∫ x

0

et cos(x)y(t)dt−
∫ 1

0

et sin(x)y(t)dt, (4.1)
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Figure 1. The logarithm of absolute error of SSM for solving (4.1). • and ?
indicate the approximate solutions for n=2 and n=5, respectively.

where f(x) = ex− 1
2 cos(x)(e2x−1)+ 1

2 sin(x)(e2−1). The exact solution is y(x) = ex.
Table 1 shows the L2−norm error of SSM, LCM and TCM. As observed, the

obtained error for SSM is significantly less than those obtained for the other two
methods. The logarithm of absolute error for SSM is shown in Figure 1.

Table 1. L2−norm error using introduced method.

n SSM LCM TCM
2 5.6846× 10−4 1.0589× 10−2 4.5148× 10−2

5 4.63035× 10−8 1.1211× 10−6 2.9791× 10−4

Example 4.2. Consider the problem

y(h(x)) = f(x) +

∫ h(x)

0

ex−ty(t)dt−
∫ 1

0

ex+ty(t)dt, (4.2)

where f(x) = h2(x)− 4ex + ex+1 + ex−h(x)(h2(x) + 2h(x) + 2). Obviously, y(x) = x2

is the exact solution of this equation.
Since the exact solution is a quadratic polynomial, the interpolation error formula

will be equal to zero, when we put n = 2 or n = 3. Thus, we can obtain the same
numerical results as Table 2 in [10]. Tables 2, 3 and 4 show the L2−norm error of
SSM, LCM and TCM for h(x) = x, x2 and sin(x), respectively. FIGURE 2 displays
the logarithm of absolute error for SSM with h(x) = x2.

Table 2. L2−norm error using introduced method with h(x) = x.

n SSM LCM TCM
2 1.2993× 10−15 1.5906× 10−15 1.5022× 10−15

3 1.1754× 10−15 5.7088× 10−15 1.6121× 10−15

Example 4.3. Consider the following integral equation

y(x) = f(x) +

∫ h(x)

0

ex+ty(t)dt−
∫ 1

0

ex+h(t)y(h(t))dt, (4.3)
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Table 3. L2−norm error using introduced method with h(x) = x2.

n SSM LCM TCM
2 6.8823× 10−16 1.3986× 10−15 2.7804× 10−15

3 8.2785× 10−15 6.6122× 10−15 2.8216× 10−15

Table 4. L2−norm error using introduced method with h(x) = sin(x).

n SSM LCM TCM
2 1.1840× 10−15 2.7132× 10−15 1.5019× 10−15

3 8.4120× 10−15 1.4401× 10−14 1.6304× 10−15

Figure 2. The logarithm of absolute error of SSM for solving (4.2). For
h(x) = x2, • and ? indicate the approximate solutions for n = 2 and n = 5,

respectively.

where f(x) = e−x − ex(h(x)− 1). The exact solution is y(x) = e−x.
Tables 5, 6 and 7 show the L2−norm error of SSM, LCM and TCM for h(x) = x, x

2
and ln(x + 1), respectively. As observed, the obtained error for SSM is much better
than those obtained for the other two methods. In FIGURE 3, we draw the logarithm
of absolute error for SSM with h(x) = ln(x+ 1).

Table 5. L2−norm error using introduced method with h(x) = x.

n SSM LCM TCM
2 3.8993× 10−4 3.6864× 10−3 2.2354× 10−2

5 3.6560× 10−8 4.0319× 10−7 1.4135× 10−4

5. Conclusion

In this paper, using statistical spline model an approximate solution is derived
to some Volterra-Fredholm integral equations. Statistical spline model is an alge-
braic method based on solving some inequalities of polynomial type to control the
error value of interpolation formulas whose residue depends on a monic polynomial.



CMDE Vol. 4, No. 1, 2016, pp. 30-42 41

Table 6. L2−norm error using introduced method with h(x) = x
2
.

n SSM LCM TCM
2 3.8600× 10−4 4.1529× 10−3 4.6564× 10−2

5 3.1415× 10−8 3.7054× 10−7 3.3616× 10−4

Table 7. L2−norm error using introduced method with h(x) = ln(x+ 1).

n SSM LCM TCM
2 3.1866× 10−4 3.2739× 10−3 3.5942× 10−2

5 2.2024× 10−8 4.3023× 10−7 3.0506× 10−4

Figure 3. The logarithm of absolute error of SSM for solving (4.3). For

h(x) = ln(x+1), • and ? indicate the approximate solutions for n = 2 and n = 5,

respectively.

Hence, coupling the statistical spline model and collocation method cause an efficient
numerical method to solve integral equations. Error analysis and numerical examples
revealed the efficiency of the proposed method. The method can also be extended to
solve integral equations of first kind or some inverse parabolic problems.
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