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Abstract In this paper, a new numerical method for solving fractional optimal control problems
(FOCPs) is presented. The fractional derivative in the dynamic system is described
in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline

multiwavelets approximations. The properties of biorthogonal multiwavelets are first
given. The operational matrix of fractional Riemann-Lioville integration and multi-
plication are then utilized to reduce the given optimization problem to the system of
algebraic equations. In order to save memory requirement and computational time,

a threshold procedure is applied to obtain spare algebraic equations. Illustrative
examples are provided to confirm the applicability of the new method.
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1. Introduction

In the present paper, we focus on optimal control problems with the quadratic
performance index and the dynamic system with the Caputo fractional derivative as
follows

Min J(x, u) =
1

2

∫ t1

t0

[q(t)x2(t) + r(t)u2(t)]dt, (1.1)

C
t0D

α
t x(t) = a(t)x(t) + b(t)u(t), (1.2)

x(t0) = x0, (1.3)

where q(t) ≥ 0, r(t) > 0 and b(t) ̸= 0. The behavior of many real-world physical
phenomena is governed by fractional differential equations (FDEs) [24]. FDEs are
generalizations of ordinary differential equations to an arbitrary (non-integer) order.
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When these equations are used in conjunction with a performance index and a set of
initial conditions, they lead to FOCPs. Fractional optimal control theory is a very
new area in mathematics and the number of publications on this subject is limited.

Wavelet theory is a relatively new and an emerging area in mathematical research
[20]. It has been applied in a wide range of engineering disciplines; particularly,
wavelets are very successfully used in signal analysis for wave form representations
and segmentations, time–frequency analysis and fast algorithms for easy implemen-
tation [13]. Wavelets permit the accurate representation of a variety of functions and
operators. Moreover, wavelets establish a connection with fast numerical algorithms
[12].

The main aim of this paper is to employ biorthogonal cubic Hermite spline mul-
tiwavelets on the interval [0, 1] as the interpolating functions to achieve high perfor-
mance computations of FOCPs. Our method consists of reducing the FOCP to a set
of algebraic equations. We approximate the fractional state rate C

t0D
α
t x(t) and con-

trol variable u(t) with biorthogonal multiwavelets with unknown coefficients. Then
the operational matrices of the Riemann–Liouville fractional integration and product
are utilized to achieve a linear system of algebraic equation, instead of performance
index (1.1) and dynamical system (1.2) in terms of unknown coefficients. Finally, the
method of constrained extremum is applied which consists of adjoining the constraint
equations derived from given dynamical system to the performance index by a set
of undetermined Lagrange multipliers. As a result, the necessary conditions of opti-
mality are derived as a system of algebraic equations in the unknown coefficients of
C
t0D

α
t x(t) and u(t) and the Lagrange multipliers. These coefficients are determined in

such a way that the necessary conditions for extremization are imposed. Generally
the use of biorthogonal cubic Hermite spline multiwavelets appears to be attractive
since these functions possess several useful properties, such as small support, exact
representation of polynomials to degree 3, Hermite interpolatory nature and the abil-
ity to represent functions at different levels of resolution, these considerations reduce
the computations. The main advantage of the new method is that with the use of
threshold procedure for biorthogonal multiwavelets, we obtain spare algebraic equa-
tion and this is computationally very attractive and reduces CPU time.
Some numerical simulations for FOCPs with Riemann–Liouville fractional derivative
can be found in [4, 5, 11, 22, 26]. Also there exist numerical simulations for FOCPs
with the Caputo fractional derivative such as [6, 7, 27], where the author has solved
the problem by solving the Hamiltonian equations approximately. Lotfi et. al. [22]
and Keshavarz et. al [18] have solved the linear quadratic FOCP directly without
using Hamiltonian formula. Also we refer the interested reader in fractional opti-
mization problems to see [1, 2, 3, 8, 9, 10, 11, 12, 14, 19, 21, 23] for some recent works
in the subject.

The outline of this paper is as follows. In the next section, we describe some nec-
essary basic definitions of the fractional calculus theory required for our subsequent
development. In Section 3, we describe many desired properties of biorthogonal Her-
mite cubic spline multiwavelets on [0, 1]. In Section 4, we apply biorthogonal mul-
tiwavelets on [0, 1] to solve equations (1.1)-(1.3). In Section 5, two example have
been presented to demonstrate the accuracy of our proposed method, in comparison
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with the numerical solutions obtained by [18, 22]. Finally, Section 6 completes this
paper with a brief conclusion. Note that we have computed the numerical results by
MAPLE programming.

2. Basic definition on fractional calculus

We give some basic definitions and properties of the fractional calculus theory
which are used further in this paper.

Definition 2.1. The Riemann–Liouville fractional integral of order α > 0 of a func-
tion f is defined as follows [25]

0I
α
t f(t) =


1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, α > 0,

f(t), α = 0.

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function f is
defined as follows

C
0 D

α
t f(t) =


1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 d

n

dτn
f(τ)dτ, n− 1 < α < n,

f (n)(t), α = n.

where n is a positive integer.

For Riemann–Liouville fractional integration and the Caputo fractional derivative
we have the following properties [25].

(1) For real values of α > 0, the Caputo fractional derivative provides the opera-
tion inverse to the Riemann–Liouville integration from the left

C
0 D

α
t 0I

α
t f(t) = f(t), α > 0, f(t) ∈ C[0, 1]. (2.1)

(2) if f(t) ∈ C⌈α⌉[0, 1], then

0I
α
t

C
0 D

α
t f(t) = f(t)−

⌈α⌉−1∑
j=0

tj

j!

(
dj

dtj
f

)
(0), n− 1 < α ≤ n, (2.2)

where C⌈α⌉[0, 1] is the space of ⌈α⌉ times continuously differentiable functions.

3. Biorthogonal Hermite cubic spline multiwavelets

The widely used Hermite cubic splines ϕ = (ϕ1, ϕ2)T are given by [16]

ϕ1(x) := (1− 3x2 − 2x3)χ[−1,0] + (1− 3x2 + 2x3)χ[0,1],

ϕ2(x) := (x+ 2x2 + x3)χ[−1,0] + (x− 2x2 + x3)χ[0,1]. (3.1)

Note that ϕ ∈ (C1(R))2 is a Hermite interpolant of order 1 satisfying

ϕ1(k) = δ(k), [ϕ1]′(k) = 0, ϕ2(k) = 0, [ϕ2]′(k) = δ(k) ∀k ∈ Z, (3.2)
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where δ is the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Z\{0}.
Moreover, the Hermite cubic spline vector-valued function ϕ is a refinable vector
function satisfying

ϕ(x) = 2
∑
k∈Z

a(k)ϕ(2x− k), x ∈ R, (3.3)

with the following matrix-valued mask:

a(−1) =

[
1
4

3
8

− 1
16 − 1

16

]
, a(0) =

[
1
2 0

0 1
4

]
, a(1) =

[
1
4 − 3

8

1
16 − 1

16

]
(3.4)

and a(k) = 0 for all k ∈ Z\{−1, 0, 1}. Note that ϕ1 and ϕ2 have symmetry: ϕ1(x) =
ϕ1(−x) and ϕ2(x) = −ϕ2(−x) for all x ∈ R.
Define ψ = (ψ1, ψ2)

T as follows [17]

ψ1(x) = ϕ1(2x)− 1
2 (ϕ

1(2x+ 1) + ϕ1(2x− 1))− 23
12 (ϕ

2(2x+ 1)− ϕ2(2x− 1)),

ψ2(x) = 37
22ϕ

2(2x) + 91
88 (ϕ

2(2x+ 1) + ϕ2(2x− 1)) + 1
8 (ϕ

1(2x+ 1)− ϕ1(2x− 1)).

(3.5)

Note that ϕ1, ϕ2 and ψ1, ψ2 are supported inside [−1, 1]. The functions ϕ1, ψ1 are
symmetric about the origin, while ϕ2, ψ2 are antisymmetric about the origin. More-
over, both ψ1, ψ2 have at least order 2 vanishing moments. See Figure 1 for the graphs
of the refinable vector function ϕ and wavelet vector function ψ.

Figure 1. The graphs of the biorthogonal wavelet ({ϕ;ψ}) for L2(R),
where ϕ = (ϕ1, ϕ2)T is the spline Hermite refinable interpolant and ψ =
(ψ1, ψ2)T is the wavelet vector function.
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3.1. Function Approximation. In this section we consider the approximation prop-

erties of wavelet bases on the interval [0, 1]. A Riesz wavelet basis BJ0,J = Φ⃗J0 ∪
∪J−1
j=J0

Ψ⃗j for L2([0, 1]) is given by

Φ⃗j =
[√

2ϕ12j ;0|[0,1], ϕ
1
2j ;1, ϕ

2
2j ;1, . . . , ϕ

1
2j ;2j−1, ϕ

2
2j ;2j−1,

√
2ϕ12j ;2j |[0,1]

]T
, (3.6)

Ψ⃗j =
[√

2ψ1
2j ;0|[0,1], ψ

1
2j ;1, ψ

2
2j ;1, . . . , ψ

1
2j ;2j−1, ψ

2
2j ;2j−1,

√
2ψ1

2j ;2j |[0,1]
]T
. (3.7)

Define Vj and Wj to be the linear spaces spanned by the entries of Φ⃗j and Ψ⃗j ,
respectively. For these spaces we have

Vj−1 ⊆ Vj and Vj = Vj−1+Wj−1 = Vj0 +Wj0 + · · ·+Wj−1, ∀ 0 ≤ j0 < j ∈ N,

where the above + stands for a direct sum of finite dimensional spaces. Note that

both the set formed by all the entries in Φ⃗j and the set formed by all the entries in

Φ⃗j0 , Ψ⃗j0 , . . . , Ψ⃗j−1 are bases for the finite dimensional space Vj .
A function f(x) on [0, 1] may be represented by the corresponding multiwavelet func-
tions as

f(x) ≈ PJf(x) = c1J0;0

√
2ϕ1

2J0 ;0
|[0,1] + c1

J0;2J0

√
2ϕ1

2J0 ;2J0
|[0,1] +

∑2
ℓ=1

∑2J0−1
k=1 cℓJ0;k

ϕℓ
2J0 ;k

+

∑J−1
j=J0

(
d1j;0

√
2ϕ12j ;0|[0,1] + d1j;2j

√
2ϕ12j ;2j |[0,1] +

∑2
ℓ=1

∑2j−1
k=1 dℓj;kϕ

ℓ
2j ;k

)
,

(3.8)

where

cℓJ0;k =

∫ 1

0

f(x)ϕ̃ℓ2J0 ;k(x)dx, ℓ = 1, 2, k = 0, . . . , 2J0 , (3.9)

dℓj;k =

∫ 1

0

f(x)ψ̃ℓ
2j ;k(x)dx, ℓ = 1, 2, k = 0, . . . , 2j , j = J0, . . . , J− 1,

(3.10)

We refer to PJ as the projection to f onto VJ.

Theorem 3.1. Suppose that a function f : [0, 1] → R is in C4[0, 1]. Then the operator
PJ maps the function f into space VJ with error order as follows

eJ(x) := |f(x)− PJ(x)| = O(2−J).

Proof. See [14]. �

Here, to avoid computing of the integral obtained in Eq. (3.9) and Eq. (3.10) we
present the translation matrix G by considering

BJ0,J(x) = GΦJ(x), (3.11)

where G is a (M ×M) matrix with M = 2J+1, which can be calculated as follows.
Using Eq. (3.3) gives

Φk = βkΦk+1, (3.12)
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where βk, k = J0, . . . , J − 1 is a (2k+1 × 2k+2) matrix, and the entries of βk are the
coefficients of the mask matrices given in (3.4). From (3.5) we have

Ψk = θkΦk+1, (3.13)

where θk, k = J0, . . . , J − 1 is a (2k+1 × 2k+2) matrix, and the entries of θk are
the coefficients in the refinement equation for multiwavelet given in (3.4). Using Eq.
(3.12) and Eq. (3.13) we get

G =



βJ0+1 × βJ0+2 × ...× βJ
−−−−−−−−−−
θJ0+1 × βJ0+2 × ...× βJ
−−−−−−−−−−

...
θJ−2 × βJ−1 ××βJ

−−−−−−−−−−
θJ−1 × βJ

−−−−−−−−−−
θJ


. (3.14)

3.2. The Operational matrix of integration. Using the Hermite interpolation

property of ϕ, we can approximate the functions
∫ t

0
ϕi(2Jx− l)dx for l = 1, . . . 2J − 1

and
∫ t

0

√
2ϕ1(2Jx− l′)|[0,1]dx for l′ = 0, 2J as follows

∫ t

0
ϕi(2Jx− l)dx =

∑2J−1
k=1

[(∫ k/2J

0
ϕi(2Jx− l)dx

)
ϕ12J;k(t) +

1
2J
ϕi(k − l)ϕ22J;k(t)

]
+

1√
2

(∫ 1

0
ϕ1(2Jx− 2J)|[0,1]dx

)√
2ϕ12J;2J(t)|[0,1], i = 1, 2, l = 1, . . . , 2J − 1,

(3.15)

∫ t

0

√
2ϕ1(2Jx− l′)|[0,1]dx =

∑2J−1
k=1

[(√
2
∫ k/2J

0
ϕi(2Jx− l′)dx

)
ϕ12J;k(t) +

√
2

2J
ϕi(k − l′)ϕ22J;k(t)

]
+

(∫ 1

0
ϕ1(2Jx− 2J)|[0,1]dx

)√
2ϕ12J;2J(t)|[0,1], l′ = 0, 2J.

(3.16)

Then, the integration of vector Φ⃗J(x) given in (3.6) can be expressed as∫ t

0

Φ⃗J(x)dx ≈ I1Φ⃗J(x), (3.17)
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where I1 is a M ×M operational matrix of ingration. It can be shown that

I1 =
1

2J



0 L L · · · · · · L
1

2
H S · · · · · · S L

H S · · · S L
. . .

. . .
...

...

H S
...

H L
1

2


, (3.18)

H =

 1

2
1

− 1

12
0

 , S =

[
1 0
0 0

]
, L =

[
1

2

√
2 0

]
.

3.3. The Operational matrix of fractional integration. The Riemann–Liouville
fractional integration of the vector given in Eq. (3.6) can be expressed by

0I
α
t Φ⃗J(x) ≈ IαΦ⃗J(x), (3.19)

where Iα is theM×M Riemann-Liouville fractional operational matrix of integration
for Hermite cubic splines.
Using a similar method given in the last subsection, this matrix can be determined
as follows

Iα =



0 Ω Ω1 · · · · · · Ω2J−2 Ω
Υ Λ1 Λ2 · · · Λ2J−2 ∆1

Υ Λ1 · · · Λ2J−3 ∆2

. . .
. . .

...
...

Υ Λ1

...
Υ ∆2J−1

∆


, (3.20)

where

Ω = 2−Jα+ 1
2

[
α(α2 + 6α+ 5)

Γ(α+ 4)

α(α2 + 3α− 4)

Γ(α+ 3)

]
,

Ωi−1 = 2−Jα+ 1
2

[
ηi−1
1,1 ηi−1

1,2

]
, i = 2 . . . , 2J − 1,

ηi−1
1,1 := − 2−Jα+ 1

2

Γ(α+ 4)
[iα(−12i3 + (6α+ 18)i2 − α3 − 6α2 − 11α− 6) +

(i− 1)α(12i3 + (6α− 18)i2 − 12αi+ 6α+ 6)],

ηi−1
1,2 := − 2−Jα+ 1

2

Γ(α+ 4)i
[iα(12(α+ 3)i3 − 6(6 + α2 + 5α)i2 + 11α2 + 6α3 + 6α+ α4) +

(i− 1)α(−12(α+ 3)i3 − 6(α2 + α− 6) + 6(α2 + 3α)i)],



106 E. ASHPAZZADEH AND M. LAKESTANI

Υ = 2−Jα+1


3(α+ 1)

Γ(α+ 4)

3α

Γ(α+ 3)

− α

Γ(α+ 4)
− (α− 1)

Γ(α+ 3)

 ,

Λ1 = 2−Jα+2


6(2α(α− 1) + 1)

Γ(α+ 4)

3(2α(α− 2) + 2)

Γ(α+ 3)

−2(2α(α− 3) + α+ 3)

Γ(α+ 4)
− (2α(α− 4) + 2α+ 4)

Γ(α+ 3)

 ,

Λi =

 λi1,1 λi1,2

λi2,1 λi2,2

 , i = 1, . . . , 2J − 2,

λi
1,1 := −6× 2(−Jα)

Γ(α+ 4)
[iα+2(2i− (α+ 3)) + (i− 1)α(−4i3 + 2i2 − 12i+ 4) +

(i− 2)α(2i3 + (α− 9)i2 − 4(α− 3)i+ 4α− 4)],

λi
1,2 := −6× 2(−Jα)

Γ(α+ 3)

[
iα(2i2 − (α+ 2)i) + (i− 1)α(4i2 + 8i− 4) + (i− 2)α(2i2 + (α− 6)i− 2α+ 4)

]
,

λi
2,1 := − 2(Jα+1)

Γ(α+ 4)
[iα+2(−3i+ α+ 3) + (i− 1)α((12 + 4α)i2 − 8i(α+ 3) + 4α+ 12) +

(i− 2)α(3i3 − (15− α)i2 − 4(α− 6)i+ 4α− 12)],

λi
2,2 := − 2(Jα+1)

Γ(α+ 3)
[iα(−3i2 + (α+ 2)i) + (i− 1)α((8 + 4α)i− 8− 4α) +

(i− 2)α(3i2 + (α− 10)i− 2α+ 8)],

∆ :=
6× 2−Jα(α+ 1)

Γ(α+ 4)
,

Ω :=
1

Γ(α+ 4)
[(1− 2−J)α(−12× 23J + (18− 6α)22J +

12α× 2J − 6α− 6) + 12× 23J − (18 + 6α)× 22J + α3 + 6α2 + 11α+ 6],

Now, for simplicity without loss of generality in operational matrix of integration given in
(3.20), we consider the matrices ∆i, i = 1, . . . , 2J − 1 for case J = 2. It can be shown that

∆i =
[
µi
1,1 µi

1,2

]
, i = 1, . . . , 2J − 1,
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µi
1,1 := − 3

√
2

Γ(α+ 4)
[( 3

4
− 1

4
i)α(−2i3 + (α+ 21)i2 − 6(α+ 12)i+ 9α+ 81)+

(1− 1
4
i)α(4i3 − 48i2 + 192i− 256)+

( 5
4
− 1

4
i)α(−2i3 + (27− α)i2 − 10(12− α)i− 25α+ 175)],

µi
1,2 := −

√
2

Γ(α+ 4)
[( 3

4
− 1

4
i)α(−3i3 + (α+ 30)i2 − (6α+ 99)i+ 9α+ 108)+

(1− 1
4
i)α(4(α+ 3)i2 − 32(α+ 3)i+ 192 + 64α)+

( 5
4
− 1

4
i)α(3i3 + (α− 42)i2 + (−10α+ 195)i+ 25α− 300)].

3.4. The operational matrix of product. The following property of the product of two
multiscaling function vectors will also be used. Let

Φ⃗J(x)Φ⃗
T
J (x)Z = Z̃Φ⃗J(x), (3.21)

where

Z =
[
z1J;0, z

1
J;1, z

2
J;1, . . . , z

1
J;2J−1, z

2
J;2J−1, z

1
J;2J

]T
,

is an M × 1 vector, and Z̃ is a M ×M operational matrix of product given by

Z̃ =



√
2z1J;0

z1J;1 z2J;1

z1J;1
z1J;2 z2J;2

z1J;2
. . .

z1J;2J−1 z1J;2J−1

z2J;2J−1 √
2z1J;2J


. (3.22)

4. Solving the fractional optimal control problems

In this section, we consider the FOCP given by

Min J(x, u) =
1

2

∫ 1

0

[q(t)x2(t) + r(t)u2(t)]dt, (4.1)

C
0 D

α
t x(t) = a(t)x(t) + b(t)u(t), (4.2)

x(0) = x0. (4.3)

The fractional state rate C
0 D

α
t x(t) and control variable u(t) can be approximated by biorthog-

onal multiwavelets as

C
0 D

α
0 x(t) ≈ XTΦ⃗J(t), (4.4)

u(t) ≈ UTΦ⃗J(t), (4.5)

where X and U are unknown M × 1 vectors. Similarly we have

x0 ≈ XT
0 Φ⃗J(t), (4.6)
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where X0 isM×1 vector of orderM×1. Using Eqs. (2.2) and (3.19), x(t) can be represented
as

x(t) =0 I
α
t

C
0 D

α
t x(t) + x(0) ≈ (XTIα +XT

0 )Φ⃗J(t). (4.7)

We now expand a(t), b(t), q(t) and r(t) by biorthogonal multiwavelets as

a(t) ≈ ATΦ⃗J(t), b(t) ≈ BTΦ⃗J(t), (4.8)

q(t) ≈ QTΦ⃗J(t), r(t) ≈ RTΦ⃗J(t), (4.9)

where A, B, Q and R are known vectors of order M × 1. Then we have

a(t)x(t) ≈ (XTIα +XT
0 )Φ⃗J(t)Φ⃗

T
J (t)A ≈ (XTIα +XT

0 )ÃΦ⃗J(t), (4.10)

b(t)u(t) ≈ UTΦ⃗J(t)Φ⃗
T
J (t)B ≈ UTB̃Φ⃗J(t), (4.11)

where Ã and B̃ can be calculated similarly to matrix Z̃ in Eq. (3.22).
By using Eqs. (4.5), (4.7) and (4.9), the performance index J can be approximated as

J [X,U ] ≈ 1
2

∫ 1

0
[(XTIα +XT

0 )Φ⃗J(t).Φ⃗
T
J (t)Q.Φ⃗

T
J (t)(X

TIα +XT
0 ) + UTΦ⃗J(t).Φ⃗

T
J (t)R.Φ⃗

T
J (t)U ]dt

= 1
2

(
(XTIα +XT

0 )Q̃P (XTIα +XT
0 ) + UTR̃PU

)
,

where P =
∫ 1

0
Φ⃗T

J (t)Φ⃗J(t)dt.
Also, using Eqs. (4.4), (4.10) and (4.11), the dynamical system (4.2) can be approximated
as

XTΦ⃗J(t)− (XTIα +XT
0 )ÃΦ⃗J(t)− UTB̃Φ⃗J(t) = 0. (4.12)

Because of the independency of entries of vector Φ⃗J(t), we get

XT − (XTIα +XT
0 )Ã− UTB̃ = 0. (4.13)

For simplicity, the above equation summarized as[
(I − ÃTIα

T) −B̃T
]
.

[
X
U

]
+ ÃTX0 = 0, (4.14)

in which I is a Identity matrix of order M ×M .
In order to solving described problem with the biorthogonal multiwavelets , it’s enough to

replace the basis vector Φ⃗J(t) by G−1BJ0,J(t) in Eq (4.12). Therefore we obtain the last
equation as the following form[

(G−T +G−TÃTIα
T) G−TB̃T

]
.

[
X
U

]
+G−TÃTX0 = 0. (4.15)

Now, assume that

J∗[X,U, λ] = J[X,U ] + λ[XT − (XTIα +XT
0 )Ã− UTB̃],

where the vector λ represents the unknown Lagrange multiplier. Finally the necessary con-
ditions for extremum are

∂J∗[X,U, λ]

∂X
= 0,

∂J∗[X,U, λ]

∂U
= 0,

∂J∗[X,U, λ]

∂λ
= 0. (4.16)

The above equation are nonlinear equations then can be solved for X, U and λ using the
Newton’s iteration method. After solving Eqs. (4.16), the approximate values of u(t) and
x(t) can be determined form (4.5) and (4.7).
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5. Illustrative examples

We applied the method presented in Section 4 and solved some examples to support
our theoretical discussion. In order to save memory requirement and computation time, a
threshold procedure is applied to obtain algebraic equations. In other words, we will investi-
gate the performance of the present method by concerning the sparseness of resulted matrix
equation through the numerical experiments. For this propose for thresholding parameter ε,
the matrix sparsity (Sε), is defined in [15] as

Sε =
N0 −Nε

N0
× 100%,

where N0 is the total number of elements and Nε is the number of elements remaining after
thresholding.
Example 1. Consider the following time-invariant problem [18, 22]

Min J(x, u) =

∫ 1

0

[x2(t) + u2(t)]dt,

subject to the system dynamics

Dα
t x(t) = −x(t) + u(t),

with initial condition

x(0) = 1.

Our aim is to find u(t) which minimizes the performance index J. For this problem we have
the exact solution in the case of α = 1 as follows [1]

x(t) = cosh(
√
2t) + β sinh(

√
2t),

u(t) = (1 +
√
2β) cosh(

√
2t) + (

√
2 + β) sinh(

√
2t),

β = −cosh(
√
2) +

√
2 sinh(

√
2)√

2 cosh(
√
2) + sinh(

√
2)

≃ −0.98,

Not that the minimum value of performance index is J = 0.192909.
Using the method presented in the previous section, the results for Example 1, are reported
in Tables I and II and Figures 2, 3 and 4. In Table I. we compare the absolute error of the
state variable x(t) when α = 1 with the results obtained in [18, 22] for J = 6, 7, 8. It is
seen from Table I, the approximate values of the state variable x(t) converge to the exact
solution with increase of J. In Figure 2, we demonstrate the approximation of the state x(t)
and control u(t) for different values of α together with the exact solution for α = 1. Also we
show that when α tend to 1, the approximate solutions for both state and control variables
tend to the exact solutions for α = 1. The graphs of state variable x(t) and control variable
u(t) for α = 0.8 and J = 7, 8 are plotted in Figure 3, It is obvious that with increase in the
number of the biorthogonal wavelet basis, the approximate values of x(t) and u(t) converge
to the exact solutions. Table II, reports the sparsity and minimum value of J when α = 1
for different values of thresholding parameter. Also Figure 4, shows the plot of the matrix
elements for J = 7 after thresolding.
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Figure 2. Approximate state and control variables for J = 7 and α =
0.8, 0.9, .099, 1 and exact solution for α = 1, Example 1.

Table I. Absolute error of x(t) with comparison to Refs, [18, 22].

t Legendre basis [22] Bernollin basis [18] Biorthogonal Multiwavelet

M = 4 M = 5 M = 4 M = 5 J = 6 J = 7 J = 8

0 8.99 × 10−5 6.25 × 10−6 8.99 × 10−5 6.25 × 10−6 0.0 0.0 0.0

0.1 4.77 × 10−5 1.34 × 10−5 3.67 × 10−5 2.39 × 10−6 2.05 × 10−5 5.07 × 10−6 1.26 × 10−6

0.2 3.25 × 10−5 2.12 × 10−5 1.01 × 10−5 1.21 × 10−6 1.67 × 10−5 4.14 × 10−6 1.03 × 10−6

0.3 7.74 × 10−5 3.24 × 10−5 2.65 × 10−5 1.72 × 10−6 1.36 × 10−5 3.36 × 10−6 8.35 × 10−7

0.4 2.13 × 10−5 4.73 × 10−5 1.53 × 10−5 6.82 × 10−7 1.09 × 10−6 2.69 × 10−6 6.68 × 10−7

0.5 6.43 × 10−5 6.20 × 10−5 4.23 × 10−6 1.93 × 10−6 8.54 × 10−6 2.11 × 10−6 5.23 × 10−7

0.6 1.03 × 10−4 7.49 × 10−5 2.91 × 10−5 3.11 × 10−7 6.54 × 10−6 1.60 × 10−6 3.99 × 10−7

0.7 1.12 × 10−4 8.88 × 10−5 2.41 × 10−5 1.90 × 10−6 4.75 × 10−6 1.17 × 10−6 2.90 × 10−7

0.8 9.14 × 10−5 1.07 × 10−5 1.73 × 10−5 9.17 × 10−7 3.24 × 10−6 7.87 × 10−7 1.94 × 10−7

0.9 9.41 × 10−5 1.31 × 10−5 3.46 × 10−5 2.49 × 10−6 1.84 × 10−6 4.44 × 10−7 1.09 × 10−7

Table II. Estimated values for J after thresholding, Example 1.
Thresholding parameter (ε) Sparsity (Sε) J

0 0% 0.192909
J = 6 10−4 76.58% 0.192921

10−3 79.20% 0.192924
10−2 84.46% 0.189937

0 0% 0.192909
J = 7 10−4 85.99% 0.192912

10−3 87.96% 0.192999
10−2 91.36% 0.192815

Example 2. consider the following time-varying problem [18, 22]. Find the control u(t),
which minimizes the performance index J

Min J(x, u) =

∫ 1

0

[x2(t) + u2(t)]dt,
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Figure 3. Comparison of state x(t) (left) and control u(t) (right) for
α = 0.8 with J = 7, 8, Example 1.

Figure 4. Plots of sparse matrices after thresholding with ε = 10−3

(left) and ε = 10−2 (right) for J = 7, Example 1.

subject to the following dynamics

Dα
t x(t) = tx(t) + u(t),

with initial condition

x(0) = 1.

In Table III, we compared the minimum of J obtained using the proposed method with
Bernoulli basis [18]. In Figure 5, we demonstrate the approximation of the state x(t) and



112 E. ASHPAZZADEH AND M. LAKESTANI

Figure 5. Approximate state and control variable for J = 7 and α =
0.8, 0.9, .099, 1, Example 2.

control u(t) for different values of α. Also we show that when α tend to 1, the approximate
solutions for both state and control variables tend to the exact solutions for α = 1. The
graphs of state variable x(t) and control variable u(t) for α = 0.8 and J = 7, 8 are plotted in
Figure 6, It is obvious that with increase in the number of the biorthogonal wavelet basis, the
approximate values of x(t) and u(t) converge to the exact solutions. Table IV, reports the
sparsity and minimum value of J when α = 1 for different values of thresholding parameter.
Also Figure 7, shows the plot of the matrix elements for J = 7 after thresolding.

Table III. Results for Example 2

Methods J

Bernoulli basis [18]
M = 5, α = 0.8 0.466978
M = 5, α = 0.9 0.475883
M = 5, α = 0.99 0.483463
M = 5, α = 1 0.484268

Biorthogonal multiwavelets
J = 7, α = 0.8 0.466979
J = 7, α = 0.9 0.475887
J = 7, α = 0.99 0.483466
J = 7, α = 1 0.484270

J = 8, α = 0.8 0.466977
J = 8, α = 0.9 0.475883
J = 8, α = 0.99 0.483463
J = 8, α = 1 0.484268

Table IV. Estimated values for J, after thresholding, Example 2.
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Figure 6. Comparison of state x(t) (left) and u(t) (right) for α = 0.8
with J = 7, 8, Example 2.

Thresholding parameter (ε) Sparsity (Sε) J

0 0% 0.484278
J = 6 10−4 76.37% 0.484243

10−3 79.20% 0.483913
10−2 84.43% 0.485152

0 0% 0.484270
J = 7 10−4 86.05% 0.484251

10−3 87.97% 0.483720
10−2 91.34% 0.483568

6. Conclusion

In this work the biorthogonal cubic Hermite spline multiwavelets are employed to solve a
class of fractional optimal control problems. Considering the properties of these wavelets and
using an approach based on the operational matrices of fractional integration and product
and the Lagrange multiplier for constrained optimization, we convert the FOCPs to the
solution of a system of algebraic equations. Using the spare structure of this system, the
given problem is solved and memory times are reduced. Two numerical examples are given
to observe the efficiency and applicability of the new method.
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Figure 7. Plots of sparse matrices after thresholding with ε = 10−5

(left) and ε = 10−4 (right) for J = 7, Example 2.
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