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Abstract In this paper, a new numerical method is presented for solving the optimal control
problems of bang-bang type with free or fixed terminal time. The method is based on
Bezier polynomials which are presented in any interval as [t0, tf ]. The problems are
reduced to a constrained problems which can be solved by using Lagrangian method.

The constraints of these problems are terminal state and conditions. Illustrative
examples are included to demonstrate the validity and applicability of the method.
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1. Introduction

Bang-bang control switching between upper and lower bounds, is the optimal strat-
egy for solving a wide variety of control problems. The control of a dynamical system
has lower and upper bounds and the system model is linear in the input and nonsin-
gular. Bang-bang control is often the appropriate choice because of the nature of the
actuator of the physical system.

Switching from one mode of the system to another one can be modelled by a bang-
bang type control. Bang-bang type controls arise in well-known application areas
such as robotics, rocket flights , cranes, and also in applied physics [1, 2]. There are
a large number of research papers that employ this method to solve optimal control
problems (see for example [5, 6, 10, 11, 12, 13, 14, 15, 16, 25, 26, 27] and the references
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therein).
In this paper, a numerical method is presented to solve a class of bang-bang con-

strained optimal control problems, where the focus is on time-optimal control. First
the optimal control problem is reduced to constrianed problems with equal constraint
defined by the terminal state in time space. Also a computational method is pre-
sented for solving linear constrained quadratic optimal control problems by using
Bezier polynomials. The method is based on approximating the state and the con-
trol variables with Bezier polynomials. Our method consists of reducing the optimal
control problem to an NLP one by first expanding the state rate ẋ(t) as a Bezier
polynomial expansion with unknown coefficients and the control u(t) as the bang-
bang control. The operational matrix of differentiation DΦ is obtained in order to
approximate the differential part of the problem. The paper is organized as follows:

In Section 2, we describe the basic formulation of the Bezier functions required for
our subsequent development. Section 3 is devoted to the formulation of bang-bang
optimal control problems. Section 4 summarizes the application of this method to
the optimal control problems, and in Section 5 we report our numerical result along
with showing the accuracy of the proposed method.

2. Some properties of bernstein and bezier polynomials on [t0, tf ]

The Bernstein basis polynomials of degree n on [t0, tf ] are defined as

Bi,n(t) =

(
n

i

)
(t− t0)

i(tf − t)n−i, i ∈ [0, n], (2.1)

where i is integer number and the binomial coefficients are given by

(
n

i

)
=


n!

i!(n−i)! , i ∈ [0, n],

0, elsewhere.

Some properties of these polynomials are

(i) Bi,n(t0) = δi,0(tf − t0)
n and Bi,n(tf ) = δi,n(tf − t0)

n , where δ is the Kronecker
delta function.
(ii) Bi,n(t) has two roots, with multiplicities i at t = t0 and n− i at t = tf .
(iii) Bi,n(t) ≥ 0 for t ∈ [t0, tf ] and Bi,n(tf − t) = Bn−i,n(t− t0).
(iv) The Bernstein polynomials form a partition of unity i.e.

∑n
i=0 Bi,n(t) = (tf−t0)

n.
(v) Recursion: Bi,n(t) = (tf − t)Bi,n−1(t) + (t− t0)Bi−1,n−1(t).

(vi) Derivative:
dBi,n(t)

dt = 1
tf−t0

[(n+1−i)Bi−1,n(t)+(2i−n)Bi,n(t)−(i+1)Bi+1,n(t)].

2.1. Definition of bezier polynomials on [t0, tf ]. We will express Bezier (poly-
nomials) curves in terms of Bernstein polynomials, defined explicitly by

pn(t) =
n∑

i=0

ciBi,n(t), t ∈ [t0, tf ], (2.2)
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where ci = c[t<n−i>
0 , t<i>

f ] named control points or Bezier pionts and t<n−i>
0 means

that t0 appears n− i times. For example, c[t<3>
0 , t<0>

f ] = c[t0, t0, t0]. Some properties

of Bezier polynomials on [t0, tf ] are
(i) Symmetry:

∑n
i=0 ciBi,n(t− t0) =

∑n
i=0 cn−iBi,n(tf − t).

(ii) Linear precision: 1
(tf−t0)n−1

∑n
i=0

i
nBi,n(t) = t− t0.

2.2. The operational matrix of the bezier polynomials. Consider

Φn(t) = [B0,n(t), B1,n(t), ..., Bn,n(t)]
T , t ∈ [t0, tf ], (2.3)

where T denotes transposition.

2.3. The operational matrix of derivative. The differentiation of vector Φn(t)
can be expressed as

Φ′
n(t) = DΦΦn(t), (2.4)

where DΦ is the (n + 1)(n + 1) operational matrix of derivative for the Bezier poly-
nomials Bi,n(t) which t ∈ [t0, tf ] and satisfies in

DΦ =
1

tf − t0
Dϕ, (2.5)

where Dϕ is the (n+1)(n+1) operational matrix of derivative for Bezier polynomials
Bi,n(u) which u ∈ [0, 1] and i = 0, ..., n.

2.4. Function approximation. Suppose that H = L2[t0, tf ] is a Hilbert space

with the inner product defined as < f.g > =
∫ tf
t0

f(t)g(t)dt and because the set

{B0,n(t), B1,n(t), ..., Bn,n(t)} is a complete basis in Hilbert space H then, any poly-
nomial B(t) of degree n can be expanded in terms of Bi,n(t), i = 0, . . . , n as follows

B(t) =

n∑
i=0

ciBi,n(t). (2.6)

Also Φn(t) ⊂ H is the set of Bezier polynomials of degree n. Let Sn=span
{Φn(t)} and f be an arbitrary element in H. Since Sn is a finite dimensional and
closed subspace, therefore Sn is a complete subset of H. So, f has the unique best
approximation out of Sn such as S0 ̸∈ Sn. So, there exist the unique coefficients ci,
i=0,. . . , n such that [16] any function f ∈ H can be approximated in terms of Bezier
polynomials as

f(t) ≃ S0 =
n∑

i=0

ciBi,n(t) = CTΦn(t), (2.7)

where C = [c0, . . . , cn]
T can be obtained as

CT < Φn.Φn >=< f.Φn > =

∫ tf

t0

f(t)Φn(t)dt

= [< f.B0,n >, . . . , < f.Bn,n >]. (2.8)
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Let R =< Φn.Φn > be (n+1)× (n+1) matrix called the dual matrix of Φn(t), which
can be determined by

Ri+1,j+1 =< Bi,n.Bj,n > =

∫ tf

t0

Bi,n(t)Bj,n(t)dt

= (tf − t0)
2n+1

(
n
i

)(
n
j

)
(2n+ 1)

(
2n
i+j

) , (2.9)

where i, j = 0, . . . , n. We explain and prove the folowing lemma from [18].

Lemma 2.1. Suppose that the function f : [t0, tf ] → R be n + 1 times continu-
ously differentiable (i.e.f ∈ Cn+1[t0, tf ]), and Sn=span{Φn(t)}. If CTB is the best
approximation of f out of Sn, then

|f − CTB|L2[t0,tf ] ≤
K̂

(n+ 1)!

√
t2m+3
f − t2n+3

0

2n+ 3
, (2.10)

where K̂=max|f (n+1)(t)|, t ∈ [t0, tf ].

Proof. We know that {1, x, x2, ..., xn} is a basis for polynomials space of degree

≤ n . Therefore we define y1(x) = f(t0) + xf ′(t0) +
x2

2! f
′′(t0) + ... + xn

n! f
(n)(t0). By

the Taylor expansion we have

|f(x)− y1(x)| = |f (n+1)(ξx)
xn+1

(n+ 1)!
|, (2.11)

where ξx ∈ (t0, tf ). Since c
TB is the best approximation of f out of Sn. Then y1 ∈ Sn

and from Eq. (2.11) we have

∥f − cTB∥2L2[t0,tf ]
≤ ∥f − y1∥2L2[t0,tf ]

=

∫ tf

t0

|f(x)− y1(x)|2dx

=

∫ tf

t0

|f (n+1)(ξx)|2(
xn+1

(n+ 1)!
)2dx

≤ (
K̂

(n+ 1)!
)2

∫ tf

t0

x2n+2dx

= (
K̂

(n+ 1)!
)2(

t2n+3
f − t2n+3

0

2n+ 3
)

= (
K̂

(n+ 1)!
)2(

t2n+3
f (1− ( t0tf )

2n+3)

2n+ 3
)

∼= (
K̂tnf

(n+ 1)!
)2(

t3f
2n+ 3

).
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Then by taking square roots, the proof is complete. We can rewrite Eq. (2.10) as
following

|f − CTB|L2[t0,tf ] ≤
K̂

(n+ 1)!

√
t2m+3
f − t2n+3

0

2n+ 3

∼=
K̂

(n+ 1)!

√( t2n+3
f (1− ( t0tf )

2n+3)

2n+ 3

)
∼=

K̂tnf
(n+ 1)!

√
t3f

2n+ 3
. (2.12)

This Lemma shows that the error vanishes as n → ∞.

3. Optimal control problems of bang-bang type

Optimal control problems of bang-bang type are problems where control function
includes an uncontinuse point and the control on the environment of that point only
has minimize and maximize amount. Now we considere optimal control problems
of bang-bang type with normalized constraint | u |≤ 1. If a switching point exists,
then control sequence will be as {−1, 1} or {1,−1}. For better perception, considere
equations system as following

ẋ(t) = Ax(t) +Bu(t). (3.1)

If we want this system arrive from primary state x0 to terminal state x1 in the least
time, in a case that trajectory state and control are optimal. Hamiltonian function
is obtained for (4.1) using pontryagin maximum principle on two domain space as
following

H = −1 + λ1ẋ1 + λ2ẋ2 + (b1λ1 + b2λ2)u, (3.2)

where B = [b1, b2]
T . Because H is linear base u, thus for making maximum of H ,

we should have u = 1 or u = −1. Because chosing these amounts are dependant on
the sign of fourth coefficient on H , thus only controls that can led to minimizing
transfering time are as following

u∗ = sgn(b1λ1 + b2λ2). (3.3)

This control is scrap constant that its discontinuity points will be on the zero places
of following function

S = b1λ1 + b2λ2, (3.4)

namely control switching from 1 to −1 and vice versa occurs when we have S = 0
and as a result the function S is called switching function. Lemma is speech of this
truth.



182 A. O. YARI, M. MIRNIA, AND AGHILEH HEYDARI

Lemma 3.1. a: If eigenvalues of A are real, then switching function has at most one
root.
b: In this state a sequence of controls which are optimal are as following:

{1}, {−1}, {−1, 1}, {1,−1}.

singular controls. Becuase in some problems, switching function S is zero for all
amounts of t that t1 ≤ t ≤ t2, thus control amounts u is not obtinated from u = sgn(S)
that in this case control function is called singular and becuase singular controls always
aren’t optimal, thus we search for unsingular controls that are exclusively optimal .For
example in the fuel optimal control problems the fuel is used for guidance of vehicles
from primal piont to final piont, that we want this used fuel be arrived to the least
amount. It seems logical that consumable fuel amount on the base of time, will be
multiplety of bigness forse of conveying. Therefore consumable fuel will equal with
| u |. In this case only unsingular controls are as following

{−1, 0, 1}, {0, 1}, {1}, {1, 0,−1}, {0,−1}, {−1}.

4. Problem statement

Consider the nonlinear system

ẋ(t) = A(t)x(t) +B(t)u(t), (4.1)

x(t0) = x0, x(tf ) = x1, (4.2)

u(t) ∈ [a, b], (4.3)

where t ∈ [t0, tf ], tf is the terminal time free or fixed, A(t) = (ai,j(t))n×n , B(t) =
(bi,j(t))m×m are matrices, x(t) is n × 1 state vector, the control u : [t0, tf ] → [a, b],
ẋ(t) : Rn × [a, b] → Rn is smooth in x except at the time points where the control
u switches between a and b. The problem is to find the switching points u(t) and
the corresponding state trajectory x(t) satisfying Eqs. (4.1), (4.2) and (4.3) while
minimizing (or maximizing) the quadratic performance index

Z =
1

2
xT (tf )Gx(tf ) +

1

2

∫ tf

t0

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt, (4.4)

where G(t) = (gi,j(t))n×n, Q(t) = (qi,j(t))n×n are symmetric positive semi-definite
matrices and and R(t) = (ri,j(t))m×m is a symmetric positive definite matrix.

4.1. Variational problems. Consider the variational problem

Z(x(t)) =

∫ tf

t0

F (t, x(t), ẋ(t), . . ., x(n)(t))dt, (4.5)

with the boundary conditions as

x(t0) = a0, ẋ(t0) = a1, . . ., x(n−1)(t0) = an−1, (4.6)

x(tf ) = b0, ẋ(tf ) = b1, . . ., x(n−1)(tf ) = bn−1, (4.7)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T . The problem is to find the extremum of (4.5),

subject to boundary conditions (4.6) and (4.7). The method consists of reducing the
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variational problem into a set of algebraic equations by first expanding x(t) in terms
of Bezier polynomials with unknown coefficients.

5. The proposed method

Let

t ∈ [tj , tj+1], (5.1)

xj
i (t) ≃ Φj

n(t)
TXj

i , (5.2)

u∗(t) = uj , (5.3)

where Xj
i , i = 1, . . . , n, are state coefficient vectors on [tj , tj+1] trajectory. Then by

using Eq. (2.4) we get

ẋj
i (t) ≃ [Dj

ΦΦ
j
n(t)]

TXi. (5.4)

By using Eqs. (5.1) and (5.3) we will have

xj(t) ≃ [Φj
n(t)

TXj ]T = [

n∑
r=0

Bj
r,n(t)X

j
1r, . . . ,

n∑
r=0

Bj
r,n(t)X

j
nr]

T , (5.5)

where Xj = (Xj
ir)n×(n+1) is the state coefficient matrix. The boundary conditionsin

Eq. (4.2) can be rewritten as

x1(t0) = x1
0 = d10⊗EΦ1

n(t), (5.6)

xm(tf ) = xm
1 = dm1 ⊗EΦ1

n(t), (5.7)

Dj
Φ =

1

tj+1 − tj
Dϕ, (5.8)

where tm = tf , d
1
0 and dm1 are n × 1 constant vectors, E = [1, . . . , 1] is 1 × (n + 1)

constant vector, and the symbol ⊗ denotes the Kronecker product [33]. If x1(t0) or
xm(tf ) are unknown in Eq. (4.2), then we put

x1(t0) ≃ [Φ1
n(t0)

TX1]T = [
n∑

r=0

B1
r,n(t0)X

1
1r, . . . ,

n∑
r=0

B1
r,n(t0)X

1
nr]

T , (5.9)

xm(tf ) ≃ [ΦT
n (tf )X

m]T = [

n∑
r=0

Bm
r,n(tf )X

m
1r, . . . ,

n∑
r=0

Bm
r,n(tf )X

m
nr]

T . (5.10)

5.1. Performance index approximation. By substituting Eqs. (5.6), (5.7) and
(5.8) into Eq (4.5) we get

min(max)Zj =
1

2
xjT
1 Gj

1x
j
1 +

1

2
XjT [

∫ tj+1

tj

Φj
n

T
(t)Qj(t)Φj

n(t)dt]X
j

+
u2
j

2
[

∫ tj+1

tj

Rj(t)dt]. (5.11)
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Let

P j
x =

∫ tj+1

tj

ΦjT
n (t)Qj(t)Φj

n(t)dt, and P j
u =

∫ tj+1

tj

Rj(t)dt. (5.12)

By substituting Eq (5.12) in Eq (5.11) we get

Zj = Z[Xj , uj ] =
1

2
XjT (P̂ j + P j

x)X
j +

1

2
u2
jP

j
u , (5.13)

where P̂ j = (ΦjT
n Gj

1Φ
j
n)(tj+1). and xj

0 = xj(tj), x
j
1 = xj(tj+1).

The boundary conditions in Eq. (4.2) can be expressed as

q10 = x1(t0)− x1
0, q10 = (q10i), i = 1, . . . , n, (5.14)

qm1 = xm(tf )− xm
0 , qm1 = (qm0i), i = 1, . . . , n. (5.15)

We now find the extremum of Eq. (5.12) subject to Eqs. (5.13) and (5.14) by using
the Lagrange multiplier method. Let

Z[Xj , uj , λ
j
0, λ

j
1] = Z[Xj , uj ] + λj

0Q
j
0 + λj

1Q
j
1, (5.16)

where Qj
0 = (qj0i), i = 1, . . . , n and Qj

1 = (qj1i), i = 1, . . . , n are (n × 1) constant
vectors. The necessary condition for the extremum of Eq. (5.16) is

∇Z[Xj , uj , λ
j
0, λ

j
1] = 0. (5.17)

Finally we have subject function as folloving

min(max)Z = min(max)Z1 + · · ·+min(max)Zm. (5.18)

We now use necessary conditions to find switching points as following

xj−1(tj) = xj(tj), j = 1, . . . ,m, (5.19)

conditions in Eq. (5.19), can be expressed as

dj = xj−1(tj)− xj(tj) = 0, j = 1, . . . ,m, (5.20)

dj = (dji ), i = 1, . . . , n, j = 1, . . . ,m. (5.21)

Now we find switching points by solving Eqs. (5.19) and (5.20) which is nonlinear
system.

5.2. Performance index approximation for the variational problem. Now we
want to extension x(n)(t) in terms of the Bezier polynomials. So let

x(t) = XTΦn(t), (5.22)

whereXT is vector of order 1× (n+ 1), By derivating Eq. (5.22) with respect to t we
get

x(1)(t) = XTDΦΦn(t), (5.23)

where DΦ is operational matrix of derivative given in Eq. (2.5). By n derivaton of
(5.22) with respect to t we have

x(n)(t) = XTDn
ΦΦn(t). (5.24)
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By extending (t− t0)
i, i = 0, 1, . . . , n− 1 in terms of Bezier polynomials as

(t− t0)
i = diΦn(t), i = 0, 1, . . . , n− 1, (5.25)

where di, i = 0, 1, . . . , n− 1, are constant vectors of order 1× (n+ 1) given by

di =
1(

n
i

)
(tf − t0)n−i

[0, . . . ,

(
i

i

)
,

(
i+ 1

i

)
, . . . ,

(
n

i

)
], i = 0, 1, . . . , n− 1, (5.26)

So Eq. (4.5) can be rewritten as

Z[x(t)] = Z[X]. (5.27)

The boundary conditions in Eqs. (4.6) and (4.7) can be expressed as

r0k = x(k)(a)− ak = 0, k = 0, . . . , n− 1, (5.28)

r1k = x(k)(b)− bk = 0, k = 0, . . . , n− 1. (5.29)

We now find the extremum of Eq. (4.5) subject to Eqs. (5.28) and (5.29) by using
the Lagrange multiplier method. Let

Z[x, λ] = Z[x, λ0, λ1] + λ0R0 + λ1R1, (5.30)

where R0 = (r0k), k = 1, . . . , n and R1 = (r1k), k = 1, . . . , n are (n × 1) constant
vectors. The necessary conditions for the extremum of Eq. (5.30) are

∇Z[X,λ0, λ1] = 0. (5.31)

6. Illustrative examples

This section is devoted to numerical examples. We implemented the proposed
method in last section with MATLAB (2012). To illustrate our method, we present
four numerical examples, and make a comparison with some of the results in the lit-
eratures.

Example 1. This example is adapted from [17]

min Z =

∫ 5

0

|u(t)|dt, (6.1)

subject to

ẋ1(t) = x2(t)− u(t), (6.2)

ẋ2(t) = u(t), (6.3)

|u(t)| ≤ 1, (6.4)

with the boundary conditions as

x1(0) =
1

2
, x2(0) = 1, (6.5)

x1(5) = 0, x2(5) = 0. (6.6)
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Here we solve this problem with Bezier polynomials by choosing n = 2. Let

x1(t) = ΦT
2 (t)X1, (6.7)

x2(t) = ΦT
2 (t)X2, (6.8)

u(t) =

 −1, [0, t1],
0, [t1, t2],
1, [t2, 5],

(6.9)

(6.10)

where

X1 = [X0
1 , X

1
1 , X

2
1 ]

T , X2 = [X0
2 , X

1
2 , X

2
2 ]

T . (6.11)

By using Eqs. (5.16)-(5.18) and Eqs. (6.5)-(6.11) for j=1 and considering interval
[0, t1] we obtain

t1 = 3−
√
2,

X1
1 = [ 11555809 ,

248
299 ,

1153
1201 ],

X1
2 = [ 11212819 ,

197
2392 ,

−577
2477 ],

x1
1(t) =

1155
5809B0,2(t) + 2 248

299B1,2(t) +
1153
1201B2,2(t) = −1

2 t
2 + 2t+ 1

2 ,

x1
2(t) =

1121
2819B0,2(t) + 2 197

2392B1,2(t)− 577
2477B2,2(t) = −t+ 1,

Z1 = t1 = 3−
√
2,

which is exact solution. For j=2 and considering interval [t1, t2] we obtain

t2 = 3 +
√
2,

X2
1 = [ 11383771 ,

357
1801 ,

119
1257 ],

X2
2 = [−102

1393 ,
−102
1393 ,

−102
1393 ],

x2
1(t) =

1138
3771B0,2(t) + 2 357

1801B1,2(t) +
119
1257B2,2(t) =

1
36028797018963968 t

2 − 577
985 t+

3975
1189 ,

x2
2(t) = − 102

1393B0,2(t)− 2 102
1393B1,2(t)− 102

1393B2,2(t) = −577
985 ,

Z2 = 0.

Where the exact solution as following

x2∗
1 (t) = (

√
2− 2)t+ 9− 4

√
2 = −577

985 t+
3975
1189 ,

x2∗
2 (t) = 1− t1 =

√
2− 2 = − 577

985 .

For j=3 and considering interval [t2, 5] we obtain

t2 = 3 +
√
2,

X3
1 = [ 2174985 , 1189

1393 , 0],

X3
2 = [−985

577 , −1189
1393 , 0],

x3
1(t) =

2174
985 B0,2(t) + 2 1189

1393B1,2(t) =
1
2 t

2 − 6t+ 35
2 ,

x3
2(t) = −−985

577 B0,2(t)− 21189
1393B1,2(t) = t− 5,

Z3 = 5− t2 = 2−
√
2.
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Figure 1. Plot of state optimal trajectory with bang-bang control for example 1

Finally value of object function is Z = Z1 + Z2 + Z3 = 5− 2
√
2.

Example 2. This example is adapted from [17]

min Z =

∫ tf

0

(|4 + u(t)|)dt, (6.12)

subject to

ẋ1(t) = x2(t), (6.13)

ẋ2(t) = u(t), (6.14)

|u(t)| ≤ 1. (6.15)

with the boundery conditions as

x1(0) =
1

2
, x2(0) = 0, (6.16)

x1(tf ) = −1

2
, x2(tf ) = 0. (6.17)

Here we solve this problem with Bezier polynomials by choosing n = 2. Let

u(t) =

 −1, [0, t1],
0, [t1, t2],
1, [t2, tf ].

(6.18)

By using Eqs. (6.7) , (6.8) and (6.11) for j=1 and considering interval [0, t1] we obtain

t1 =
√
6
3 ,

X1
1 = [ 34 ,

3
4 ,

1
4 ],

X1
2 = [0, −1079

1762 , −1079
881 ].
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x1
1(t) =

3
4B0,2(t) + 23

4B1,2(t) +
1
4B2,2(t) = − 1

2 t
2 + 1

2 ,

x1
2(t) = −21079

1762B1,2(t)− 1079
881 B2,2(t) = −t,

Z1 = 5t1 = 5
√
6
3 ,

which is exact silution. For j=2 and considering interval [t1, t2] we obtain

t2 =
√
6
2 ,

X2
1 = [1, 1

1125899906842624 ,−1],

X2
2 = [−4801

980 , −4801
980 , −4801

980 ],

x2
1(t) = B0,2(t) + 2 1

1125899906842624B1,2(t)−B2,2(t) = − 1
562949953421312 t

2 −
√
6
3 t+ 5

6 ,

x2
2(t) = −4801

980 B0,2(t)− 24801
980 B1,2(t)− 4801

980 B2,2(t) = −
√
6
3 ,

Z2 = 4(
√
6
2 −

√
6
3 ).

Where the exact solution as following

x2∗
1 (t) = −

√
6
3 t+ 5

6 ,

x2∗
2 (t) = −t1 = −

√
6
3 .

For j=3 and considering interval [t2, t3] we obtain

tf = t3,

t3 = t1 + t2 = 5
√
6
6 ,

X3
1 = [−1

4 , −3
4 , −3

4 ],

X3
2 = [−1079

881 , −1079
1762 , 0],

x3
1(t) = − 1

4B0,2(t)− 2 3
4B1,2(t)− 3

4B2,2(t) =
1
2 t

2 − 5
√
6
6 t+ 19

12 ,

x3
2(t) = − 1079

881 B0,2(t)− 2 1079
1762B1,2(t) = t− 5

√
6
6 ,

Z3 = 5(t3 − t2) = 5
√
6
3 ,

Z = Z1 + Z2 + Z3 = 4
√
6,

which Z is finally value of object function.

Note that all approximation solutions of example 1 and example 2 are computed with
decimal number 16 on intervals [0, 5] and [0, t3] respectively. Also if you consider
another kind of value for control except above value, there is no solution for or if the
soluotion exists it would be negative for switching points.

Example 3. To illustrate some of the basic concepts involved when controls are
bounded and allowed to have discontinuities we start with a simple physical problem:
Derive a controller such that a car moves a distance with a minimum time[22].
The motion equation of the car is as folowing:

min Z =

∫ tf

0

dt, (6.19)



CMDE Vol. 3, No. 3, 2015, pp. 177-191 189

Figure 2. Plot of state optimal trajectory with bang-bang control for example 2

subject to

ẍ(t) = u, (6.20)

u = u(t), a ≤ u ≤ b, (6.21)

with the boundary conditions of

x(0) = 0, ẋ(0) = 0, x(tf ) = c, ẋ(tf ) = 0. (6.22)

We get approximate solutions for the switching and end times as following

t1 =
√

2ac
b(a+b) ,

tf =
√

2c(a+b)
ab .

And also we obtain state trejectory and control as folowing

u(t) =

{
b, [0, t1],

−a, [t1, tf ],

x(t) =


1
2bt

2, [0, t1],

− 1
2a(t− tf )

2 + c, [t1, tf ],

which is the exact solution. It is observed that the state trajectory is depended on b
and a, c, tf respectively in intervals [0, t1] and [t1, tf ].

7. Conclusion

In this paper we presented a numerical scheme for solving bang-bang optimal con-
trol problems with linear constraint. In example 1, the Bezier polynomials were
employed in interval [0, tf ] where tf and end point of x(t) are known. In examples 2
and 3, the Bezier polynomials were employed in interval [0, tf ] where tf is unknown



190 A. O. YARI, M. MIRNIA, AND AGHILEH HEYDARI

but the end point of x(t) is known, u(t) is bounded between a and b. Several test
problems were used to see the applicability and efficiency of the method. The ob-
tained results show that the new approach can solve the problem effectively. It was
investigated to solve bang-bang optimal control problems with a nonlinear constraint.
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