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Abstract In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs

in mathematical physics; namely the one-dimensional modified complex Ginzburg-

Landau equation by using the (G
′
/G) expansion method, homogeneous balance

method, extended F-expansion method. By using homogeneous balance principle
and the extended F-expansion, more periodic wave solutions expressed by jacobi

elliptic functions for the 1D MCGL equation are derived. Homogeneous method is

a powerful method, it can be used to construct a large families of exact solutions to
different nonlinear differential equations that does not involve independent variables.
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1. Introduction

Soliton generation in actively and passively mode locked fiber lasers is presently a

very active area of nonlinear polarization rotation may be described by the modified

complex Ginzburg-Landau equation (MCGLE). This equation also applies when de-

scribing soliton propagation in optical fiber systems with linear and nonlinear gain

and spectral filtering. Different forms of the CGLE have been used, including the cu-

bic Ginzburg-Landau equation, cubic CGLE with saturation, and move complicated

models.The schrodinger equation is a special case of the Ginzburg-Landau equation

for purely dispersive waves ( [1]- [21]).
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In the present letter, we consider a class of nonlinear partial differential equation with

constant coefficients which is called one- dimensional modified complex Ginzburg-

Landau equation (1D MCGLE)

iΦt + pΦxx + q|Φ|2Φ = a
ΦxΦ∗x

Φ∗
+ b∇2(

√
ΦΦ∗)

√
Φ

Φ∗
+ iγΦ,

where the operator ∇2 = ∂2

∂x2 and the system parameters p, q, a, b and γ may be

real, complex or a combination of the two different combinations of the above sys-

tem parameters describe different types of wave propagation in different physical

systems. During the past decades, with the development of soliton theory, some

methods for obtaining analytic solution to NPDEs have been proposed, such as

the sine-cosine method [17] , first integral method ( [10], [24]) , (G
′
/G)- expansion

method ( [14], [32]) , the exp- function method ( [34], [33]) , Jacobi elliptic expansion

method [25] , and so on. F-expansion method and extended F-expansion method

which ( [18], [22], [29], [11], [12])” was proposed recently as an overall generalization

of Jacobi elliptic expansion function method. Most of exact solutions were obtained

by these methods, including the solitary wave solutions, shock wave solution, peri-

odic wave solutions and so on. Very recently, the extended F-expansion method has

been proposed to obtain not only the single non degenerative Jacobi elliptic func-

tion solutions, but also the combined non degenerative Jacobi elliptic solutions and

their corresponding degenerative solutions. Homogeneous balance method (HBM)

( [9], [28], [15], [16])” is proved to be efficient method for finding explicit solutions of

NEEs. The main objective of paper are used the (G
′
/G)-expansion method, extended

F-expansion method and homogeneous balance method to constant the exact solu-

tions for nonlinear evolution equation in the mathematical physics via the modified

complex Ginzburg-Landau.

2. Description of the (G
′
/G)-expansion method

Suppose we have the following nonlinear PDE:

p(u, ut, ux, utt, uxx, uxt, . . .) = 0, (2.1)

where u = u(x, t) is an unknown function, p is a polynomial in u = u(x, t) and its

various partial derivatives in which the highest order derivatives and nonlinear terms

are involved. In the following we give the main steps of a deformation method
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Step 1. The traveling wave variable

u(x, t) = u(ξ), ξ = k(x− ct), (2.2)

where k and c, are the wave number and the wave speed, respectively. Under the

transformation (2.2) , (2.1)” becomes an ordinary differential equation (ODE) as

p(u, u
′
, u
′′
, u
′′′
, . . .) = 0. (2.3)

Step 2. Suppose that the solution Eq. (2.3)” has the following form

u(ξ) =

m∑
i=0

ai(G
′
/G)i, (2.4)

while G = G(ξ) satisfies the second order linear differential equation

G
′′
(ξ) + λG

′
(ξ) + µG(ξ) = 0, (2.5)

where ai(i = 0, 1, . . . ,m), λ and µ are constants to be determined later. The positive
integer m can be determined by considering the homogeneous balance between the
highest derivative terms and the nonlinear terms appearing in (2.3)”.
Step 3. The solution of the differential (2.5)” is

G
′

G
=



1

2

√
λ2 − 4µ

 c1 cosh(
1

2

√
λ2 − 4µξ) + c2 sinh(

1

2

√
λ2 − 4µξ)

c1 sinh(
1

2

√
λ2 − 4µξ) + c2 cosh(

1

2

√
λ2 − 4µξ)

− λ

2
ifλ2 − 4µ > 0,

1

2

√
4µ− λ2

−c1 sin(
1

2

√
4µ− λ2ξ) + c2 cos(

1

2

√
4µ− λ2ξ)

c1 cos(
1

2

√
4µ− λ2ξ) + c2 sin(

1

2

√
4µ− λ2ξ)

− λ

2
ifλ2 − 4µ < 0,

c2

c2ξ + c1
−
λ

2
ifλ2 − 4µ = 0,

(2.6)

where c1 and c2 are arbitrary constants.

Step 4. By substituting (2.4)” into (2.3)” and using (2.5) , collecting all terms with

the same power of (G
′
/G) together and then equating each coefficient of the resulted

polynomial to zero, yield a set of algebraic equations for ai, µ, λ, c and k.
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3. Description of the homogeneous balance method

Step 1. We suppose that Eq. (2.3)” has the formal solution

u(ξ) =

m∑
i=0

ai(G(ξ)i, (3.1)

where ai(i = 0, 1, · · · ,m) are constant to be determined, such that am 6= 0, and G(ξ)

is the solution of the equation

G
′
(ξ) = G2(ξ)−G(ξ) (3.2)

Eq. (3.2)” has the solution

G(ξ) =
1

1± eξ
. (3.3)

Step 2. We determine the positive integer m in Eq. (3.1)” by considering the ho-

mogeneous balance between the highest order derivatives and the nonlinear terms in

Eq. (2.3)”.

Step 3. Substitute (3.1)” into Eq. (2.3) , we calculate all the necessary derivatives

u
′
, u
′′
, . . . of the function u(ξ). As a result of this substitution, we get a polynomial

of Gi, (i = 0, 1, . . . ,m). In this polynomial we gather all terms of same powers and

equating them to zero, we obtain a system algebraic equations which can be solved

by the Maple or Mathematica to get the unknown parameters ai(i = 0, 1, . . . ,m), k

and w.

4. Description of an extended F - expansion method

Step 1. Supposing that u(ξ) can be expressed as

u(ξ) = a0 +

m∑
i=1

aiF (ξ)i +

m∑
i=1

biF (ξ)i, (4.1)

where ai, bi are constants to be determined, F (ξ) satisfy the following relation

(F
′
)2 = PF 4 +QF 2 +R, (4.2)

where P , Q, R are parameters.

Step 2. Inserting F-expansion (4.1)” into Eq. (2.3)” and using (4.2) , we obtain

a series in (F p, p = 0, 1, . . . , k). Equating each coefficients of (F p) to zero yields a

system of algebraic equations for (ai, bi, i = 1, 2, . . . ,m; c, k).
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Step 3. Solving these equations, ai, bi, c and k can be expressed in terms of P ,

Q, R and the parameters of NODE (2.3) . Substituting these results into (2.3)” gives

the general form of travelling wave solutions (SeeAppendix A).

Step 3. With the aid of Appendices A and B and the relation Eq. (4.2)” the ap-

propriate kinds of the Jacobi elliptic function solutions of (2.3)” including the single

functions and the combined function solutions can be chosen. As we know, when

m → 1, Jacobi elliptic function degenerate as hyperbolic functions in the manner

of Appendix C. When m→ 0, Jacobi elliptic function degenerate as trigonometric

functions in the manner of Appendix C. So we can get the corresponding hyperbolic

function solutions and trigonometric function solutions.

5. One dimensional modified complex Ginzburg- Landau equation

5.1. The (G
′
/G) method. We will exert (G

′
/G) -expansion method to solve the

MCGL equation [25]”.

We consider the MCGL equation in the following form

iΦt + pΦxx + q|Φ|2Φ =

a
ΦxΦ∗x

Φ∗
+ b

(
1

2
(ΦΦ∗)xxΦΦ∗ − 1

4
((ΦΦ∗)x)2

)
1

ΦΦ∗2
+ iγΦ.

(5.1)

To solve (5.1) , consider the wave transformation

Φ(x, t) = u(ξ)ei(kx−wt), ξ = x− ct, (5.2)

where u(ξ) is a real function, c represents the wave speed, k,w are constants that

to be determined later. We substitute (5.2)” into (5.1)” to get following complex

equation for u ,

−icu
′
+ wu+ p(u

′′
+ 2iku

′
− k2u) + qu3 = a

(u
′
)2 + k2u2

u
+ bu

′′
+ iγu. (5.3)

The real and imaginary parts of equation (5.2)” are separated which yield the following

equations.

wu+ p(u
′′
− k2u)u+ qu4 = a((u

′
)2 + k2u2) + bu

′′
, (5.4)
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and

(2pk − c)u
′

= γu (5.5)

where u
′

=
du

dξ
and u

′′
=
d2u

dξ2
with ξ = x− ct.

Now (5.5)” gives the velocity of the soliton as

c = 2pk − Lnu

t
. (5.6)

Eq. (5.4) , by balancing u
′′
u and u4 we get

m+ 2 +m = 4m⇒ m = 1. (5.7)

Therefore m = 1 reduces Eq. (2.4)” to

u(ξ) = a0 + a1
G
′
(ξ)

G(ξ)
. (5.8)

Substituting (5.8)” into Eq. (5.4) , collecting the coefficients of each power of (
G
′

G
),

and solve the system of algebraic equations using Maple, we obtain the set of solution:

a0 = −1

3

b(a− bλ)

ap
, a1 =

2

3

b2

ap
, µ = −1

4

a2 − λ2b2

b2
,

k = k,w =
2pa2 + ak2b2 + k2b2p

b2
, q = −9

2

p3a2

b4
.

(5.9)

By substituting (5.9)” into (5.8)” and using (2.6) , we obtain

Case 1. If
√
λ2 − 4µ > 0, then we have the hyperbolic solution

Φ1(x, t) = e
i(kx−wt)

{
−

1

3

b(a− bλ)

ap
+

2

3

b2

ap

[
1

2

√
λ2 − 4µ

 c1 cosh(
1

2

√
λ2 − 4µ(x− ct)) + c2 sinh(

1

2

√
λ2 − 4µ(x− ct))

c1 sinh(
1

2

√
λ2 − 4µ(x− ct)) + c2 cosh(

1

2

√
λ2 − 4µ(x− ct))

− λ

2

]}
,

(5.10)
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where µ = −1

4

a2 − λ2b2

b2
, w =

2pa2 + ak2b2 + k2b2p

b2
and c = 2pk − Lnu

t
.

Case 2. If
√
λ2 − 4µ < 0, then we have the trigonometric solution

Φ2(x, t) = e
i(kx−wt)

{
−

1

3

b(a− bλ)

ap
+

2

3

b2

ap

[
1

2

√
4µ− λ2

−c1 sin(
1

2

√
4µ− λ2(x− ct)) + c2 cos(

1

2

√
4µ− λ2(x− ct))

c1 cos(
1

2

√
4µ− λ2(x− ct)) + c2 sin(

1

2

√
4µ− λ2(x− ct))

− λ

2

]}
,

(5.11)

where µ = −1

4

a2 − λ2b2

b2
, w =

2pa2 + ak2b2 + k2b2p

b2
and c = 2pk − Lnu

t
.

Case 3. If λ2 − 4µ = 0 then we have the rational solution

Φ3(x, t) =

{
−1

3

b(a− bλ)

ap
+

2

3

b2

ap

[
c2

c2(x− ct) + c1
− λ

2

]}
ei(kx−wt), (5.12)

where µ = −1

4

a2 − λ2b2

b2
, w =

2pa2 + ak2b2 + k2b2p

b2
and c = 2pk − Lnu

t
.

In particular, if we set c2 = 0, c1 6= 0, λ > 0 and µ = 0, in (5.10) , then we

get

Φ4(x, t) =

{
−

1

3

b(a− bλ)

ap
+

2

3

b2

ap

[
1

2
λcsch(λ(x− ct)) −

λ

2

]}
ei(kx−wt), (5.13)

where w =
2pa2 + ak2b2 + k2b2p

b2
and c = 2pk − Lnu

t
.

We make graphs of obtained solutions, so that they can depict the importance of

each obtained solution and physically interpret the importance of parameters. Some

of our obtained traveling wave solutions are represented in Figure1 and Figure2

whit the aid of Maple. We choose a = 1, b = −1, p = 1, λ = 5, k = 2, w = 10,

i = −1, c = 3, c1 = −c2.

5.2. The homogeneous balance method. According to step 2, we assume that

Eq. (5.4)” possesses the solutions in the form

u(ξ) = a0 + a1G(ξ). (5.14)

Substituting (5.14)” with (3.2)” into Eq. (5.4)” and equating each of the coefficients

of Gi(ξ), i = 0, 1, . . . , 4 to zero, we obtain system of algebraic equation. To avoid

tediousness, we omit the overdetermined algebraic equations. From the output of

Maple, we obtain
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Figure 1. Graphic of the periodic solutions Φ1, Φ2.

Figure 2. Graphic of the periodic solutions Φ3, Φ4.

Case 1.

a0 = 0 a1 = −2w(−2 + k2)

p(5k2 + 1
, (5.15)

and k,w are arbitrary constants.

The solution of Eq. (5.1)” corresponding to (5.15)” is

u1(x, t) = −w(−2 + k2)

p(5k2 + 1

[
1− tanh(

x

2
− c

2
t)
]
ei(kx−wt). (5.16)

u2(x, t) = −w(−2 + k2)

p(5k2 + 1

[
1− coth(

x

2
− c

2
t)
]
ei(kx−wt). (5.17)
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Case 2.

a0 = −2w(−2 + k2)

p(5k2 + 1
, a1 =

2w(−2 + k2)

p(5k2 + 1
, (5.18)

and k,w are arbitrary constants.

The solution of Eq. (5.1)” corresponding to (5.18)” is

u3(x, t) = −
2w(−2 + k2)

p(5k2 + 1
+
w(−2 + k2)

p(5k2 + 1

[
1 − tanh(

x

2
−
c

2
t)
]
ei(kx−wt). (5.19)

u4(x, t) = −
2w(−2 + k2)

p(5k2 + 1
+
w(−2 + k2)

p(5k2 + 1

[
1 − coth(

x

2
−
c

2
t)
]
ei(kx−wt). (5.20)

We choose p = 1, c = 1, k = 1, w = 1.

Figure 3. Graphic of the periodic solutions u1, u2.

5.3. The extended F-expansion method. We suppose that the solution to ODE

(5.4)” can be expressed by

u(ξ) = a0 + a1F (ξ) + b1F
−1(ξ), (5.21)

where a0, a1, a2 are constants to be determined. Substituting (5.21)” into Eq. (5.4) ,

and using (4.2) , the left-hand side of Eq. (5.4)” can be converted into a finite series

in F p(ξ)(p = −4, . . . , 4). Equating each coefficient of F p to zero yields a system of

algebraic equations. From the output of Maple, we obtain

Case 1.

a1 =
1

12

(2bQ+ w)b1
bR

k =

√
w

6b
, (5.22)
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a0, b1, w is an arbitrary real constant.

Case 2.

k =

√
−7w

2b
, a0 = −1

3

p

q
, b1 =

2

p

√
bR

2w
, (5.23)

a1, w is an arbitrary real constant.

Substituting (5.22)” and (5.23)” into Eq. (5.21)” we obtain the following traveling

wave solutions:

u1(x, t) =

[
a0 +

1

12

(2bQ+ w)b1
bR

F (ξ) + b1F
−1(ξ)

]
e
i(

√
w

6b
x−wt)

, (5.24)

u2(x, t) =

[
−1

3

p

q
+ a1F (ξ) +

2

p

√
bR

2w
F−1(ξ)

]
e
i(

√
−7w

2b
x−wt)

, (5.25)

where ξ = x− ct.
With the aid of Appendices A and B, from the concentration formulae of the solutions

we can obtain the exact solutions expressed by Jacobi elliptic functions for the 1D-

MCGL equation.

With the aid of Appendix A, selecting

F (ξ) = sn(ξ), F−1(ξ) = ns(ξ), P = m2, Q = −(1 +m2), R = 1,

and inserting these into (5.24)” and (5.25)” yields
u3(x, t) =

[
a0 +

1

12

(−2b(1 +m2) + w)b1

b
sn(ξ) + b1ns(ξ)

]
e
i(

√
w

6b
x−wt)

,

u4(x, t) =

[
−

1

3

p

q
+ a1sn(ξ) +

2

p

√
b

2w
ns(ξ)

]
e
i(

√
−7w

2b
x−wt)

(5.26)

Inserting

F (ξ) = sc(ξ), F−1(ξ) = cs(ξ), P = 1−m2, Q = 2−m2, R = 1,

into (5.24)” and (5.25)” yields
u5(x, t) =

[
a0 +

1

12

(2b(2 −m2) + w)b1

b
sc(ξ) + b1cs(ξ)

]
e
i(

√
w

6b
x−wt)

,

u6(x, t) =

[
−

1

3

p

q
+ a1sc(ξ) +

2

p

√
b

2w
cs(ξ)

]
e
i(

√
−7w

2b
x−wt)

(5.27)

Inserting

F (ξ) = dn(ξ), F−1(ξ) = nd(ξ), P = −1, Q = 2−m2, R = m2 − 1,
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into Eq. (5.24)” and (5.25)” yields
u7(x, t) =

[
a0 +

1

12

(2b(2 −m2) + w)b1

b(m2 − 1)
dn(ξ) + b1nd(ξ)

]
e
i(

√
w

6b
x−wt)

,

u8(x, t) =

[
−

1

3

p

q
+ a1dn(ξ) +

2

p

√
b(m2 − 1)

2w
nd(ξ)

]
e
i(

√
−7w

2b
x−wt)

(5.28)

Inserting

F (ξ) = cn(ξ), F−1(ξ) = nc(ξ), P = −m2, Q = 2m2 − 1, R = 1−m2,

into Eq. (5.24)” and (5.25)” yields
u9(x, t) =

[
a0 +

1

12

(2b(−1 + 2m2) + w)b1

b(−m2 + 1)
cn(ξ) + b1nc(ξ)

]
e
i(

√
w

6b
x−wt)

,

u10(x, t) =

[
−

1

3

p

q
+ a1cn(ξ) +

2

p

√
b(−m2 + 1)

2w
nc(ξ)

]
e
i(

√
−7w

2b
x−wt)

(5.29)

If sn(ξ) and ns(ξ) are replaced by cd(ξ) and dc(ξ) respectively, we have
u11(x, t) =

[
a0 +

1

12

(−2b(1 +m2) + w)b1

b
cd(ξ) + b1dc(ξ)

]
e
i(

√
w

6b
x−wt)

,

u12(x, t) =

[
−

1

3

p

q
+ a1cd(ξ) +

2

p

√
b

2w
dc(ξ)

]
e
i(

√
−7w

2b
x−wt)

(5.30)

where ξ = x− ct.

In the limit case when m → 1, some solitary wave solutions can be obtained, for
example:

u3, u4 →


u13(x, t) =

[
a0 +

1

12

(−4b+ w)b1

b
tanh(ξ) + b1 coth(ξ)

]
e
i(

√
w

6b
x−wt)

,

u14(x, t) =

[
−

1

3

p

q
+ a1 tanh(ξ) +

2

p

√
b

2w
coth(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.31)

u5, u6 →


u15(x, t) =

[
a0 +

1

12

(2b+ w)b1

b
sinh(ξ) + b1csch(ξ)

]
e
i(

√
w

6b
x−wt)

,

u16(x, t) =

[
−

1

3

p

q
+ a1 sinh(ξ) +

2

p

√
b

2w
csch(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.32)

u7, u8 →


u17(x, t) = [a0 + b1 cosh(ξ)] e

i(

√
w

6b
x−wt)

,

u18(x, t) =

[
−

1

3

p

q
+ a1sech(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.33)

where ξ = x− ct.
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In the limit case when m → 0, some trigonometric function solutions (single peri-
odic wave solutions) can be obtained, for example:

u3, u4 →


u19(x, t) =

[
a0 +

1

12

(−2b+ w)b1

b
sin(ξ) + b1 csc(ξ)

]
e
i(

√
w

6b
x−wt)

,

u20(x, t) =

[
−

1

3

p

q
+ a1 sin(ξ) +

2

p

√
b

2w
csc(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.34)

u5, u6 →


u21(x, t) =

[
a0 +

1

12

(4b+ w)b1

b
tan(ξ) + b1 cot(ξ)

]
e
i(

√
w

6b
x−wt)

,

u22(x, t) =

[
−

1

3

p

q
+ a1 tan(ξ) +

2

p

√
b

2w
cot(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.35)

u9, u10 →


u23(x, t) =

[
a0 +

1

12

(−2b+ w)b1

b
cos(ξ) + b1 sec(ξ)

]
e
i(

√
w

6b
x−wt)

,

u24(x, t) =

[
−

1

3

p

q
+ a1 cos(ξ) +

2

p

√
b

2w
sec(ξ)

]
e
i(

√√√√−7w

2b
x−wt)

(5.36)

where ξ = x− ct.

We will provide the figures of u13, u15, u18, u19, u22, u24 for direct-viewing anal-

ysis. We choose a0 = 0, b1 =
1

2
, a1 = w = 1, p = q = 1.
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Figure 4. Graphic of the periodic solutions u13, u15.

Figure 5. Graphic of the periodic solutions u18, u19.

Figure 6. Graphic of the periodic solutions u22, u24.
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Table 1. Relations between values of (P,Q,R) and corresponding

F (ξ) in ODE (F
′
)2 = PF 4 +QF 2 +R

P Q R F
m2 −(1 +m2) 1 sn(ξ), cd(ξ)
−m2 2m2 − 1 1−m2 cn(ξ)
−1 2−m2 −1 +m2 dn(ξ)
1 −(1 +m2) m2 ns(ξ), (sn(ξ)−1

1−m2 2m2 − 1 −m2 nc(ξ), cn(ξ)−1

m2 − 1 2−m2 −1 nd(ξ)

1−m2 2−m2 1 sc(ξ) =
sn(ξ)

cn(ξ)

−m2(1−m2) −2 + 2m2 14 sd(ξ) =
sn(ξ)

dn(ξ)

1 2−m2 1−m2 cs(ξ) =
cn(ξ)

sn(ξ)

1 2m2 − 1 −m2(1−m2) ds(ξ) =
dn(ξ)

sn(ξ)

Appendix A

Appendix B

Jacobi elliptic functions with modulus 0 < m < 1.

dn2(ξ) = −m2sn2(ξ) + 1, dn2(ξ) = m2cn2(ξ) + (1−m2),

dc2(ξ) = (1−m2)ns2(ξ) +m2, ns2(ξ) = cs2(ξ) + 1

cd2(ξ) = −m
2 − 1

m2
nd2(ξ) +

1

m
, nd2(ξ) = m2sd2(ξ) + 1,

c2(ξ) = (1−m2)nc2(ξ) +m2, dc2(ξ) = (1−m2)sc2(ξ) + 1,

cn2(ξ) = −sn2(ξ) + 1, cd2(ξ) = (m2 − 1)sd2(ξ) + 1, nc2(ξ) = sc2(ξ) + 1.

Appendix C

Table 2. Jacobi elliptic functions degenerate as hyperbolic func-
tions when m→ 1

sn(ξ) tanh(ξ) dc(ξ) 1
cn(ξ) sech(ξ) ds(ξ) csch(ξ)
dn(ξ) sech(ξ) cs(ξ) csch(ξ)
sc(ξ) sinh(ξ) nd(ξ) cosh(ξ)
sd(ξ) sinh(ξ) nc(ξ) cosh(ξ)
cd(ξ) 1 ns(ξ) coth(ξ)
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Table 3. Jacobi elliptic functions degenerate as trigonometric func-
tions when m→ 0

sn(ξ) sin(ξ) dc(ξ) sec(ξ)
cn(ξ) cos(ξ) ds(ξ) csc(ξ)
dn(ξ) 1 cs(ξ) cot(ξ)
sc(ξ) tan(ξ) nd(ξ) 1
sd(ξ) sin(ξ) nc(ξ) sec(ξ)
cd(ξ) cos(ξ) ns(ξ) csc(ξ)
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6. Conclusion

In this work, we have obtain the exact traveling wave solutions in terms of hy-

perbolic, trigonometric, and rational functions for the 1D-MCGL equation by using

the (
G
′

G
)-expansion method, extended F-expansion method and homogeneous balance

method. By introducing appropriate transformations and using extended F-expansion

method, we have been able to obtain in a unified way with the aid of symbolic compu-

tation system Maple, a series of solutions including single and boned nondegenerative

Jacobi elliptic function solutions and their degenerative solutions to a some class of

nonlinear evolution equations of special interest in mathematical physics. It seems

that the extended F-expansion is more effective than the F-expansion and jacobi el-

liptic function expansion. On comparing this method with the other methods, we

see that the homogeneous balance method is much more simpler than these methods.

Also we deduce that the homogeneous balance method is direct, effective and can be

applied to many other nonlinear evolution equations. In future, this methods provides

a powerful mathematical tool to obtain more general exact solutions of a great many

nonlinear PDEs in mathematical physics.
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