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1. Introduction

Wavelets and multiwavelets are the interesting object in mathematical sciences

which have many applications in various fields such as image processing, signal de-

noising, physics and etc [5, 11, 15, 17]. For instance they can be used as the basis

functions to numerical solution of boundary value problems [1, 2, 4, 7, 14, 18].

A Biorthogonal Multiwavelet System(BMS) contains a pair of biorthogonal multiscal-

ing functions and the corresponding pair of multiwavelets. BMS plays an important

role when the original multiwavelet is not orthogonal. See [6,9] for more information

about constructions and samples of BMS. We use the flatlet multiwavelet and will
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present an algebraic tool to extend it to a fractional BMS in this paper and the com-

putation of the operational matrix of derivative.

This paper is organized as follows: In Section 2, the flatlet scaling functions and

multiwavelets on [0, 1] is given. In Section 3, we construct the fractional biorthog-

onal basis for the flatlet multiwavelets. Next we derive the operational matrix of

fractional derivative which is applicable for numerical solution of the given boundary

value problem. In Section 4, the proposed method is used to solve some boundary

value problems. In Section 5, our computational results are reported and we demon-

strate the accuracy of the proposed numerical scheme by some test problems. The

paper ends with a brief conclusion in Section 6.

2. Preliminaries and notation

2.1. Brief view on wavelets.

Definition 2.1. The inner product of two functions f(x) and g(x) on [0, 1] with

respect to the given nonnegative weight function w(x) is defined as

〈u, v〉w =

∫ 1

0

u(x)v(x)w(x)dx.

Definition 2.2. A multiresolution analysis (MRA) is an infinite nested sequence of

subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

with the following properties

i.
⋃

n Vn = L2,

ii.
⋂

n Vn = {0},
iii. f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1 for all n ∈ Z,

iv. There exists a vector function Φ = [φ1, φ2, · · · , φr]T , φk ∈ L2 such that

V0 = span{φl(x− k) : l = 1, 2, · · · , r; k ∈ Z}.

According to definition (2.2) we can represent Φ(x) in terms of Φ(2x − k). Also

corresponding to the sequence of subspases Vj , we can find a sequence of subspaces

Wj which are complements of Vj in Vj+1, i.e.

Vj+1 = Vj ∔Wj .

Also there exists a vector function Ψ = [ψ1, ψ2, · · · , ψr]
T such that

W0 = span{ψj(x− k), j = 1, 2, · · · , r; k ∈ Z}.



270 M.R.A. DARANI∗ AND S. BAGHERI

Therefor according to the third property of definition (2.2) for the r vector functions

Φ(x) and Ψ(x), we have the so-called two-scale relation as follows

Φ(x) = [P1,P2, · · ·Pk][Φ(2x),Φ(2x− 1), · · · ,Φ(2x− k)]T , (2.1)

Ψ(x) = [Q1,Q2, · · ·Qk][Φ(2x),Φ(2x− 1), · · · ,Φ(2x− k)]T . (2.2)

If the multiscaling function Φ be such that 〈Φ,ΦT 〉 = Ir×r, then we say Φ is orthog-

onal. If we have not the orthogonality condition, we can find another multiscaling

vector function Φ̃ such that

〈Φ, Φ̃T 〉 = Ir×r.

In this case two multiscaling functions Φ and Φ̃ are called biorghogonal. Note that

we need more conditions to have orthogonal or biorthogonal system. One can refer

to [12] for more discussion about multiwavelets and biorthogonality condition.

2.2. Flatlet Multiwavelet System. A flatlet multiwavelet system (FMS) in gen-

eral consists of m + 1 scaling functions and m + 1 wavelets defined on [0, 1], called

multiscaling functions and multiwavelets, respectively. The simplest example for the

FMS is identical to the well known Haar wavelets. We can follow the same procedures

as Haar wavelets to construct higher order FMS. The scaling functions in this system

are defined as follows

φi(x) =











1 i
m+1 ≤ x < i+1

m+1 ,

0 o.w.

, i = 0, 1, ...,m. (2.1)

We consider ψ0(x), · · · , ψm(x) as the flatlet wavelets corresponding to flatlet scaling

functions. They are constructed by using the two-scale equation which will be intro-

duced next, for multiwavelet system. For simplicity, we put flatlet scaling functions

and wavelets into two vector functions

Φ(x) =





















φ0(x)
...

φi(x)
...

φm(x)





















,Ψ(x) =





















ψ0(x)
...

ψi(x)
...

ψm(x)





















. (2.2)

The two-scale relation for FMS expressed as

Φ(x) = P

[

Φ(2x)

Φ(2x− 1)

]

,Ψ(x) = Q

[

Φ(2x)

Φ(2x− 1)

]

, (2.3)
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where P and Q are (m+ 1)× 2(m+ 1) matrices. An efficient method was described

in [9] for computing P and Q. As an example for the first order flatlet basis functions

(m = 1) we get

φ0(x) =

{

1 for 0 ≤ x < 1
2 ,

0 o.w.

φ1(x) =

{

1 for 1
2 ≤ x < 1 ,

0 o.w.

(2.4)

In this case Q and P are computed as

Q =

[

1√
2

− 1√
2

− 1√
2

1√
2

1√
10

− 3√
10

3√
10

− 1√
10

]

, P =

[

1 1 0 0

0 0 1 1

]

. (2.5)

The multiscaling functions and multiwavelet in FMS are not mutually orthogonal.

So we need to construct biorthogonal flatlet multiwavelet system (BFMS) in order to

reduce the computation cost in our approximations which is described in next section.

2.3. The fractional derivative in the Caputo sense. Here we recall a few essen-

tial concepts of the fractional calculus. There are different definitions of fractional

differentiation of positive real order α, which are not necessarily equivalent to each

other [10, 16]. We use the Caputo fractional derivative, which allows the utilization

of initial and boundary conditions involving integer order derivatives.

Definition 2.3. The fractional-order derivative in Caputo sense is defined as

Dαf(x) =
1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)α+1−n
dt, n− 1 < α < n, n ∈ N, (2.6)

where α > 0 is the order of the derivative, Γ(·) is the Gamma function and n = [α]+1.

Note that for α ∈ N, the Caputo differential operator coincides with the differential

operator of integer order. Also the Caputo’s fractional differentiation is a linear

operator:

Dα(νf(x) + µg(x)) = νDαf(x) + µDαg(x), (2.7)

where ν and µ are constants. Also, for the Caputo’s derivative we have [10],

DγC = 0, (C is a constant),

(2.8)
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Dγxα =











































Γ(α+1)
Γ(α+1−γ)x

α−γ ,

α ∈ N0 and α ≥ ⌈γ⌉
or

α /∈ N and α > ⌊γ⌋,

0, α ∈ N0 and α < ⌈γ⌉,

(2.9)

where N = {1, 2, ...} and N0 = {0, 1, 2, ...}. Note that according to (2.9) we have

Dαxkα =
Γ(α+ 1)

Γ
(

(k − 1)α+ 1
)x(k−1)α. (2.10)

Therefore the following matrix relation holds

DαXα = D1Xα, (2.11)

where

D1 =





















0 0 · · · 0 0
Γ(α+1)
Γ(1) 0 · · · 0 0

0 Γ(α+1)
Γ(α+1) 0 0 0

0 0
. . . 0 0

0 0 0 Γ(α+1)

Γ
(

(r−1)α+1
) 0





















, Xα =













1

xα

...

xrα













.

Definition 2.4. A fractional polynomial p of degree n and order α is defined by

pn,α(x) = a0 + a1x
α + · · ·+ anx

nα,

where n is an arbitrary natural number and α is a strictly positive real number.

3. Biorthogonal FMS

Now we use the same method as [9] to construct the biorthogonal FMS(BFMS).

Let Φ̃(x) and Ψ̃(x) be dual scaling and wavelet vector functions in BFMS, respectively

as

Φ̃(x) =





















φ̃0(x)
...

φ̃i(x)
...

φ̃m(x)





















, Ψ̃(x) =





















ψ̃0(x)
...

ψ̃i(x)
...

ψ̃m(x)





















. (3.1)
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We use the change of variable t = xα in the original definition of dual functions in [9]

for the given positive real number α and introduce φ̃i(x) and ψ̃i(x), i = 0, 1, · · · ,m,
as

φ̃i(x) =

{

ai1 + ai2x
α + ...+ ai,m+1x

mα 0 ≤ x < 1,

0 otherwise,
(3.2)

ψ̃i(x) =











b1i1 + b1i2x
α + ...+ b1i,m+1x

mα 0 ≤ x < 1
2 ,

b2i1 + b2i2x
α + ...+ b2i,m+1x

mα 1
2 ≤ x < 1,

0 otherwise,

(3.3)

with the biorthogonality conditions as

〈φ̃i, φj〉w =

∫ 1

0

φ̃i(x)φj(x)w(x)dx = δi,j , (3.4)

〈ψ̃i, ψj〉w =

∫ 1

0

ψ̃i(x)ψj(x)w(x)dx = δi,j , (3.5)

〈ψ̃i, φj〉w =

∫ 1

0

ψ̃i(x)φj(x)w(x)dx = 0, (3.6)

i, j = 0, 1, · · · ,m,

where

w(x) = xα−1. (3.7)

By using biorthogonality conditions (3.4)-(3.6), we can obtain the unknown coeffi-

cients ai,j , b
1
i,j and b2i,j for i, j = 0, · · · ,m.

Note that we can write

Φ̃(x) = AXα, (3.8)

where A is the matrix of unknown coefficients and Xα is defined in (2.10).

Theorem 3.1. The system determined in (3.4)-(3.6) has unique solution.

Proof. By changing the variable t = xα and same way as [9] the theorem can easily

be proved. �

Remark 3.2. According to [9] we see Φ̃ and Ψ̃ hold in the following two-scale relation

Φ̃(x) = P̃

[

Φ̃(2x)

Φ̃(2x− 1)

]

, Ψ̃(x) = Q̃

[

Φ̃(2x)

Φ̃(2x− 1)

]

, (3.9)

where P̃ and Q̃ are (m+ 1)× 2(m+ 1) matrices.
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3.1. Function approximation. We can approximate a given function f(x) defined

in [0,1] by the flatlet scaling functions as

f(x) ≃
m
∑

i=0

2J−1
∑

k=0

ci,kφi(2
Jx− k),

for some m and J , where

ci,k =

∫ 1

0

f(x)φ̃i(2
Jx− k)w(x)dx ,

i = 0, 1, ...,m, k = 0, 1, ..., 2J − 1, (3.10)

and w(x) is defined in (3.7). Also, we can approximate f(x) by the flatlet or dual

flatlet multiwavelets, respectively, as

f(x) ≃
m
∑

i=0

c′iφi(x) +

m
∑

i=0

J
∑

l=0

2l−1
∑

k=0

di,l,kψi(2
lx− k), (3.11)

f(x) ≃
m
∑

i=0

c̃′iφ̃i(x) +

m
∑

i=0

J
∑

l=0

2l−1
∑

k=0

d̃i,l,kψ̃i(2
lx− k), (3.12)

where

c′i =

∫ 1

0

f(x)φ̃i(x)w(x)dx,

di,l,k =

∫ 1

0

f(x)ψ̃i(2
lx− k)w(x)dx,

c̃′i =

∫ 1

0

f(x)φi(x)w(x)dx,

d̃i,l,k =

∫ 1

0

f(x)ψi(2
lx− k)w(x)dx,

i = 0, . . . ,m; l = 0, . . . , J ; k = 0, . . . , 2l − 1.

We can write the expressions (3.11) and (3.12) respectively in the following matrix

forms

f(x) ≃ ΘT f, (3.13)

f(x) ≃ Θ̃T f̃, (3.14)
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where

Θ(x) =





































φ0(x)
...

φm(x)

ψ0(x)
...

ψi(2
lx− k)
...

ψm(2Jx− 2J + 1)





































, Θ̃(x) =





































φ̃0(x)
...

φ̃m(x)

ψ̃0(x)
...

ψ̃i(2
lx− k)
...

ψ̃m(2Jx− 2J + 1)





































, (3.15)

and

f =
[

c′0, · · · , c′m, d0,0,0, · · · , di,l,k, · · · , dm,J,2J−1

]T
,

f̃ =
[

c̃′0, · · · , c̃′m, d̃0,0,0, · · · , d̃i,l,k, · · · , d̃m,J,2J−1

]T

.

Also using (3.9), Θ̃ can expressed as

Θ̃(x) = Q′Π(x), (3.16)

where

Q′ =





































I 0 · · · 0 · · · 0 · · · 0

0 Q̃ · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
...

...

0 0 · · · Q̃ · · · 0 · · · 0
...

...
...

...
. . . · · · · · ·

...

0 0 · · · 0 · · · Q̃ · · · 0
...

...
...

...
... 0

. . . 0

0 0 · · · 0 · · · 0 · · · Q̃





































,
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and

Π(x) =

























































Φ̃(x)

Φ̃(2x)

Φ̃(2x− 1)
...

Φ̃(2ix)

Φ̃(2ix− 1)
...

Φ̃(2i+1x− 2i+1 + 2)

Φ̃(2i+1x− 2i+1 + 1)
...

Φ̃(2J+1x− 2J+1 + 2)

Φ̃(2J+1x− 2J+1 + 1)

























































,

I is the identity matrix with m+1 rows and columns and Q̃ is defined in (3.9). Note

that this matrix is a diagonal block matrix with 2J+1 − 1 nonzero elements. Using

(3.16), we can rewrite (3.14) as

f(x) ≃ ΠT ·Q′T · f. (3.17)

3.2. The Operational Matrix of Fractional Derivative. For simplicity and in

order to reduce the computation cost we have to express the expansion of Dαf(x) in

terms of the expansion of f(x) which can be done by using the operational matrix of

fractional derivative (OMFD). By using (3.14) let

Dαf(x) ≃ Θ̃T ḟ. (3.18)

The OMFD Dα connects two vectors f and ḟ by

ḟ = Dαf. (3.19)

So OMFD helps us to express the coefficients of expansion Dαf(x) in terms of the

coefficients of expansion f(x). Now we express our method to determine the entire

elements of OMFD. First from (2.11) and (3.8) we have

DαΦ(x) = A ·D1 ·X · χ[0,1](x).

so
DαΦ(x) = A ·D1 ·A−1 ·A ·X · χ[0,1](x)

= A ·D1 ·A−1 · Φ(x).
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Hence

DαΦ(x) = ∆1 · Φ(x),
where ∆1 = A·D1 ·A−1. Applying this method to calculate derivative of each element

of Π(x) yields

DαΦ(2ix− l) = 2iα ·∆1 · Φ(2ix− l),

i = 0, 1, · · · , J ; l = 0, 1, · · · , 2i − 1,

therefore

DαΠ(x) = ∆ · Π(x), (3.20)

where ∆ is a block matrix with entries

∆i,j =

{

2[log2 i]α∆1 i = j

0(m+1)×(m+1) i 6= j
,

i, j = 1, 2, · · · , 2J+1 − 1.

Now, using (3.17) yields

Dαf(x) ≃ ΠT ·∆T ·Q′T · f, (3.21)

Also the given function g(x, y) could be approximated as

g(x, y) ≃ Θ̃T (y)GΘ(x), (3.22)

where

[G]i,j =

∫ 1

0

∫ 1

0

g(x, y)θ̃i(x)θj(y)x
α−1yα−1dxdy , i, j = 1, 2, · · · , N.

Here we use (3.14) for approximation of the functions because these basis functions

are in terms of piecewise fractional polynomials of degree m. Hence it has higher

order approximations than (3.13).

Remark 3.3. We use Gauss-Legendre quadrature for computation the coefficients of

given functions.

4. Solving the integro-differential equations

In this section we solve the fractional integro-differential equations of the general

form

Dαu(x) = a(x)u(x) + g(x) +

∫ 1

0

k(x, t)F (u(t))dt, (4.1)
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where a, g, k and F are given functions. We first, approximate the given functions as

u(x) = uT Θ̃(x),

k(x, t) = ΘT (t)KΘ̃(x),

F (u(t)) = fT Θ̃(x), (4.2)

where u and f are unknown vectors and K is N ×N matrix. We start approximating

the solution of (4.1) by using (3.21) and substituting (4.2) into (4.1) respectively,

which results

uTQ′∆Π(x) = a(x)uT Θ̃(x) + g(x) +

∫ 1

0

fT Θ̃(t)ΘT (t)KΘ̃(x)dt, (4.3)

uT Θ̃(0) = y0, (4.4)

uT Θ̃(1) = y1. (4.5)

The biorthogonality condition yields

uTQ′∆Π(x) = a(x)uT Θ̃(x) + g(x) + fTKΘ̃(x), (4.6)

which is an algebraic equation with 2N unknown coefficients. To determine these

unknowns, we collocate (4.6) in N − 2 evenly spaced nodes in [0, 1] as bellow

uTQ′∆Π(xi) = a(xi)u
T Θ̃(xi) + g(xi) + fTKΘ̃(xi), (4.7)

xi =
i

N
, i = 2, 3, · · · , N − 1.

The above equations together with two equations (4.4) and (4.5), constitutes a system

with N linear equations. We need N equations to form a system of 2N equations

with 2N unknowns. To this end we use the following relation

f
(

x,uT Θ̃(x)
)

= f
T Θ̃(x), (4.8)

next collocate it in N evenly spaced nodes in [0, 1]. Hence we reach to a system

with N linear and N nonlinear equations. By using the Newton iteration method, we

can solve this system and obtain the unknown coefficients. In the next section some

numerical examples are presented.

5. Numerical Experiments

To show the efficiency of our method, we apply it to some test problems.
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Figure 1. Approximate solution of the unknown function in exam-
ple 1, for m = 3, J = 2 and different values of α
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Example 1. Consider the following problem,

Dαy(x) = −y(x) +
∫ 1

0

y(t)dt+ e−1 − 1, x ∈ [0, 1],

y(0) = 1. (5.1)

When α = 1, this problem has the exact solution y(x) = e−x. Table 1 shows the

absolute values of error in some points for α = 1 comparing with [3,13]. In Figure 1,

we see the approximate solution tends to the exact solution where α tends to 1.

Example 2. The nonlinear problem

Dαy(x) + (1 + x)y(x) = f(x) + 4

∫ 1

0

xty(t)
2
dt, x ∈ [0, 1]

y(0) = 1, (5.2)

where f(x) = −xe−x − x+ 3xe−2, for α = 1 has the exact solution y(x) = e−x. The

absolute values of error for α = 1 are shown in Table 2. Figure 2 shows approximate

curve for some different values of α.
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Table 1. Absolute values of error for Example 1

ti B-spline wavelet [13] m=5,J=2 m=6,J=2

0.0 0.0 0.0 0.0

0.1 3.1×10−6 1.9 ×10−8 1.5 ×10−10

0.2 2.7×10−6 3.1×10−7 2.5 ×10−10

0.3 2.5×10−6 3.7 ×10−7 3.8 ×10−10

0.4 2.5×10−6 4.8 ×10−7 4.6 ×10−10

0.5 5.3×10−7 2.9 ×10−7 2.4 ×10−9

0.6 2.1×10−6 2.7 ×10−7 2.2 ×10−9

0.7 1.7×10−6 2.6 ×10−7 2.1 ×10−9

0.8 1.5×10−6 2.5 ×10−7 2.0 ×10−9

0.9 1.4×10−6 2.4 ×10−7 2.0 ×10−9

1.0 0.0 4.3 ×10−7 9.0 ×10−9

Table 2. Absolute values of error

ti m=3, J=2 m=5, J=3 m=6, J=2

0.0 0.0 0.0 0.0

0.1 2.3×10−6 2.8×10−8 2.6 ×10−10

0.2 4.7×10−6 5.5×10−8 4.9 ×10−10

0.3 1.0×10−5 7.3×10−8 7.1 ×10−10

0.4 8.1×10−6 9.5×10−8 8.9 ×10−10

0.5 1.2×10−4 1.3×10−7 1.8 ×10−10

0.6 6.9×10−5 1.3×10−7 3.4 ×10−10

0.7 5.8×10−5 8.9×10−8 1.1 ×10−10

0.8 5.8×10−5 5.7×10−8 7.1 ×10−11

0.9 4.4×10−7 2.6×10−8 2.1 ×10−10

1.000 0.0 0.0 0.0
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Figure 2. Approximate solution of the unknown function in exam-
ple 2, for m = 3, J = 2 and different values of α
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Example 3. The following problem

D
1

2 y(x) =
8
3x

3

2 − 2x
1

2

√
π

+
x

12
+

∫ 1

0

xty(t)dt,

y(0) = 0,

has the exact solution y(x) = x2−x. We reach to the exact solution by taking m ≥ 4

and arbitrary value for J .

6. Conclusion

The fractional type of biorthogonal flatlet multiwavelet system is constructed in

this paper. We solve a second order integro-differential equation by employing the

presented mathematical method. Some test problems are presented to show efficiency

of proposed method.
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