
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 2, No. 4, 2014, pp. 243-255

Generalized B-spline functions method for solving optimal control
problems

Yousef Edrisi Tabriz∗
Department of Mathematics,
Payame Noor University,
PO BOX 19395-3697, Tehran, Iran
E-mail: yousef edrisi@pnu.ac.ir

Aghileh Heydari
Department of Mathematics,
Payame Noor University,
PO BOX 19395-3697, Tehran, Iran
E-mail: a heidari@pnu.ac.ir

Abstract In this paper we introduce a numerical approach that solves optimal control problems
(OCPs) using collocation methods. This approach is based upon B-spline functions.

The derivative matrices between any two families of B-spline functions are utilized

to reduce the solution of OCPs to the solution of nonlinear optimization problems.
Numerical experiments confirm our theoretical findings.
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1. Introduction

Splines are ubiquitous in science and engineering. Sometimes they play a leading
role as generators of paths or curves, but often they are hidden inside, for example,
software packages for solving dynamic equations, in graphics, and in numerous other
applications.

The rapid development of spline functions is due primarily to their great usefulness
in applications. Classes of spline functions possess many good structural properties
as well as excellent approximation powers.

It appears that the most turbulent years in the development of splines are over,
and it is now generally agreed that they will become a firmly entrenched part of
approximation theory and numerical analysis [21].

Solving an OCP is not easy. Because of the complexity of most applications, OCPs
are most often solved numerically. Numerical methods for solving OCPs date back
nearly five decades to the 1950s with the work of Bellman [1–3].

Over the years, various numerical methods have been proposed to solve OCPs.
Authors of [18] presented the generalized gradient method to solve this problem. In
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[23] Chebyshev technique is used for the expansion of the state and control variables.
A Fourier-based state parametrization approach for solving linear quadratic optimal
control problems was developed in [24]. Razzaghi and Elnagar [20] proposed a method
to solve the unconstrained linear-quadratic optimal control problem with the same
number of state and control variables. Their approach is based on using the shifted
Legendre polynomials to parameterize the derivative of each state variables. Also
various types of the hybrid techniques with different polynomials are used to solve
OCPs [8, 15,17].

The approach in the currant paper is different. A numerical technique based on
collocation method is proposed for the solution of OCPs. We present a computational
method for solving nonlinear constrained quadratic OCPs by using B-spline functions.
These functions introduced first time by Curry and Schoenberg in [4].

The method is based on approximating the state variables and the control variables
with a semiorthogonal linear B-spline functions [13]. Our method consists of reducing
the OCP to a NLP by first expanding the state variable x(t) and the control u(t)
as a B-spline functions with unknown coefficients. The main difference of this paper
with our previous work [6] is using original derivative of B-spline functions. On the
other hand we expand the state variable x(t) as a B-spline functions with unknown
coefficients instead of expanding the state rate ẋ(t), and then we get ẋ(t) using the
derivative matrix Di,J . This matrix establishes the relationship between two B-spline
functions with different orders.

In Section 2 we present some preliminaries in B-spline functions, and then describe
the relationship between their derivatives required for our subsequent development.
Section 3 is devoted to the formulation of OCPs. In Section 4, we apply the proposed
method to OCPs, and in Section 5, we report our numerical Examples and demon-
strate the accuracy of this method. We complete this paper with a brief conclusion.

2. Review of B-spline functions

We use B-spline piecewise polynomials as basis functions for our numerical method.
For this purpose, we first briefly review the properties of B-spline functions. The
mth-order B-spline Nm(t) has the knot sequence {. . . ,−1, 0, 1, . . .} and consists of
polynomials of order m (degree m − 1) between the knots. Let N1(t) = χ[0,1](t)
be the characteristic function of [0,1]. Then for each integer m > 2, the mth-order
B-spline is defined, inductively by [9]

Nm(t) = (Nm−1 ∗N1)(t) =

∫ ∞
−∞

Nm−1(t− τ)N1(τ)dτ

=

∫ 1

0

Nm−1(t− τ)dτ. (2.1)

It can be shown [5] that Nm(t) for m > 2 can be achieved using the following formula

Nm(t) =
t

m− 1
Nm−1(t) +

m− t
m− 1

Nm−1(t− 1),

recursively, and supp[Nm(t)] = [0,m].
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The explicit expressions of N2(t) (linear B-spline function) and N3(t) (quadratic
B-spline function) are [5, 9]:

N2(t) =

 t, t ∈ [0, 1],
2− t, t ∈ [1, 2],
0, elsewhere,

(2.2)

N3(t) =
1

2


t2, t ∈ [0, 1],
−2t2 + 6t− 3, t ∈ [1, 2],
t2 − 6t+ 9, t ∈ [2, 3],
0, elsewhere.

(2.3)

From [13] we letNi,j,k(t) = Ni(2
jt−k), i = 1, 2, 3, j, k ∈ Z andBi,j,k = supp[Ni,j,k(t)] =

clos{t : Ni,j,k(t) 6= 0}. It is easy to see that

Bi,j,k = [2−jk, 2−j(i+ k)], i = 1, 2, 3, j, k ∈ Z.

Define the set of indices

Si,j = {k : Bi,j,k ∩ (0, 1) 6= ∅}, i = 1, 2, 3, j ∈ Z.

Suppose mi,j = min{Si,j} and Mi,j = max{Si,j}, i = 1, 2, 3, j ∈ Z. It is easy to see
that m1,j = 0, m2,j = −1, m3,j = −2, and M1,j = M2,j = M3,j = 2j − 1, j ∈ Z.

The support of Ni,j,k(t) may be out of interval [0,1], we need that these functions
intrinsically defined on [0,1] so we put

N i
j,k(t) = Ni,j,k(t)χ[0,1](t), i = 1, 2, 3, j ∈ Z, k ∈ Si,j . (2.4)

2.1. The function approximation. Suppose

Φi,j(t) = [N i
j,mi,j

(t), N i
j,mi,j+1(t), . . . , N i

j,Mi,j
(t)]T , i = 1, 2, 3, j ∈ Z. (2.5)

For a fixed j = M , a function f(t) ∈ L2[0, 1] may be represented by the B-spline
functions as [13]

f(t) '
2M−1∑
k=−2

skN
3
M,k(t) = ST Φ3,M (t), (2.6)

where

S = [s−2, s−1, . . . , s2M−1]T , (2.7)

with

sk =

∫ 1

0

f(t)Ñ3
M,k(t)dx, k = −2, . . . , 2M − 1,

where Ñ3
M,k(t) are dual functions of N3

M,k(t) [12]. In similar to [6] by using (2.3),

(2.4) and (2.6) we have∫ 1

0

Φ3,M (t)ΦT
3,M (t)dt = PM , (2.8)
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where PM is a symmetric (2M + 2)× (2M + 2) matrix as follows

PM = 2−(M+1)
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. (2.9)

2.2. The derivative matrix. The differentiation of the vector Φ3,M (t) can be ex-
pressed as [11]

Φ′3,M (t) = DMΦ2,M (t), (2.10)

where

DM = 2M


−1
1 −1

. . .
. . .

1 −1
1

 ,

and DM is a (2M + 2)× (2M + 1) matrix.

3. Problem statement

Find the optimal control u∗(t), and the corresponding optimal state x∗(t), which
minimize the performance index

J =
1

2
xT (tf )Zx(tf ) +

1

2

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt, (3.1)

subject to

ẋ(t) = f(x(t),u(t), t), (3.2)

Ψ(x(t0), t0,x(tf ), tf ) = 0, (3.3)

gi(x(t),u(t), t) 6 0, i = 1, 2, . . . , w, (3.4)

where Z and Q(t) are positive semidefinite matrices, R(t) is a positive definite matrix,
t0 and tf are known initial and terminal time respectively, x(t) ∈ Rl is the state vector,
u(t) ∈ Rq is the control vector, and f and gi, i = 1, 2, . . . , w, are nonlinear functions.
This problem is defined on the time interval [t0, tf ]. Certain numerical techniques
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(like B-spline functions) require a fixed time interval, such as [0, 1]. The independent
variable can be mapped to the interval [0, 1] via the affine transformation

τ =
t− t0
tf − t0

. (3.5)

Using Eq. (3.5), this problem can be redefined as follows. Minimize the performance
index

J =
1

2
xT (1)Zx(1)

+
1

2
(tf − t0)

∫ 1

0

(
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

)
dτ, (3.6)

subject to the constraints

dx

dτ
= (tf − t0)f(x(τ),u(τ), τ), (3.7)

Ψ(x(0),x(1)) = 0, (3.8)

gi(x(τ),u(τ), τ) 6 0, i = 1, 2, . . . , w, τ ∈ [0, 1]. (3.9)

4. The proposed method

Consider the following assumptions: let

x(t) = [x1(t),x2(t), . . . ,xl(t)]
T , (4.1)

ẋ(t) = [ẋ1(t), ẋ2(t), . . . , ẋl(t)]
T , (4.2)

u(t) = [u1(t),u2(t), . . . ,uq(t)]T , (4.3)

Φ̂1(t) = Il ⊗ Φ3,M (t), (4.4)

Φ̂2(t) = Il ⊗DMΦ2,M (t), (4.5)

Φ̂3(t) = Iq ⊗ Φ3,M (t), (4.6)

where Il and Iq are l×l and q×q dimensional identity matrices, Φ3,M (t) is (2M +2)×1

vector, ⊗ denotes Kronecker product [14], Φ̂1(t) and Φ̂2(t) are matrices of order

l(2M +2)× l and Φ̂3(t) is a matrix of order q(2M +2)×q. Assume that each xi(t) and
each uj(t), i = 1, 2, . . . , l, j = 1, 2, . . . , q, can be written in terms of B-spline functions
as

xi(t) ' ΦT
3,M (t)Xi,

ẋi(t) ' ΦT
2,M (t)DT

MXi,

uj(t) ' ΦT
3,M (t)Uj .

Then using Eqs. (4.4) , (4.5) and (4.6) we have

x(t) ' Φ̂T
1 (t)X, (4.7)

ẋ(t) ' Φ̂T
2 (t)X, (4.8)

u(t) ' Φ̂T
3 (t)U, (4.9)
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where X and U are vectors of order l(2M + 2) × 1 and q(2M + 2) × 1, respectively,
given by

X =
[
XT

1 ,X
T
2 , . . . ,X

T
l

]T
,

U =
[
UT

1 ,U
T
2 , . . . ,U

T
q

]T
.

4.1. The performance index approximation. We have replaced Eqs. (4.7)-(4.9)
in Eq. (3.6) and get

J =
1

2
XT Φ̂1(1)ZΦ̂T

1 (1)X

+
1

2
(tf − t0)XT

(∫ 1

0

Φ̂1(t)Q(t)Φ̂T
1 (t)dt

)
X

+
1

2
(tf − t0)UT

(∫ 1

0

Φ̂3(t)R(t)Φ̂T
3 (t)dt

)
U, (4.10)

this means that

J =
1

2
XT

(
Z⊗ Φ3,M (1)ΦT

3,M (1)
)
X

+
1

2
(tf − t0)XT

(∫ 1

0

Q(t)⊗ Φ3,M (t)ΦT
3,M (t)dt

)
X

+
1

2
(tf − t0)UT

(∫ 1

0

R(t)⊗ Φ3,M (t)ΦT
3,M (t)dt

)
U. (4.11)

For problems with time-varying performance index, Q(t) and R(t) are functions of
time and∫ 1

0

Q(t)⊗ Φ3,M (t)ΦT
3,M (t)dt,

∫ 1

0

R(t)⊗ Φ3,M (t)ΦT
3,M (t)dt,

can be evaluated numerically. For time-invariant problems, Q(t) and R(t) are con-
stant matrices and can be brought out from the integrals. In this case Eq. (4.11) can
be rewritten as

J(X,U) =
1

2
XT

(
Z⊗ Φ3,M (1)ΦT

3,M (1)
)
X

+
1

2
(tf − t0)XT (Q⊗PM )X

+
1

2
(tf − t0)UT (R⊗PM )U, (4.12)

where

PM =

∫ 1

0

Φ3,M (t)ΦT
3,M (t)dt,

that this matrix is obtained in Eq. (2.9).
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4.2. The system constraints approximation. The system constraints are approx-
imated with our method as follows:

By substituting Eqs. (4.7)-(4.9) in the system constraints (3.7)-(3.9) we get

Φ̂T
2 (t)X = (tf − t0)f(Φ̂T

1 (t)X, Φ̂T
3 (t)U, t), (4.13)

Ψ(Φ̂T
1 (0)X, Φ̂T

1 (1)X) = 0, (4.14)

gi(Φ̂
T
1 (t)X, Φ̂T

3 (t)U, t) 6 0, i = 1, 2, . . . , w. (4.15)

We collocate Eqs. (4.13) and (4.15) at Newton-cotes nodes tk,

tk =
k − 1

2M + 1
, k = 1, 2, . . . , 2M + 2. (4.16)

The OCP has now been reduced to a parameter optimization problem which can
be stated as follows. Find X and U so that J(X,U) is minimized (or maximized)
subject to Eq. (4.14) and

Φ̂T
2 (tk)X = (tf − t0)f(Φ̂T

1 (tk)X, Φ̂T
3 (tk)U, tk), (4.17)

gi(Φ̂
T
1 (tk)X, Φ̂T

3 (tk)U, tk) 6 0, i = 1, 2, . . . , w, k = 1, 2, . . . , 2M + 2. (4.18)

5. Illustrative examples

In this section we give some computational results of numerical experiments with
methods based on two preceding sections, to support our theoretical discussion. All
problems were programmed in MAPLE, running on a Pentium 4, 2.4-GHz PC with
4 GB of RAM. Also we solved the obtained NLP that is minimize (or maximize)
J(X,U) subject to Eqs. (4.14), (4.17) and (4.18), using ”NLPsolve” command in
MAPLE software.

Example 1. Consider the problem [7,25]

min J =

∫ 1

0

(x2(t) + u2(t))dt

s.t.

ẋ(t) = u(t),

u(t) 6 1,

x(0) =
1 + 3e

2(1− e)
.

For comparison our method with [25] and [7], we give Table 1, in which the optimal
performance indices obtained by using our method and those listed in [25] and [7]
are shown. In Table 1, N is the number of mesh-points for the Chebyshev-Legendre
collocation method. In Figure 1, exact and approximated results of the optimal
control variable obtained from B-spline functions with M = 8 are reported.

Example 2. This example is studied by using rationalized Haar functions [19] and
hybrid of block-pulse and Bernoulli polynomials [17] and hybrid of block-pulse and
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Figure 1. Exact value and approximation of optimal control vari-
able using B-spline functions for Example 1 with M = 8.

Table 1. Estimated and exact values of J for Example 1

Methods Parameters J

Result in [7] N = 9 5.5879725

N = 11 5.5879712

N = 13 5.5879712

CL method [25] N = 9 5.5879399
N = 11 5.5879527

N = 13 5.5879526

Present method M = 8 8.5879530

M = 9 8.5879551

M = 10 8.5879557

Exact 8.5879557

Legendre polynomials [15]. Find the control vector u(t) which minimizes

J =
1

2

∫ 1

0

(
x21(t) + u2(t)

)
dt,
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subject to[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t),[

x1(0)
x2(0)

]
=

[
0
10

]
,

and subject to the following inequality control constraint

|u(t)| 6 1.

In Table 2, K in [19] is the order of Rationalized Haar functions, and N and M
in [17] are the order of block-pulse functions and Bernoulli polynomials, respectively.
In Figure 2, the control and state variables with the absolute value of constraint’s
errors for two methods of B-spline functions with M = 7, are reported.

Table 2. Results for Example 2

Methods Parameters J

Rationalized Haar functions [19] K = 4 8.07473

K = 8 8.07065

Hybrid of block-pulse and Bernoulli [17] N = 4,M = 2 8.07058

N = 4,M = 3 8.07055

B-spline functions [6] M = 6 8.07058

M = 7 8.07056

Present method M = 6 8.07053
M = 7 8.07055

M = 8 8.07055

Example 3. In order to show the effectiveness of the proposed method, the contin-
uous stirred-tank chemical reactor as a benchmark problem in the class of nonlinear
optimal control problems is considered. This example is adapted from [10]. The state
equations of the system are highly nonlinear and coupled:

ẋ1(t) = −2 (x1(t) + 0.25) + (x2(t) + 0.25) exp

(
25x1(t)

x1(t) + 2

)
− (x1(t) + 0.25)u(t),

ẋ2(t) = 0.5− x2(t)− (x2(t) + 0.5) exp

(
25x1(t)

x1(t) + 2

)
.

The initial conditions are

x1(0) = 0.05, x2(0) = 0.

The performance index to be minimized is given by

J =

∫ 0.78

0

(
x21(t) + x22(t) + 0.1u2(t)

)
dt,
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(a) (b)

Figure 2. State and control variables and the constraint errors
|ẋ1(t)− x2(t)| and |ẋ2(t) + x2(t)− u(t)| for Example 2 using present
method (a) and using method of [6], (b) with M = 7.
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where x1(t) is the deviation from the steady-state temperature, x2(t) is the deviation
from the steady-state concentration and u(t) is the normalized control variable that
represent the effect of the flow-rate of the cooling fluid on chemical reactor. The
performance index indicates that the desired objective is to maintain the temperature
and concentration close to their steady-state values without expending large amount
of control effort.

This problem was solved using three different numerical methods: steepest-descent,
variation of extremals, and quasilinearization [10]. In Table 3, the solutions obtained
by the proposed method for different values ofM are compared with existing solutions.

Table 3. Results for Example 3

Methods Parameters J

Steepest descent [10] 0.02668

Variation of extremals [10] 0.02660

Quasilinearization [10] 0.02660

ChFD scheme [16] N = 3,M = 10 0.026603355455

N = 3,M = 12 0.026603355459
N = 4,M = 10 0.026603355460

N = 4,M = 12 0.026603355460

Present method M = 7 0.026604322981

M = 8 0.026603298510
M = 9 0.026603298505

M = 10 0.026603298505

Example 4. The current example is the nonlinear forced Van-DerPol oscillator given
in [7, 22]. The cost, dynamics, and constraints are the following:

min J =
1

2

∫ 5

0

(x21 + x22 + u2)dt

s.t.

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + (1− x1(t))x2(t) + u(t),

x1(0) = 1, x2(0) = 0, x2(5)− x1(5)− 1 = 0.

The analytic solution to this problem is unavailable. However, the convergence of
the computed solution can be numerically verified. In Table 4, the computational
results of J using the present method for various values of M with methods of [7]
and B-spline function [6] are given. This results show the accuracy of our method in
comparison with others.
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Table 4. Results for Example 4

Methods Parameters J

Result of [7] N = 7 0.3807970
N = 9 0.3807971

N = 11 0.3807971

B-spline method [6] M = 5 0.3807999

M = 6 0.3807981
M = 7 0.3807977

Present method M = 5 0.3807970
M = 6 0.3807969

M = 7 0.3807968

6. Conclusion

In this paper we presented a numerical scheme for solving nonlinear constrained
quadratic optimal control problems. The method of B-spline functions was employed.
Also several test problems were used to see the applicability and efficiency of the
method. The obtained results show that the new approach can solve the problem
effectively.
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