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Abstract Systems in which reaction terms are coupled to diffusion and advection transports
arise in a wide range of chemical engineering applications, physics, biology and
environmental. In these cases, the components of the unknown can denote con-
centrations or population sizes which represent quantities and they need to remain
positive. Classical finite difference schemes may produce numerical drawbacks such
as spurious oscillations and negative solutions because of truncation errors and may
then become unstable. We propose a new scheme that guarantees a smooth numeri-
cal solution, free of spurious oscillations and satisfies the positivity requirement, as is
demanded for the advection-diffusion reaction equations. The method is applicable
to both advection and diffusion dominated problems. We give some examples from
different applications.
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1. Introduction

When one solves differential equations, modeling physical or biological phenomena,

it is of great importance to take physical constraints into account. More precisely,

numerical schemes have to be designed such that discrete solutions satisfy the same

constraints as exact solutions such as positivity, monotonicity and total variation di-

mensioning, see for examples [3, 6, 7, 10, 11, 20]. Numerical schemes are not usually

constructed to satisfy those properties explicitly.

Parabolic equations with or without reaction terms are used extensively in the

modeling of many physical and biological phenomena such as heat transfer, transport
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and reaction of chemical species and population density in mathematical biology.

They constitute a central component in applied mathematics and their numerical

simulations are fundamental importance in gaining the correct qualitative and quan-

titative information on the systems. Since the quantities that are being modeled,

concentrations of chemical species and populations sizes are necessarily positive, it

is important to have numerical schemes that preserve the positivity of the solution.

Numerical methods based on standard finite difference (SFD) or finite element dis-

cretizations are widely used, see for example [3,21]. They do not explicitly incorporate

the requirement that the solutions be positive. Even though these schemes guarantee

convergence of the discrete solution to the exact one, but some times occurs that the

essential qualitative properties such as positivity and monotonicity of the solutions

are not transferred to the numerical solution. One way of avoiding this disadvantage

is to imply finite difference schemes that are nonstandard in the sense of Mickens’

definition [13].

Nonstandard finite differences methods (NSFDs) in addition to the usual prop-

erties of consistency, stability and hence convergence, produce numerical solutions

which also exhibit essential properties of solutions [2,8,9,12,14–17]. In this paper we

propose a new class of NSFD schemes for advection-diffusion-reaction equations by

using nonlocal approximation of reaction term. The proposed scheme enable us to

solve accurately the examined problems. An important factor for new method is the

positivity preservation of the solution which exhibit essential property of solutions.

The rest of the paper is organized as follows: In Section 2, we propose the new

method and investigate the positivity and stability requirements. In Section 3, we

apply the method to three problems and compared with SFD schemes. Finally we

end the paper with some conclusions in Section 4.

2. Scheme construction

The relevant partial differential equation in this study is given as follows

∂C(x, t)

∂t
+ P

∂C(x, t)

∂x
−Q

∂2C(x, t)

∂x2
= −RC(x, t), (x, t) ∈ [0, xmax]× [0, T ],

(2.1)

for the unknown C = C(x, t), with appropriate boundary and initial conditions and

where the parameters P , Q and R are positive constants.

Take a partition of the interval [0, xmax], x0 < x1 < · · · < xN with xj = j∆x,

j = 0, 1, · · · , N and ∆x = xmax/N and divide the time interval of interest [0, T ] using

equal time steps of size ∆t = T/M with tn = n∆t, n = 0, 1, · · · ,M . Let Cn
j be the
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approximation to C(xj , tn). Here j and n are positive integers.

Making use of the nonstandard discretization of the reaction term RC(x, t) in (2.1),

it is now desired to find an accurate NSFD scheme which is positivity preserving and

can be written as

C(x, t) = a(Cn+1
j+1 + Cn+1

j−1 ) + (
1

2
− a)(Cn

j+1 + Cn
j−1), (2.2)

where a is arbitrary parameter to be determined below. The corresponding finite

difference approximation provides the equation difference

PCn+1 = NCn, (2.3)

where P and N are the following tridiagonal matrices

P = tridiag

{

− P

2∆x
− Q

∆x2
+ aR;

1

∆t
+

2Q

∆x2
;

P

2∆x
− Q

∆x2
+ aR

}

, (2.4)

N = tridiag

{

−(
1

2
− a)R;

1

∆t
;−(

1

2
− a)R

}

. (2.5)

The parameter a is chosen according to the following theorem.

Theorem 1. If 1
2 ≤ a ≤

Q

∆x2
− P

2∆x

R
, then the scheme (2.3) is unconditionally pos-

itive.

Proof. From (2.3) it is enough to show that P−1 > 0 and N ≥ 0.

• Since, P is an M-matrix, see [23], then we have to put

− P

2∆x
− Q

∆x2
+ aR ≤ 0, (2.6)

P

2∆x
− Q

∆x2
+ aR ≤ 0, (2.7)

and P−1 > 0, see [1].

From (2.6) we can write

a ≤
Q

∆x2 + P
2∆x

R
, (2.8)

and From (2.7) we can write

a ≤
Q

∆x2 − P
2∆x

R
. (2.9)

• In order to nonnegativity for N , we write

−(
1

2
− a)R ≥ 0 then a ≥ 1

2
. (2.10)
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Then, from (2.8), (2.9) and (2.10) we have

1

2
≤ a ≤

Q

∆x2 − P
2∆x

R
, (2.11)

and this completes the proof. �

Theorem 2. The new proposed method is conditionally stable and convergent with

local truncation error O(∆t,∆x2).

Proof. Under condition (2.11), P = [pij ] is similar to a symmetric tridiagonal

matrix (see e.g. [22, p. 24]), so that the eigenvalues of P , λi(P ), i = 1, · · · , N are

real. Also P is row diagonally dominant with δi = |pii|−
∑

j 6=i |pij | = 1
∆t

+2Ra > 0. So

‖P−1‖∞ ≤ 1
1

∆t
+2Ra

(see e.g. [22, p. 8]) and by combining with ‖N‖∞ = 1
∆t

+2Ra−R,

we have

ρ(P−1N) ≤ ‖P−1N‖∞ ≤ ‖P−1‖∞‖N‖∞ ≤
1
∆t

+ 2Ra−R
1
∆t

+ 2Ra
< 1. (2.12)

where ρ(P−1N) is the spectral radius of the matrix P−1N . Therefor the scheme is

stable and then via the Lax-theorem convergent with local truncation error

T n
j =

Cn+1
j − Cn

j

∆t
+ P

Cn+1
j+1 − Cn+1

j−1

2∆x
−Q

Cn+1
j−1 − 2Cn+1

j + Cn+1
j+1

∆x2

(2.13)

+R

(

a(Cn+1
j+1 + Cn+1

j−1 ) + (
1

2
− a)(Cn

j+1 + Cn
j−1)

)

,

by Taylor’s expansion

Cn+1
j = Cn

j +∆t
∂Cn

j

∂t
+

1

2
∆t2

∂2Cn
j

∂t2
+

1

6
∆t3

∂3Cn
j

∂t3
+ · · · ,

Cn
j+1 = Cn

j +∆x
∂Cn

j

∂x
+

1

2
∆x2

∂2Cn
j

∂x2
+

1

6
∆x3

∂3Cn
j

∂x3
+ · · · ,

Cn
j−1 = Cn

j −∆x
∂Cn

j

∂x
+

1

2
∆x2

∂2Cn
j

∂x2
− 1

6
∆x3

∂3Cn
j

∂x3
+ · · · ,

Cn+1
j+1 = Cn

j +∆x
∂Cn

j

∂x
+∆t

∂Cn
j

∂t
+

1

2
∆x2

∂2Cn
j

∂x2
+

1

2
∆t2

∂2Cn
j

∂t2
+∆x∆t

∂2Cn
j

∂x∂t
+ · · · ,

Cn+1
j−1 = Cn

j −∆x
∂Cn

j

∂x
+∆t

∂Cn
j

∂t
+

1

2
∆x2

∂2Cn
j

∂x2
+

1

2
∆t2

∂2Cn
j

∂t2
−∆x∆t

∂2Cn
j

∂x∂t
+ · · · ,
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and by substitution into (2.13) we have

T n
j =

(

∂C

∂t
+ Pe

∂C

∂x
− ∂2C

∂x2
+RC

)n

j

+
1

2
∆t

∂2Cn
j

∂t2
+

1

2
R(a+

1

2
)∆x2

∂2Cn
j

∂x2
+ · · · ,

(2.14)

hence the difference is consistent with (2.1) and T n
j = O(∆t+∆x2). These conclude

the theorem.�

3. Test cases

In this section we perform numerical experiments to demonstrate the performance

of the new proposed scheme with respect to positivity and stability, developed in

the previous section. Several test cases were run to assess the performance of this

positivity-preserving NSFD scheme. We validate the method by comparing its results

with exact solutions and also with solutions obtained by other methods.

3.1. Test case 1: Catalytic particle. First we have considered (2.1) with Q = 1,

R = φ2 and two different values for P :

∂C(x, t)

∂t
+ P

∂C(x, t)

∂x
− ∂2C(x, t)

∂x2
= −φ2C(x, t), (x, t) ∈ [0, xmax]× [0, T ],

(3.1)

with initial and boundary conditions

C(x, 0) = 0, C(0, t) = 1, C(1, t) = 1. (3.2)

The unknown C(x, t) corresponds to the normalized concentration and endowed, P

is the Peclet number, which denotes the relationship between the advective and dif-

fusive transport and φ is Thiele modulus, which relates chemical reaction rate and

the diffusive transport; the dimensionless parameters x ∈ [0, 1] and t > 0 denote the

spatial coordinate and time, respectively.

In traditional FD schemes, the spatial operators of (3.1) can be discretized in

different ways. By method of lines (MOL) approach, we replace the spatial deriva-

tives Cx and Cxx by a finite difference approximation to arrive at a semi-discrete

system where Ci(t) ≃ C(xi, t). According to the MOL approach, fully discrete

approximation Cn
i ≃ C(xi, tn) are now obtained by applying some suitable ordi-

nary differential equations (ODEs) solver. For instance, for an equidistant grid

XN+1 = {xa, x1, · · · , xN , xb} where xa = 0 and xb = 1, with xi − xi−1 = ∆x and for
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the advective operator, it is also possible to use backward or forward approximations

for obtaining the following schemes:

• Forward finite difference (FFD) scheme

dCi(t)

dt
=

Ci−1(t)− (2− P∆x)Ci(t) + (1− P∆x)Ci+1(t)

∆x2
− φ2Ci(t). (3.3)

• Backward finite difference (BFD) scheme

dCi(t)

dt
=

(1 + P∆x)Ci−1(t)− (2 + P∆x)Ci(t) + Ci+1(t)

∆x2
− φ2Ci(t). (3.4)

To obtain a reference solution of (3.1) the Laplace transform was applied and for

the analytical solution we found

Ĉ(x, s) = LC(x, t) =
exp(m2x)[exp(m1)− 1] + exp(m1x)[1 − exp(m2)]

exp(m1)− exp(m2)

(3.5)

with

m1 =
P −

√

P 2 + 4(s+ φ2)

2
, m2 =

P +
√

P 2 + 4(s+ φ2)

2
, (3.6)

where Ĉ(x, s) is the Laplace transform of C(x, t). Unfortunately, the inverse Laplace

transform for Ĉ(x, s) is not available. In order to determinate the solution in the

time-domain, we have used the numerical inversion by Zakians algorithm [22,24].

We apply new scheme to (3.1) with different values of P and φ. Several studies indi-

cated that numerical results of standard finite difference methods lead to numerical

dispersions in the advection dominated problems [5, 18, 19, 25]. Figure 1 shows the

concentration profiles and their respective errors. As a expected for a wide range of

P and φ, classical FD schemes provide a bigger approximation errors than the new

NSFD scheme and for small values of P (≤ 1) and φ, better agreements between the

FD schemes and new scheme are observed, see Figure 2(a). However, in this case new

scheme performs well, see Figure 2(b).

3.2. Test case 2: Exponential traveling wave. The second test case consists of

equation (2.1) for P = 1, Q = 1 and R = 1:

∂C(x, t)

∂t
+

∂C(x, t)

∂x
− ∂2C(x, t)

∂x2
= −C(x, t), (x, t) ∈ [0, xmax]× [0, T ],

(3.7)
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Figure 1. Concentration profiles at different times and logarithm of absolute er-
rors with P = 10 and φ = 2.
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Figure 2. Concentration profiles at different times and logarithm of absolute er-
rors with P = 1 and φ = 0.1.

with initial condition

C(x, 0) = exp(−x), x ∈ [0, xmax], (3.8)
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and boundary conditions

C(0, t) = exp(t), t ∈ [0, T ],

(3.9)

∂C(xmax, t)

∂x
= −C(xmax, t), t ∈ [0, T ].

The exact solution is given by

C(x, t) = exp(t− x). (3.10)

In order to show the advantages of the proposed new method, we numerically solve

(3.7) for xmax = 10 and T = 0.85 using ∆x = 0.1 and ∆t = 0.005. In addition to

comparing the solution of the new scheme with the exact solution, we also compare

it to the numerical solution produced by a standard upwind forward Euler finite

difference method (EE)

Cn+1
j − Cn

j

∆t
+

Cn
j − Cn

j−1

∆x
−

Cn
j−1 − 2Cn

j + Cn
j+1

∆x2
= −Cn

j , (3.11)

and by the nonstandard finite-difference (NSFD) method, proposed by Mickens in [14]

Cn+1
j − Cn

j

∆t
+

Cn
j − Cn

j−1

∆x
−

Cn
j−1 − 2Cn

j + Cn
j+1

∆x2
= −Cn+1

j , (3.12)

using the same values for the parameters. As can be seen from Figure 3, the proposed

method is stable and produces a solution that is very close to the exact solution, but

both EE and NSFD methods are unstable for this choice of a time step ∆t = 0.005

and larger.

3.3. Test case 3: Colonization of Europe by oaks. In the third test case, we

deal with the model for the recolonization by oaks of Europe after the last glaciation.

The model assumes Malthusian growth and a standard advection-diffusion reaction

equation for the local density C(x, t) of oaks at time t

∂C(x, t)

∂t
+ u

∂C(x, t)

∂x
−D

∂2C(x, t)

∂x2
= rC(x, t), (x, t) ∈ [0, xmax]× [0, T ],

(3.13)

where r is the reproduction rate, u is an advection parameter taking into account the

displacement of acorns by squirrels, and D is the diffusivity. If the population size at
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(d) Solution of the new method

Figure 3. Solutions for the exponential traveling wave model.

time 0 is M and is concentrated at the origin, the exact solution of this equation is

C(x, t) =
M

2
√
πDt

exp

(

rt− (x− ut)2

4Dt

)

, (3.14)

for more details see [4].

In Figure 4 numerical solutions for (3.13) are shown with u = 1, D = 1, r = 0.1,

xmax = 10, T = 2, ∆x = 0.1 and ∆t = 0.005. Comparing the proposed new method

with the upwind EE method

Cn+1
j − Cn

j

∆t
+ u

Cn
j − Cn

j−1

∆x
−D

Cn
j−1 − 2Cn

j + Cn
j+1

∆x2
= rCn

j , (3.15)

we observe that the new method performs very well. Furthermore, NSFD method for

(3.13), proposed by Mickens in [14], is the same as the EE method.
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Figure 4. Solutions for the oak propagation model.

4. conclusions and discussion

Schemes preserving the positivity are great importance. Such schemes can be

employed to prevent the occurrence of negative values where even very small negative

values are unacceptable. Within strategy of nonlocal approximation, we have pre-

sented a NSFD scheme. The proposed scheme has local truncation error O(∆t,∆x2),

but works successfully, and it is positivity preserving. We have presented the new

method for an advection-diffusion reaction equation with constant velocity and diffu-

sion and different reactions in one spatial dimension. Comparisons with a standard

explicit upwind Euler (EE) method and with a nonstandard finite-difference method,

show that our NSFD method performs very well and it is stable under conditions

for which the other methods are very unstable. We studied the sufficient conditions
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on positivity for the new method. A future work can be investigate the necessity of

condition for positivity in Theorem 1.
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