
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 2, No. 3, 2014, pp. 195-204

Numerical solution for boundary value problem of fractional order
with approximate Integral and derivative

Abdol Ali Neamaty∗

Department of Mathematics,
University of Mazandaran,
Babolsar, Iran.
E-mail: namaty@umz.ac.ir

Bahram Agheli
Department of Mathematics,

University of Mazandaran,
Babolsar, Iran.
E-mail: b.agheli@stu.umz.ac.ir

Mohammad Adabitabar Firozja
Department of Mathematics, Qaemshahr Branch,
Islamic Azad University,
Qaemshahr, Iran.
E-mail: mohamadsadega@yahoo.com

Abstract Approximating the solution of differential equations of fractional order is necessary

because fractional differential equations have extensively been used in physics, chem-
istry as well as engineering fields.

In this paper with central difference approximation and applying the formula
approximate integration, we have found approximate solution for a class of bound-

ary value problems of fractional order. Three numerical examples are presented to

describe the fractional usefulness of the suggested method.
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1. Introduction

In the past, it was believed that classical fractional calculus can provide a powerful

tool that can be used to describe a large group of dynamic processes in various applied

sciences. However, it has been proved by more recent studies that fractional calculus

can provide more accurate models compared with the classical fractional calculus.
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This is why fractional calculus has received a great degree of interest in recent

years. Fractional derivative and fractional integration have many applications in dif-

ferent complex systems such as physics, chemistry, fluid mechanics, viscoelasticity,

signal processing, mathematical biology, and bioengineering [1–3, 12, 18]. Moreover,

they have various applications in different branches of science and engineering.

Boundary value problems of fractional order are applied in accounting for various

physical process of stochastic transport. Also, they have application in investigating

the liquid filtration in a strongly porous (fractal) medium [17]. Moreover, boundary

value problems with integral boundary conditions form a fascinating and important

class of problems. The special cases of these problems include two, three, multipoint

and nonlocal boundary value problems.

Integral boundary conditions also play a part in population dynamic and cellular

systems [4, 5]. Furthermore, they appear in the mathematical model created for a

micro-electro-mechanical system (MEMS) instrument which basically has been devel-

oped to measure the viscosity of fluids that we encounter during oil well exploration [7].

It has been argued that solution of fractional differential equations (FDEs) is required

in order to analyze and design various systems. The methods in this category include

Laplace and Fourier transforms, eigenvector expansion, method based on Laguerre

integral formula, direct solution based on Grunewald Letnikov approximation, trun-

cated Taylor series expansion and power series method [6, 10,11,13,14].

For the purpose of solving FDEs numerically, several algorithms have been cre-

ated. These include fractional Adams-Moulton methods, explicit Adams multistep

methods, fractional difference methods, decomposition method, variational iteration

method, least squares finite element solution, and extrapolation method. Also, they

include the Kansa method which is a convenient, meshless method that has been

applied in dealing with a variety of partial differential equation models [8, 9, 15,16].

In this work, we have present numerical solutions using the central difference ap-

proximation for the first and second derivative and with formula approximate inte-

gration.

The present research paper is organized in following sections: in section 2 some

definitions and theorems, which are necessary for our work, are presented. In section

3, we establish the direction of the proposed method. In section 4, we have included

some numerical results in order to illustrate the applications and usefulness of the

suggested method. Finally, conclusions are drawn in Section 5.
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2. Preliminaries

In this section, we give some definitions and properties of the fractional calculus.

Let f(x) be a function defined on [a, b], then

Definition 1. The Riemann-Liouville fractional derivative [14]:

RDαf(x) = 1
Γ(m−α)

dm

dxm

∫ x
0

(x− t)m−α−1f(t)dt, α > 0, m− 1 < α < m.

Definition 2. Riemann-Liouville fractional integral [14]:

D−αa+ f(x) = D−αa f(x) = 1
Γ(α)

∫ x
0

(x− t)α−1f(t)dt, α > 0,

where Γ is the gamma function.

Definition 3. The Caputo fractional derivative [14]:

Dαf(x) = 1
Γ(m−α)

∫ x
0

(x− s)m−α−1f (m)(s)ds, α > 0, m− 1 < α < m.

The relation between the Riemann-Liouville operator and Caputo operator is given

by:

Dαf(x) =R Dα

[
f(x)−

m−1∑
k=0

1
k! (x− a)kf (k)(a)

]
, α > 0, m− 1 < α < m.

Theorem 1. Let f(x) ∈ Cm[0, 1] and α ∈ (m− 1,m), m ∈ N , and g(x) ∈ Cm[0, 1].

Then for x ∈ [0, 1]:

1) DαD−αg(x) = g(x)

2) D−αDαf(x) = f(x)−
∑m−1
k=0

xk

k! f
(k)(0),

3) Dm−αf(x) = D−αf (m)(x),

4) lim
x→0

Dαf(x) = lim
x→0

D−αf(x) = 0,

5) if α ∈ (0, 1], i = 1, . . . , n with α =
n∑
i=1

αi are such that, for each k (k =

1, 2, . . . ,m− 1), there exist ik < n with
ik∑
j=1

= k, then the following composi-

tion rule holds [14]:

Dαf(x) = Dαn . . . Dα2Dα1f(x).

3. Analysis of the method

In order to describe the proposed method, we consider the numerical solution of

the following fractional boundary value problems (FBVPs):

D−αy′′(x) + y p(x) = g(x), 0 ≤ α < 1, x ∈ [a, b], (3.1)

subjected to boundary conditions

y(a) = y(b) = 0, (3.2)
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in which the function p(x) and g(x) are continuous on the interval [a, b] and the

operator Dα represents the Caputo fractional derivative. The analytical solution of

(3.1 − 3.2) cannot be taken for arbitrary choices p(x) and g(x). When α = 0, the

problem (3.1) is shortened to the classical second order boundary value problem.

The main goal of this research work is to apply the central difference approximation

and approximate integration formula to create a new numerical method for the FBVPs

(3.1− 3.2). To do so, we firstly convert the FBVPs in (3.1) into the following form

y′′(x) +Dαy p(x) = Dαg(x), 0 ≤ α < 1, x ∈ [a, b]. (3.3)

In the second step, we introduce a finite set of grid points xi by driving the interval

[a, b] into n-equal parts:

xi = a+ ih, x0 = a, xn = b, h =
b− a
n

, i = 0, 1, . . . , n. (3.4)

If we suppose that y(x) is the exact solution of (3.3), then we want to approximate

y(xi) = yi for i = 1, . . . , n− 1.

Thus, the equation (3.3) for each xi will result in

y′′(xi) = Dα
(
g(xi)− y p(xi)

)
, i = 1, . . . , n− 1. (3.5)

Otherwise, with definition 3

y′′(xi) =
1

Γ(1− α)

(
R(xi)− T (xi)−K(xi)

)
, i = 1, . . . , n− 1 (3.6)

where

R(xi) =

∫ xi

0

(xi − s)−αg′(s)ds,

T (xi) =

∫ xi

0

(xi − s)−αy(s)p′(s)ds, (3.7)

K(xi) =

∫ xi

0

(xi − s)−αp(s)y′(s)ds.

Now using the central difference approximation for the first and second derivative in

relation (3.6):

y′(xi) ≈
y(xi+1)− y(xi−1)

2h
,

y′′(xi) ≈
y(xi+1)− 2y(xi) + y(xi−1)

h2
,
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and applying the formula approximate integration:∫ xn

x0

f(x)dx ≈
n−1∑
i=0

aif(xi),

which is accurate for f(x) = 1, x, . . . , xn−1 and with initial condition y(a) = y(b) = 0,

we will get to the result y(x0) = y(xn) = 0.

Hence, with approximate equation (3.6) for i = 1 we have:

y(x2)− 2y(x1) + y(x0) =
h2

Γ(1− α)

(
R(x1)− T (x1)−K(x1)

)
,

where

R(x1) =

∫ x1

0

(x1 − s)−αg′(s)ds,

T (x1) =

∫ x1

0

(x1 − s)−αy(s)p′(s)ds,

K(x1) =
1

h

∫ x1

0

(x1 − s)−αp(s) (y(s+ h)− y(s)) ds,

for i = 2 we have

y(x3)− 2y(x2) + y(x1) =
h2

Γ(1− α)

(
R(x2)− T (x2)−K(x2)

)
,

where

R(x2) =

∫ x2

0

(x2 − s)−αg′(s)ds,

T (x2) =

∫ x2

0

(x2 − s)−αy(s)p′(s)ds,

K(x2) =
1

h

∫ x2

0

(x2 − s)−αp(s) (y(s+ h)− y(s)) ds,

and the same can be obtained for i = 3, . . . , n−1. After solving the algebraic equations

with Maple, we find y(i) for i = 1, 2, 3, . . . , n− 1.

4. Illustrative Example

We now consider some numerical examples, illustrating the solution using the pur-

posed methods. All calculations are implemented with Maple.
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Example 1. Take the boundary value problem

D−αy′′(x) + y(x) =
720

Γ(5 + α)
x4+α − 40320

Γ(7 + α)
x6+α + (1− x2)x6, (4.1)

y(0) = y(1) = 0

The analytical solution of (4.1) is

y(x) = x6(1− x2). (4.2)

The numerical solutions for various values of α are represented in Fig.1.

Figure 1. Numerical solutions for various values of α of Example 1.

Table 1. The absolute error between the exact solution and the approx-

imate solution for α = 0.9

x Approximate Exact |yApp − yExact|
0.4 0.0025380001 0.00344064 0.0009026399

0.6 0.060001108 0.02985984 0.030141268

0.8 0.094372102 0.09437184 0.000002621

0.9 0.10097432 0.10097379 0.00000531

1.0 0.00000100 0.0 0.00000100
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Example 2. Consider the boundary value problem:

D−αy′′(x) =− y(x)+ (4.3)(
−x2 + (−3 + 2α)x− α2

) (
xαΥ(x, α) + (x− x2)

)
ex

y(0) = y(1) = 0

The analytical solution of (4.3) is

y(x) = x(1− x)ex. (4.4)

The numerical solutions for various values of α are represented in Fig.2.

Figure 2. Numerical solutions for various values of α of Example 2.

Table 2. The absolute error between the exact solution and the approx-

imate solution for α = 0.9

x Approximate Exact |yApp − yExact|
0.4 0.3586352541 0.3580379275 0.0005973266

0.6 0.4384018926 0.4373085120 0.0010933806

0.8 0.3578671593 0.3560865485 0.0019586540

0.9 0.2235781442 0.2213642800 0.0022138642

1.0 0.000274546 0.0 0.000274546
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Example 3. Assuming the boundary value problem

D−αy′′(x) + xy(x) =
120

Γ(4 + α)
x3+α − Γ(5 + α)

Γ(3 + 2α)
x2+2α + x6 − x5+α (4.5)

y(0) = y(1) = 0

The analytical solution of (4.5) is

y(x) = x5(x− xα). (4.6)

The numerical solution for α = 0.7 and α = 0.8 are represented in Fig. 3.

Figure 3. Numerical solutions for various values of α of Example 3.

Table 3. The absolute error between the exact solution and the approx-

imate solution for α = 0.9

x Approximate Exact |yApp − yExact|
0.4 −0.389459916e− 3 −0.3930448957e− 3 0.0000035849797

0.6 −0.2445230657e− 2 −0.243277168e− 2 0.000012458977

0.8 −0.590214224e− 2 −0.5915327234e− 2 0.000013184994

0.9 −0.562296329e− 2 −0.5628890861e− 2 0.000005927571

1.0 0.0 0.0 0.0

5. Conclusions

We have presented a new method to solve fractional boundary value problem. The

numerical results obtained in this paper indicate that the suggested method maintains
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a considerable degree of high accuracy, which is promising in dealing with the solution

of two point boundary value problem of fractional order.
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