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A new fractional sub-equation method for solving the space-time
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Abstract In this paper, a new fractional sub-equation method is proposed for finding exact
solutions of fractional partial differential equations (FPDEs) in the sense of modi-
fied Riemann-Liouville derivative. With the aid of symbolic computation, we choose
the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM)
equation in mathematical physics with a source to illustrate the validity and advan-
tages of the novel method. As a result, some new exact solutions including solitary
wave solutions and periodic wave solutions are successfully obtained. The proposed
approach can also be applied to other nonlinear FPDEs arising in mathematical
physics.

Keywords. Fractional sub-equation method, fractional partial differential equations, exact solutions, mod-
ified Riemann-Liouville derivative.
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1. INTRODUCTION

Nonlinear phenomena appear in a wide variety of scientific applications such as
plasma physics, solid state physics and fluid dynamics. Fractional partial differential
equations (FPDEs) have been attracted great interest due to their various applica-
tions in the areas of physics, biology, engineering, signal processing, control theory,
finance and fractal dynamics [19, 26, 27].
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Recently, several powerful methods have been proposed to obtain approximate and
exact solutions of FPDEs, such as the Adomian decomposition method [5, 29], the
variational iteration method [6, 14, 33], the homotopy analysis method [1, 3, 28, 30],
the homotopy perturbation method [7, 8, 10], the Lagrange characteristic method
[17], the fractional sub-equation method [42], the (G'/G)-expansion method [43, 44],
the first integral method [20], the transformed rational function method [23], the
multiple exp-function method [24, 25], the generalized Riccati equation method [21],
the Frobenius decomposition technique [22], the local fractional differential equations
[34, 35], the local fractional variation iteration method [36], local fractional Fourier
series method [13], the Cantor-type cylindrical coordinate method [37], the Yang-
Fourier and Yang-Laplace transforms [12], the fractional complex transform method
[31], the modified simple equation method [15, 39, 40, 41].

In [16], Jumarie proposed a modified Riemann-Liouville derivative. With this kind of
fractional derivatives and some useful formulas, we can convert FPDEs into ordinary
differential equations (ODEs) with integer orders by applying suitable transforma-
tions.

In this paper, we propose a new fractional sub-equation method to establish exact
solutions for FPDEs in the sense of modified Riemann-Liouville derivative defined
by Jumarie [16]. This method is a fractional version of the known extended (G’/G)-
expansion method [4, 9, 11, 38]. The proposed approach is based on the following
fractional ODE:

DEG() + uG(e) =0, (L1)

where y is a constant and DgG(§) denotes the modified Riemann-Liouville derivative
of order « for G(§) with respect to &.

The paper is arranged as follows: In Section 2, we give some definitions and proper-
ties of Jzur)narie’s modified Riemann-Liouville derivative. We also give the expression
for PG

© related to Eq. (1.1). In Section 3, we present the main steps of the frac-
tional sub-equation method for solving FPDEs. In Section 4, we apply this method

to construct exact solutions of the space-time fractional ZKBBM equation. We in-
clude figures to show the properties of some solutions of this equation. Finally, we

summarize our results in the conclusion section.
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2. JUMARIE’S MODIFIED RIEMANN-LIOUVILLE DERIVATIVE AND GENERAL
Dga(©)
G(9)

Jumarie’s modified Riemann-Liouville derivative of order « is defined by the fol-

EXPRESSION FOR

lowing expression [16]:

i [ 90 - s v<ax<t,

DY f(t) = ’ (2.1)
(f(”)(t))(ain) , n<a<n+1, n>1.

We list some important properties for the modified Riemann-Liouville derivative as
follows [16]:

(1+r) o

bt = Tl+r—a) (22)
Dy (f(t)g(t)) = g(t) Dy f(t) + f(£) D' g(t), (2.3)
D flg(t)] = f[9(t)] D g(t) = Dy f[g(t)] (¢'(£))" - (2.4)

In order to obtain the general solutions for Eq. (1.1), we suppose G(§) = H(n) and

a nonlinear fractional complex transformation n = . Then by Eq. (2.2), the

I'(l+a)
first equality in Eq. (2.4) and definition of Principle of Derivative Increasing Orders

[18], Eq. (1.1) can be turned into the following second ordinary differential equation
H"(n) + pH (n) = 0. (2.5)

By the general solutions of Eq. (2.5), we have

g Ausinh (y/77in) + Ay cosh (y/~7in)

) " A o= & i (/) p<0,

n _ 1 cos(y/un) — Assin(y/un

H(n) \//7211 sin(y/zm) & Ay cos( i)’ pw>0, (2.6)
1 p =70,

Ain+ Ay’
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where A1, A are arbitrary constants.
Since DgG(§) = DgH(n) = H'(n)Dgn = H'(n), we obtain

Ay Slnh(r(1+a)§ ) + Ay cosh( a)«fo‘)
Vo Alcosh(F@)E >+A251nh \/70[ ), pet
Dgi('f) - Aj cos (mga) — As sin ( )
) ve Aj sin (F(1+a ga) + As cos ( ) 10
A1+ «) _0
A6 + AT (1 + @) #

3. DESCRIPTION OF THE FRACTIONAL SUB-EQUATION METHOD

In this section, we describe the main steps of the fractional sub-equation method
for finding exact solutions of FPDEs.
Suppose that a fractional partial differential equation, say in the independent variables

t, 21,22, ..., Tn, is given by

« « « «
P(ul,...,uk,Dt UL, ooy Dfug, D Uty . DY U, .oy
2 2 2a —
DF uy, ..., Dg ug, Di%u, ..., Di%ug, Dy, ) =0,

Tn

(3.1)

where uw; = w;(t,21,22,...,2,),7 = 1,..., k are unknown functions, P is a polynomial
in u; and their various partial derivatives including fractional derivatives.
Step 1. Suppose that
wi(t, 21, o,y @pn) = Ui(§), & =ct+ kixy + koo + ... + knx, + &o. (3.2)

Then by the second equality in Eq. (2.4), Eq. (3.1) can be turned into the following

fractional ordinary differential equation with respect to the variable &:
P (U17 ey Upy ¢*DEUL, .., ¢ Dg Uy, kY DgUn, ..., k' Dg Uk, ...
kGDEUL, ..o, K DU, P D2, .., > DUy, k3 DI UL, ) —0.
(3.3)
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Step 2. Suppose that the solution of (3.3) can be expressed by a polynomial in
(D?G/G) as follows:
o (PEGY
7, G

DeGN ! 1 /DeG\?
£ £
. 14+ = _
+h () "{ +M(G)}
. peG ~it
DgG\ (%)
+ Cji (T) + dj,i ,
(e 2
[+ 5]

j=1,2,....k, (3.4)

Uj(€) = ajo + Z
i=1

where G = G(§) satisfies Eq. (1.1), o is a constant, and a; 0, a;,i,0;,¢ji,dji, @ =
1,2,....,m, 7 =1,2,..., k, are constants to be determined later. The positive integer m
can be determined by considering the homogeneous balance between the highest-order
derivatives and nonlinear terms appearing in (3.3).

Step 3. Substituting (3.4) along with Eq. (1.1) into Eq. (3.3) and collecting all the

o o N
terms with the same order of (Déc) and (DéG) \/O‘ {1 + % (#) }, the left-hand

side of (3.3) is converted into a polynomial in (DgG) and (DgG) o {1 + % (D%G) 2}.
Equating each coefficient of this polynomial to zero yields a set of algebraic equations
for ajo,a;4,054, ¢4, dji, 1 =1,2,...,m, j =1,2,.. k.

Step 4. Solving the equation system in Step 3 and using (2.7), we can construct

a variety of exact solutions for Eq. (3.1).

4. APPLICATION OF THE METHOD

In this section, we will construct the exact solutions of the space-time fractional

ZKBBM equation by using the fractional sub-equation method.

4.1. The Space-Time Fractional ZKBBM Equation. We consider the following
space-time fractional ZKBBM equation [2, 32]

Dfu+ D%u — 2auDyu — bD{* (D2*u) = 0, (4.1)

[0 ]
B
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where a and b are arbitrary constants. It arises as a description of gravity water waves
in the long-wave regime. Using the traveling wave transformation u(z,t) = U(€),
where £ = kx + ¢t and k, ¢ are non zero constants, Eq.(4.1) can be reduced to the

following nonlinear fractional ODE:
*DEU + k*DgU — 2ak*UDZU — be®k** DU = 0. (4.2)

Suppose that the solution of Eq. (4.2) can be expressed by
w DgG\' DgG\'! 1 (DgG\?
_ ) S ) S - g
U(&)—ao—i-; az(G)jtbz(G) a{1+u( G)

» pgG\ ittt
(Y pa el ”
s}

where G = G(§) satisfies Eq. (1.1). By balancing the order between the highest order

derivative term and nonlinear term in Eq. (4.2), we can obtain m = 2. So, we have

DgG DgG\? 1 (DgGN?
U(f):ao-i‘al(T)-i‘Cm(T) +bi, |0 1+;(T)

., (DS L1 (bec 2 DG\ ! DgG\ 2
(N3 G oo () oo ()
DG\ 1
1
tdy +dy (<) . (4.4)
DG\ 2 DeG 2
\/a{1+5(§7> } \/a{1+ﬁ(fT) }

Substituting (4.4) into (4.2) and collecting all the terms with the same power of

(Déc) and (DéG) e {1 + % (57) } together, equating each coefficient to zero

yields a set of algebraic equations. Solving the set of algebraic equations with the

help of Mathematica, we obtain the following results:

Case 1:
ar=bi=by=ci =cy=d; =dy =0,
1+ ¢ (k= — 8bk™p) 6bc® k™ (4.5)
ap = , Qg = ———.
2a a
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Case 2:
a1=b1201202=d1:d2=0,
14 c¢* (k™ — bbk~ be* k™ 3bc k™ 4.6
0y — +c ( 5 u)’ a2:73c R— c \/ﬁ (4.6)
2a a a\/o
Case 3:
a1=a2=b1:b2261=d1=d2=07
1+ ¢ (k= — 8bk™p) 6bc® ke 2 (4.7)
ag = , g =——.
2a a
Case 4:
alzblzbgzclzdlzdgzo,
1+ ¢ (k= — 8bk™p) 6bc® k™ 6bc k> 12 (4.8)
ag = ;a2 = — y G2 = .
2a a a

Substituting the general solutions of Eq. (1.1) into Eq. (4.4), we can obtain the
following exact solutions for Eq. (4.1).
When p < 0,

Case 1 gives

14 ¢ (k™™ — 8bk“p)

U(Iat) = %2,
2
N 6bc ™k 1 A1 sinh (—F@) 504) + Aj cosh (—FE{;) Ea) (4 9)
a A1 cosh (F(1+a)€a) + Ay sinh (F(1+a)§a)
Case 2 gives
14+ ¢ (k™™ — 5bk“p)
u(z,t) = 5
3be ko Aj sinh <F(1+a)§ ) + As cosh ( +a) a)
a Aj cosh (r@) ) + A sinh ( +a)§a)
Aj sinh (%{“) + As cosh F(1+a fo‘
Aj cosh ( \/1;)5 ) + As smh F(1+a
2
Aj sinh (—\/T“ fa) + As cosh ( fa)
< o1y D ) - (410)

Aj cosh (Fz/lJr_a)f ) + As sinh (p@)ga)
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Case 3 gives

1+ (k™ — 8bk%u)
2a

Ve Ve
N Gbcakau A1 cosh (F(1+i €0¢) + A2 smh( (1+a)§a)

u(z,t) =

2

L (4.11)
a Aj sinh ( \{;)fa> + A cosh (—@)fa)
Case 4 gives
1 (e} —a (e
wla 1) = +c* (k 8bk* )
2a
2
. Ne=m
N Gbcakau Ajq sinh (—F(lJra) ) + As cosh ( § )
a A cosh (—F\(/li) ) + Aj sinh (F f )
2
I P (rifyse) + Azsinh ( F<1+a>§a (4.12)
A; sinh (F(l—‘/jr_a){ ) + A COSh 1+a)fa

where £ = kx + ct.
Substituting the general solutions of Eq. (1.1) into Eq. (4.4), we can obtain the

following exact solutions for Eq. (4.1).
When p > 0,

Case 1 gives

14+ (k™™ — 8bk“p)
2a

2
N (VA ca
 6bckp A cos (r(1+a)g ) — Azsin (r(1+a)5 )
a A sin (F(1—\/ﬁ.¢)§a> + As cos (F(\l/fa)é-a)

u(z,t) =
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Case 2 gives

u(z, t) = o
bk | [Arcos (rifs”) — Aosin (mffme”) 2
a Aysin (il ee) + Az cos (rgée)
[pmlntoe) e e
Ay sin (%SQ + Ay cos (rﬁa)f“)
Ay cos (1Ee) — Apsin (g0)]
x |1+ A, sin g::;%a))ga)>+/12 COSEZE;};EQ% ) (4.14)

Case 3 gives

1+ (k™ — 8bk%u)
2a

opennen [ Arsin (i) + Ascos (i)
)

u(x,t) =

- , (4.15)
a Aj cos (F(‘l/ia)ga) — Agsin (F(i/fa)
Case 4 gives
14+ ¢ (K~ — 8bk™
ul 1) = + e ( - 1)
2
N : Vit
 6bckp Ay cos (F(1+a)£a) — Ay sin (F(Ha)fa)
a Ajqsin (F(i/fa)ga) + As cos (F(i/fa)fa)
2
Aj sin (F(l—\/f:‘a)ga> + As cos (F(i/fa) §a>
+ N : N , (4.16)
Aj cos (mga) — Ay sin (F(1+a) é'a)

where £ = kx + ct.

Substituting the general solutions of Eq. (1.1) into Eq. (4.4), we can obtain the
following exact solutions for Eq. (4.1).

When p =0,
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Case 1 and 4 give

1+ k™ 6bc™k® AT(1+ @) 2
= —_ 4.1
U(xat) 2(1 a (A1§O‘ +A2F(1+Oé) ) ( 7)
Case 2 gives
1+ k™ 3bek™ AT(1+a) ’
t) = — 4.1
u(z,t) 2a a (Alga YA (I+a)) (4.18)
where £ = kx + ct.
Case 3 gives
1 X L. —
u(z, t) = % (4.19)

Particular cases :
Solitary, periodic and complex solutions can be derived from solutions (4.9)-(4.16)

when parameters take up special values.
Solitary solutions:

(i) If p < 0, setting Ay = 0, Ay # 0 in (4.9)-(4.12), we obtain respectively the

solitary wave solutions which are shown in Figure 1,

L4 (B —8bk%u)  6bckp of N
u(x,t) = 5 +— coth (mg ) , (4.20)
L (k™ —5bk*u)  3bck*p NATTEENN
unn = 2 2 o (R5¢)
V=H o V= o
o (i) weo(mige )| b 2
1 (B —8bke) 6k o NTH
u(z,t) = 5a + , tanh <7F(1 n a)f ) , (4.22)
PP ETCIIE
bk N N
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8 8 8
t 010 X t 010 ‘

(a) Graph of u(z,t) in Equation (b) Graph of u(z,t) for the ”+” in
(4.20) Equation (4.21) in place of

(¢) Graph of u(z,t) for the ”-” in (d) Graph of u(z,t) in Equation
Equation (4.21) in place of F (4.22)

8 8
t 010 X

(e) Graph of u(z,t) in Equation (4.23)

FIGURE 1. Profiles of the solutions (4.20)-(4.23) corresponding to
the values a =4/5, a=b=c=k=1and p=—1.
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Similarly, setting Ay # 0, A2 = 0 in (4.9) and (4.11)-(4.12), we get more solitary
wave solutions which are omitted.
(ii) if 4 < 0 and A? > A2 then we deduce respectively from (4.9) and (4.11)-(4.12),

the solitary wave solutions,

T (Y —8bkO)  6be ko o VT e
u(z, t) = 5a + - tanh Tl +a) a)g +& |, (4.24)
L (k™ —8bk*u)  6bck*p 9 AT
u(z,t) = 5 + - coth T+ a)€ +& ), (4.25)
1+ c* (k™ — 8bk™ 6bc* k™
u(z,t) = ( 7 2 + o a
2 V_HE o 2 V_H ca
X [tanh <7I‘(1 n a)é + §0> + coth <7F(1 n a)f + §0>] , (4.26)

where & = tanh™*(Ay/A;).
Periodic solutions:

(i) If o > 0, setting A; = 0, A # 0 in (4.13)-(4.16), we obtain respectively the

periodic wave solutions which are shown in Figure 2

w(at) = 1EE (k;;f 8bkp) 6bc°;kau . (r%ga) | (4.27)
w(at) = 1EE (k;;f Bbkp) 3bc°;kau {tan <r(17%5a>

x [tan (T{‘a)g)  sec (T{‘a)g)” (4.28)
ww ) = 1S (k;;f 8bkp) 6bc°;kau or? (%§a> 7 (1.29)
w(at) = 1EE (k—;; 8bk 1)

— % [tanQ (%@) + cot? (%gaﬂ : (4.30)
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8 8 8 8
t 0 10 * t 010

(a) Graph of wu(z,t) in Equation (b) Graph of u(z,t) for the ”-” in

(4.27) Equation (4.28) in place of +

(c¢) Graph of u(z,t) for the "+” in (d) Graph of wu(z,t) in Equation
Equation (4.28) in place of £ (4.29)

(e) Graph of wu(z,t) in Equation
(4.30)

FIGURE 2. Profiles of the solutions (4.27)-(4.30) corresponding to
the values a =4/5, a=—1, b=c=k=1and p=1.
(=154
B
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Similarly, setting Ay # 0, A2 = 0 in (4.13)-(4.16), we get more periodic wave
solutions which are omitted.

(ii) if g > 0 we obtain respectively from (4.13)-(4.16) the periodic wave solutions,

1 (B —8bkOp)  6be ko u VE o
u(z, t) = o — p tan? <7F(1 n a)§ §0> , (4.31)
14 (B —5bkep)  3bekou N
u(z,t) = 5a - - {tan <7I’(1 n a)g 50)
VI VE o
< (e -a) s (e o)} aw
1 (B —8bkep)  6bekou N
u(z,t) = o — p cot? <7F(1 n a)f 50) , (4.33)
(1) = 14 (k‘;‘a— 8bkp) 6bc";k:“,u
N N
<t (e o) v (dge - 0)] 0

where £y = tan=1(A;/A3).
Complex solutions:

(i) If © < 0, setting A; # 0, A2 = 0 in (4.10), we discover the complex solitary
solutions which are shown in Figure 3

_1+4c (k= — 5bk™p) n 3bck {tanh< N €a>

2a a

w
u(zx,t) T+ a)

 Jeann (e ) wisean (Ve )]} (435)
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(a) Graph of real u(x,t) for the ”+” (b) Graph of imag u(z,t) for the
in Equation (4.35) in place of F ”+” in Equation (4.35) in place of
:F

FIGURE 3. Profiles of the solutions (4.35) corresponding to the values
a=4/5,a=b=c=k=1and p=—1.

(i) if 4 < 0 and A% > A% then we obtain the complex solitary solutions using
(4.10),

1 (e} —a (e (o' Mo /_—
u(z,t) = Tk S0k 1) + Sbekp {tanh( a

2a a (1 +04)€a +£O)

« Jranh (e v 6 ) et (e v )| oo

where & = tanh™*(Ay/A;).

To the best our knowledge, the solutions obtained in this paper have not been re-

ported in the literature so far.

5. CONCLUSION

In this paper, we have proposed a new fractional sub-equation method for solving
FPDEs with Jumarie’s modified Riemann-Liouville derivative. This method is the
fractional version of the known extended (G’/G)-expansion method. As an applica-
tion, new exact solutions for the space-time fractional ZKBBM equation have been
successfully obtained. For certain values of the parameters, solitary wave, periodic
wave and complex solutions are obtained from these solutions. The method can be
applied to many other FPDEs in mathematical physics.

[c[v]
(o] €]
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