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Abstract ~ ~N

This paper tackles singularly perturbed second-order ordinary differential equations and parabolic part‘ial differ-
ential equations with the Fredholm integral term. A non-standard finite difference method is applied the derivative
terms, the trapezoidal rule treats the integral term and the backward Euler method deals with the temporal de-
rivative phrase. The approximate numerical technique for the second-order Fredholm integro-ordinary differential
(convection-diffusion type) equations provides a convergence rate of order one. The time-dependent parabolic
Fredholm integro-partial differential (convection-diffusion type) equations possess a convergence rate of order one.
Specific numerical examples are provided to illustrate the effectiveness of the theoretical findings.
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Notations:
] Solution of Equation (1.4)
Y Fully discrete solution of (1.4)
u! = u(xi, t;) Solution of Equation (1.5)
U/ Fully discrete solution of (1.5)
(Ah) Mesh size in space direction
T Mesh size in time direction
c Positive constant independent of (Ah) and e
cm([0,1]) Continuously differentiable n times on [0, 1]
c™™([0,1] x [0,T]) n,m— times continuously differentiable
[1€]loo max ¢(@)l;

1

R zg%,)i]‘(!\|K(x’s)|d8
yp(z;) Continuous solutions for a differential part in (1.4)
) Numerical solutions for a differential part in (1.4)
yr(z;) Continuous solutions for a integral part in (1.4)
Y/! Numerical solutions a integral part in (1.4)
up, (i, t;) Continuous solution of time derivative in (1.5)
up, (zi,t;) Continuous solution of spatial derivative in (1.5)
ur(zi, tj) Continuous solution of integral part in (1.5)
(Up,)! Numerical solution of time derivative part in (1.5)
(Up,)! Numerical solution of spatial derivative part in (1.5)
(U7)! Numerical solution of integral part in (1.5)
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1. INTRODUCTION

In general, a differential equation created by multiplying a tiny parameter with the higher derivative term of a
differential equation is referred to as a singularly perturbed differential equations (SPDEs). Such a parameter is
known as the singular perturbation parameter. The solutions to these equations establish a very thin layer, referred
to as either an interior or boundary layer, depending on the domain. SPDEs are extremely popular due to their
widespread use in various scientific and technical fields. The major objective is to find numerical solutions for these
problems to achieve accuracy and convergence. Within the finite differences framework; there are several types of
numerical techniques for solving SPDEs. In [11, 20, 23, 27, 29, 36] are presented one and multidimensional singularly
perturbed problems (SPPs) solved by fitted mesh and fitted operator methods. SPDEs find wide applications
across various scientific and engineering fields-for instance, Udupa et al. [42] applied a singular perturbation approach
to study blood flow through a stenosed artery under body acceleration, while Govindarao and Sekar [13] employed
numerical methods to analyze an RLC closed series circuit with small inductance values.

Integro-differential equations (IDEs) are important in domains including physics, engineering, biology and chem-
istry [1, 2, 35, 38]. IDEs are divided into two types based on their components: Fredholm integro-ordinary differential
equations (FIODEs), which contain integral terms with a finite range and Volterra integro-ordinary differential equa-
tions (VIODEs), which contain integral terms that are bound by respected variables. A wide variety of analytical
and numerical techniques developed to provide exact and approximate solutions for FIODEs and plenty of innovative
numerical techniques specifically created for solving FIODEs can be found in the literature. Chen et al. proposed
a Galerkin method to solve FIODEs and analyze the behaviour of the solution in [7]. In [3] Akyuz-Dascioglu et al.
solved linear FIODESs by the Taylor polynomial method.

Authors of [19], consider the stochastical financial model of the Black-Scholes equation with the value of W =
W (S, 7), which is a European call option, where W (S, 7) denotes the value of a contingent claim with current time 7
that is dependent on the price of the underlying asset S,

oW 1 4, ,0*W ow B
or * 50— S 0852 +TS¥ —rW =0, (8’7—) € (0,00) o (O’T}’ (1'1)

with the initial and boundary financial conditions,

W(S,T) = max(S,T) = max(S — E,0), S €RT,
W(0,7) =0, W(S,7) =S for S=o00, 7€[0,T).

Here o is volatility, F is the exercise price, T'is the expiry time and r is the interest rate. Applying the transformations
S=FEexp(z), 7=T—tr ', W= Ez(a,t),

and introducing the notation k = 20=2r, t* = rT, the Equation (1.1) is transformed into the following dimensionless
parabolic equation in the new variables z, 7:

[ 02 0 0 .
Lz(z,7) = @—k(k—l)%—k—k% z2(x,7) =0, (z,7)€Rx(0,77],

with the initial condition

2(x,0) = p.(x), z€R,
where

p.(x) = max(exp(z) — 1,0), z € R,
and with the condition at infinity

z2(x,7) = 0, for x — —o0,
2(z,7) = exp(z), forz— oo, 7€ (0,77

(=)=
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Now, set 7 =t/r, so % = r%. Substituting these into the above equation, we obtain:

0a? ox ot
Now divide through by kr to normalize:

{1 ? k—-10 1 0

{ o +(k1)akkra}z(x,t) = 0.

wro T Tk ds at}ZW’ =0
Introduce the small parameter € =

1 k—1
H_Q . =(1—e).

1021 € (0,1). Since k =20~ ?r, it follows that:

Then the equation becomes:

Lz(z,t) = 8—2+(1—)£—1—9 (x,t) =0, (x,t) € Rx (0,t%]
z(x,t) = 681'2 681’ T z(x,t) =0, (x, ,

with initial and boundary conditions:
z(x,0) = max(exp(z) — 1,0), x €R,
z(x,t) =0, for x— —o0,
x,t)

z(a,

Here, € = 27102771 is a dimensionless “perturbation” parameter, e € (0,1).
Next, the application of the singularly perturbed Fredholm integro-partial differential equations (SPFIPDE) is
formulated as follows:
aw 1 *wW

1 92
or 127 o5

—exp(x), for x— o0, te(0,t"],

+ (r— A/@)S%—Vg —(r+ W+ )\/W(Sn)g(n) dn=0, (s,7) € (0,00)x (0,T7. (1.2)
0

Equation (1.2) is a stochastic partial integro-differential equation model for option pricing in jump-diffusion and

exponential Levy model, it is mentioned in [15].- Here W (.S, 7) denotes the value of a contingent claim with current

time 7 that is dependent on the price of the underlying asset S, r is the risk-free interest rate, A is the intensity of the

independent Poisson process, g(n) is the probability density function of the jump with amplitude n with properties
2

oo o
that for all 7,g(n) > 0, [g(n)dn = Land & = e#*/*3" — 1, where p; is a mean and o2 is the variance of jump in
0

return.

Using change the variable z = In (2) and y = In(n), where K is strike price and ¢t = T — 7. Define the transformed

function z(z,t) = W(Ke*, T —t) and f(y) = g(e¥)e?. Under this transformation, the integral term [ W (Sn)g(n) dn
0

(o ]
becomes [ z(z + y,t)f(y)dy, which is a convolution in log-space. This also transforms the differential operators
—0o0

accordingly, and Equation (1.2) becomes:

0z 1 ,0%z o? 0z
5 = 3° @—i—(r—?—)\m)—x—(r—l—)\)u—f—)\/z(y,t)f(y—x)dy. (1.3)

The price of a Furopean put option’s initial condition and asymptotic behaviour are explained by
z(x,0) = max(K — Ke",0),

Ke™™ — Ke®*, z— —o0,
@t) = 0 T — 00
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Further, if we take € = "72 as a dimensional parameter in Equation (1.3), it becomes
2 oo
% :e%—i—(r—e—)\n)% —(r+XNu+A / z2(y,t) f(y — ) dy.

The transformation equation inspired us to form our singularly perturbed Ferdholm partial integro-differential equa-
tions. Based on these motivations our objectives are to present, second-order convection diffusion singularly per-
turbed integro-ordinary differential equations (SPFIODESs) in Equation (1.4) and time-dependent parabolic convection-
diffusion type SPFIPDEs in Equation (1.5).

Consider, a class of linear second-order convection-diffusion SPFIODESs of the form,

“ey(2) + ale)y (@) + be)y(a) + A K (e, )y(s)ds = f(z), 0<a <1,

0 (1.4)
y(0)=A,  y(1)=B,

where 0 < € < 1, A is a given parameter. The function a(z) > a > 0, b(z) > 0, f(z) are smooth functions, K(z, s) is
a kernel function and A, B are constants.
Next, define a class of convection-diffusion SPFIPDEs of parabolic type is considered as follows,

(& + Lew + L) u(z,t) = f(a,t), (x,t)€Z=02x(0,T]=(0,1)x (0,7,
u(z,0) = up(x), T € 0, (1.5)
u(0,t) = u(1,t) =0, te0,1),

where

Le qu(z,t) = —€ugy(x,t) + alz, t)ug (2, t) + b(a, t)u(z,t), 0<e<1,
1
Lou(z,t) = )\/K(x,s) u(s, t)ds,
0

where a(z,t) > a > 0, b(z,t) > 0, f(x,t) are in C42(Z), a(x,t) is independent of t, K(x,s) is kernal function and Z
is closure of Z. Applying the compatibility conditions, the solution u(z,t) of Equation (1.5) exhibits a layer at the
boundary values.

In solving SPDESs, standard techniques based on equal step lengths produce erroneous results. They are unstable and
unsatisfactory in the majority of circumstances [22, 32-34, 40]. Therefore many researchers solve SPDEs numerically
in [6, 24, 30, 31, 37]. Similarly, SPFIODEs show the same features. Therefore, certain researchers utilise numerical
techniques to solve SPFIODEs.

Lange and Smith [18] derived the existence and uniqueness of SPFIODEs. Interpolating quadrature rules worked
by Cimen et al. [8] to compute SPFIODEs with uniform mesh. A numerical solution for the non-linear first-order
singularly perturbed VIODEs developed by Sevgin [39]. Amiraliyev et al. [5] developed a method to calculate error
estimates that are consistent across different parameters for estimating solutions of first-order SPFIODESs with uniform
mesh and also developed a customized differentiation technique in second-order SPFIODEs with Shishkin mesh [4].
The second-order reaction-diffusion SPFIODEs investigated by Durmaz et al. [10] using a fitted homogeneous type
difference scheme on a Shishkin mesh reached a second-order non-optimal rate of convergence. Sekar Elango et al. [38]
successfully solved the second-order reaction-diffusion SPFIODESs, using a central difference scheme applied for the
second-order derivative part and integral component used by the composite trapezoidal rule of non-uniform meshes
like Shishkin mesh, Bakhvavov-Shishkin mesh. They achieve a rate of convergence of order two. Later, they used a
post-processing technique to change the rate of convergence from two to four. Govindarao et al. [12] handled the
reaction-diffusion SPFIODEs with integral boundary conditions. The second-order derivative is constructed using a
central difference scheme, while the integral component is determined using the composite trapezoidal rule of non-
uniform Shishkin-type meshes. They succeeded in attaining a second-order convergence rate and later by applying the

(=)=
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extrapolation technique a fourth-order convergence rate is obtained. Prince et al. [28] solved the system of SPFIDE
with a uniform mesh.

Due to the presence of a tiny parameter e multiplying the highest-order derivative, standard finite difference methods
often fail to provide accurate solutions when e is very small. The purpose is to solve SPFPIDEs with high accuracy,
therefore our approach is to change from finite difference to non-standard finite difference for tiny parameter e.

This article aims to get a convergence rate of order one for the second-order convection diffusion SPFIODEs and
parabolic convection-diffusion SPFIPDEs. Initially, a non-standard finite difference (NSFD) scheme is used for the
derivative part and the trapezoidal rule applies to an integral part of the uniform mesh. Hence, the Equation (1.4)
converges with order one when using N mesh points. Similarly Equation (1.5) is solved by NSFD scheme with N
number of mesh points in spatial and M number of mesh points in the time direction, as the results the rate of
convergence of order one in the time and spatial directions, it is shown theoretically. Then the global convergence rate
of order one is shown computationally.

In this article section 2 presents the stability of the Second-order SPFIODEs and its numerical discretization
through a non-standard finite difference for the differential part and trapezoidal rule for the integral term, followed by
the parabolic SPFIPDEs in section 3, employing the backward Euler method for time discretization and the NSFD
method for spatial discretization. The trapezoidal rule approaches the integral part, followed by an estimation of the
error analysis and the verification of the numerical simulations.

2. SECOND ORDER SPFIODE

In this section consider the singularly perturbed linear second-order Fredholm integro-ordinary differential equations
of the form Equation (1.4). The solution y(z) of Equation (1.4) generally occurs near the boundary layer z = 1 for
tiny values of e. The stability analysis of the solution is based on the following lemma.

Lemma 2.1 (Stability). Assume that a(z), f(z) € C™([0,1)), 2= K (z,s) € C([0,1] x [0,1]), (n = 0,1,2,3,4) and

oxn
|A] < %. Then, the solution y(x) of Equation (1.4) satisfies the inequalities
(@) [lylleo < Co,

1 1 AR\ L
uhere Gy = (18~ a1+ (21f1 ) + (FAT0I ) +141) (1= (P2)) - and
(i) |y (@) < O 1+ Fexp (=20=22) [ w e 0.1]

Proof. Set z(x) = y(x) — Afor 0 <z <1 and F(z) = f(x) — )\flK(a:,s)y(s) ds.

Then z(0) =0, 2(1) = B — A, ’
|Lz(2)] = |F(z) — Ab(x)| < [[F(2)]loo + Allblloc,

Using comparison principle to bound |z(z)| by the barrier function (Pg.no 25, [41])
0(z) = 2(a|B — A+ IF (@)l + Al [blloc)

This implies |z(z)| < 6(x), Vz €[0,1].

Note thats [F(5)] < o + A e [ (2, 9)ldsl.

Then it follows,

19]lee < Co-

The next bound of |y (z)| is followed by the induction hypothesis, this proof technique is the same as the Kellogg

and Tsan technique [16]. O
an
(o] < |
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Lemma 2.2. For all integer w on a fized mesh, it gives

6_%3% e—%(l—x,;)
lim max =0 and lim max —— | =0,

e—01<i<N-—1 €z e—01<i<N-—1 €2
where x; = i(Ah).
Proof. One can find proof of this lemma in [25]. O
2.1. Numerical discretization for second-order SPFIODEs. On [0,1], the uniform mesh step Ah is used to

1
discretize the interval. Here Ah := N such that x; = i(Ah), where N is a number of finite mesh points. For each

mesh point the Equation (1.4) becomes

—ey"(x)fxzwi + a(x,-)y’(x)|w:wi + b(z;)y(x;) + )\/K(xi, s)y(s)ds = f(z;), i =0,1,---, N. (2.1)
0

Let the differential part in Equation (2.1) —ey” + a;3’ 4+ b;y = 0. This equation has two linearly independent solutions
exp(v1z) and exp(yq2x), where the roots of the associated characteristic equation are

—a; = a? + 4b;e
—2¢ '
Thus, setting y; = y(x;), the theory of difference equations shows that the second order linear difference equation

Y1,2 =

Yi—1 eXP(’Y1l’i—1) eXP(’YQIz'—ﬂ
Yi exp(v12;) exp(y2r;) | =0,
Yir1 exp(mnriv1) exp(y2viy1)
or equivalently

. 2 . .
o (_mmm) povs 4 2cosh ( (Ah)y/a? + dbe m) A (MA@) S

2€ 2€ 2€

is an exact scheme of the original differential equation [21], after suitable manipulations, the scheme
e YmiT ity et
e(jh) (exp (a,;(EAh)) _ 1) Ah

Therefore, we obtain

+ biyi =0.

Yirl =2+ Y1 | Yi —Yi1
02 TR

where, 97 = e(aAih) (eXP (ai(fh)) - 1>, yi = y(xi), ai = a(wx;) and b; = b(z;).

_€y//(x)}z:wi + aiy/(x)’z:mi + biyi =€ + biyia (22)

Let g(z,s) = K(x,s)y(s) € C%([0,1] x [0,1]), the Newton-Cotes quadrature formula of order n = 1 is applied in
integral part of Equation (2.1), then
i 1
/g(xi,s) ds = 5[9(%70) + g(zi, 1)),
0

To increase the accuracy, apply the higher-order Newton-Cote rule. Let s; = j(Ah) be an equidistant subdivision
with step size Ah = &, where j = 0,1,--- , N. Then

1

1
1
/g(ﬂii’ s)ds ~ T(apg(vi,8) == (Ah) 59(%‘7 s0) + g(zi,s1) + -+ g(zi,sn-1) + 59(% sn) |- (2.3)
0

(=)=
E)NE
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This is known as the composite trapezoidal rule.
In Equation (2.1) substitute Equations (2.2) and (2.3) then,
N

i+1 — 2Yi + Y i — Yi—
_ ML T TV | ) YL )y (a) + A 05(AR) K (@i, 55) y(sy) = (o), (2.4)
)3 Ah =
for j =0, N,

1
whereyizym),ej:{ 2 i—l2, N-1

The Equation (2.4) forms a system of linear equation MY = b. Solving this linear system by the following Algorithm
1.

Algorithm 1 Numerical Solution of second-order SPFIODE.

1: function solve_linear _system(M, b)
2: [N, N] + size(A)

3: Input: M =ml[i,j, Y =y, b= f;

4: Boundary_conditions: yp = A, yy = B
5: Output: Y < M\b

2.2. Error analysis for second-order SPFIODESs. Here, y(z;) is the continuous solution and Y; is the numerical
solution for each mesh point of Equation (1.4). The solution is split into a differential part and an integral part and
the error estimation follows like

ly(xs) = Yi| = |(yp(zi) +y1(x:) — (V7 + Y1),

where yp(z;), yr(x;) are the continuous solutions for a differential and integral part, similarly Y;”, Y/ are the numerical
solutions for the differential part and integral part. The following lemma shows the error estimate of the differential
part.

Lemma 2.3. If yp(x;) is the continuous solution for the differential part and Y;° is the numerical solution for the
differential part. Then the NSFD scheme is uniformly e— convergent of order one.

. N —YP|<CA
i-e, Oigglog%vaD(wz) i | < C(Ah),

where C is an independent constant of € and Ah.

Proof.
Lév(yz - sz) = (Le,w - Lgm)yu
AR, Y o e
= —ey;/ + aly; — |:6yz+1 wy; + Y 1:| —a; |:Z/z Aiz;: 1:| . (25)
K3
Using proper Taylor series expansions and considering the truncated Taylor expansion wif = ﬁ - % + %
Then the Equation (2.5) becomes,
; 2 Ah)* a;(Ah)
LNy = Y;) = —ey!’ € G a; AR ( e i "
ey ) eyﬂr[((Ah)Q 2(Ah)+126 (AR + 5=y ) ||+ —5 4"
e(Ah)? a;(AR)3 a?(Ah)? a?(Ah)*
LN P — K < " i 1" i 7 {/ 1 " i ,
|28y = Y| < | =5 =" )| + | =" ()| + | =5 ¥ Y m)

where 1; € (z;_1,2;+1) and using the reation (Ah) > (Ah)? > (Ah)* and also using Lemma 2.1 and 2.2, then it
follows,

[LY (Yi = y;)| < C(Ah).

The result follows from the above truncation error analysis, as in [22]. (]
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Lemma 2.4. Let g : C?([0,1] x [0,1]) — R be twice continuously differentiable. Then the error for the composite
tmpezoidal rule is

-1 02
/ K (e 5)y(s) ds = Tiamg(aiss) = 1 (A0)? | 5 K, u(©)] € € 0.1)
12 23
Proof. The proof of this lemma can be found in (Pg.no 299, [17]). O

Lemma 2.5. If yr(x;) is the integral part continuous solution and Y! is the integral part numerical solution. Then
composite trapezoidal rule is convergent of order two.

ie, sup |yr(w;) = Y| < C(AR),
0<i<N

where C' is an independent constant of Ah.

Proof. Using Lemma 2.4 and |A| < %, then

1
oSup fr(w:) = Y/l = max AO/ (i, )y(s) ds — AT ang(@i, 5)] ,
1 2
< MAR? max |5 [K (s, s)y(s)]|
< C(An)*.

O

Theorem 2.6. Let y(x;) andY; be the continuous and numerical solution of the Equations (2.1) and (2.4) respectively.
Then

sup max |y(e;) — ¥il < C(AR),

0<e<10<i<N
where C' is an independent constant of € and Ah.
Proof. From Lemma 2.3 and 2.5 can be used to formulate the convergence following the result,

sup - max [y(z;) —Yi| = [(yp (@) +yr(x:) — (V7 + Y],
0<e<10<i<

lypla:) = Y2 + lyr(z:) — Y,
ca

)

I/\ IN

O

2.3. Numerical result for second order SPFIODEs. According to the theoretical analysis, the developed method
exhibits a uniform first-order convergence rate, independent of the perturbation parameter €. To validate its efficiency,
numerical experiments were conducted using the proposed NSFD scheme in conjunction with the trapezoidal rule,
applied to the given test problems.

Example 2.7. Consider the second-order SPFIODE example

() + (1t exp(e — 4) y'(x) + y(x) + 1 [y(s) ds

0
y(0) = y(1) = 0.

I
~
—~
N

_(-ax) -1
The exact solution of Example 2.7 is y(x) = ¢ — (66_16‘) .

(=)=
E)NE
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e=10""1 e = 1010
0.8 T T T T T
=emNumerical Sol. 1} me== Numerical Sol.
——Exact Solu.
0.6+ ===Exact Solu.
= —
> 8
04 -
= 0.5
0.2¢f
0 — 0 -
0 0.2 0.4 0.6 0.8 1 0 0.5 1
xr X

F1GURE 1. Numerical solution and exact solution of Example 2.7 for N = 64.

Example 2.8. Consider the second-order SPFIODE example

@)+ (1) )ty b ey ds=1,
0
y(0) =y(1) =0.

The maximum absolute error estimate for Example 2.7 is

N __ A Vg
e —Oggﬂly(fcz) Yil,

and the converge rate is
pe =log, (e /e2™)

where y(z;) is exact solution and Y; is approximation solution.
Example 2.8 does not possess an exact solution. Consequently, an error estimate is followed by a double mesh error
analysis. The maximum absolute error obtained by

eN = max |y€’N —

2N
€ B Y |7
0<i<N

where y©, 792V are the approximate solutions of the related method with the mesh points N and 2N respectively.

Now e—uniform pointwise maximum error E¥ = max,e" and also the parameter uniform convergence rate is
PN = log, (%)

For various values of €, a numerical and exact solution of Example 2.7 is plotted in Figure 1. The numerical solution of
Example 2.8 with various € values is plotted in Figure 2. These figures show that when e decreases, a layer is presented
around z = 1. Tables 1 and 2 display Example 2.7 and Example 2.8 approximated maximum pointwise errors and
rate of convergence respectively with various mesh points N. Table 3 compares the maximum absolute errors obtained
using the standard finite difference method and the proposed NSFD scheme for Example 2.7.

3. ParaBoric SPFIPDE

This section considers the singularly perturbed Fredholm integro-partial differential equation given in Equation (1.5).
For small values of the perturbation parameter ¢, the solution u(z,t) typically exhibits a boundary layer near x = 1.
an
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0.8 : : : :
——c=10""
0.6 [——e =107
e=10"°
B 4f|—e=107"
D
0.2+
0 . . . .
0 0.2 0.4 0.6 0.8 1

T

FI1GURE 2. Solution plot of Example 2.8.

TABLE 1. Pointwise maximum error and convergence rate of Example 2.7.

[ €l [ N = 64 [ 128 [ 256 4[ 512 [ 1024 ]
10=2 [ 5.0960e-4 | 1.6297e-4 | 6.4125e-5 | 2.9043e-5 | 1.3881e-5
1.6447 1.3457 1.1427 1.0650 1.0298
107% | 2.0055e-3 | 9.9520e-4 | 4.8585e-4 | 2.3013e-4 | 1.0196e-4
1.0109 1.0345 1.0781 1.1744 1.2982
107°% | 2.0312¢-3 | 1.0211e-3 | 5.1180e-4 | 2.5612¢-4 | 1.2801e-4
0.9922 0.9964 0.9988 1.0005 1.0025
1078 | 2.0315e-3 | 1.0213e-3 | 5.1206e-4 | 2.5638e-4 | 1.2827e-4
0.9921 0.9961 0.9981 0.9990 0.9995
10710 | 2.0315e-3 | 1.0213e-3 | 5.1207e-4 | 2.5638e-4 | 1.2828e-4
0.9921 0.9961 0.9980 0.9990 0.9995
EN 2.0315e-3 | 1.0213e-3 | 5.1207e-4 | 2.5638e-4 | 1.2828e-4
pN 0.9921 0.9960 0.9981 0.9990

TABLE 2. Pointwise maximum error and convergence rate of Example 2.8.

[ el [ N=64 ] 128 [ 256 [ 512 [ 1024 ]
1072 [ 1.7749e-3 | 1.0822e-3 | 6.0924e-4 | 3.2248e-4 | 1.6598e-4
0.7137 0.8289 0.9178 0.9582 0.9786
10™% | 9.5268e-4 | 4.8149¢-4 | 2.4203e-4 | 1.2046e-4 | 5.6052e-5
0.9845 0.9923 1.0066 1.1038 0.7923
1076 | 9.5268e-4 | 4.8149e-4 | 2.4204e-4 | 1.2135e-4 | 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990
1078 | 9.5268e-4 | 4.8149¢-4 | 2.4204e-4 | 1.2135e-4 | 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990
10710 | 9.5268e-4 | 4.8149e-4 | 2.4204e-4 | 1.2135e-4 | 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990
EN 1.7749e-3 | 1.0822e-3 | 6.0924e-4 | 3.2248e-4 | 1.6598e-4
pN 0.7138 0.8289 0.9178 0.9582

To ensure smooth behavior at the corners (0,0) and (1,0), the following compatibility conditions are applied:

up(0) =0, and wug(l) =0,

— eug (0) + a(0,0)uy(0) + b(0,0)ug(0) + )\/O K (0, s)ug(s)ds = f(0,0),

(=)=
E)NE
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TABLE 3. Maximum absolute errors comparison for standard and non-standard finite difference meth-
ods of Example 2.7.

. N Maximum absolute error | Maximum absolute
(Standard finite difference) error (NSFD)
64 1.7684e-1 5.0960e-4
128 1.0392e-1 1.6297e-4
1072 | 256 6.1874e-2 6.4125e-5
512 3.3349¢e-2 2.9043e-5
1024 1.7339e-2 1.3881e-5

—eug (1) +a(1,0)uj(1) + b(1,0)up(1) + )\/O K(1,s)ug(s)ds = f(1,0).

Under these conditions, the solution satisfies the following estimates:
|u(z,t) — up(z)| < Ct, (3.1)
lu(z,t)] < C(1—z) V(x,t) € Z.

where C' is a positive constant depending on the data, but independent of €. These bounds form the basis for the

stability analysis.

13

 f(x,t) € CHY(Z), and ;—nK(:r, s) exists and is continuous on [0,1] x [0, 1] forn =0, 1.
x

. Then the solution u(x,t) of Equation (1.5) satisfies the following bound:

~—

Lemma 3.1. Assume a(x,t

Further, suppose that |\ <

3l

|ug(z,t)] < C {1 +etexp <—M)] ,  forall (xyt) € Z,

€

where C' is a constant independent of €.

Proof. Fix any t € [0,T] by using argument of Lemma 2.1 on the line segment {(z,¢)|0 <z < 1}.

]
Lemma 3.2. If a(z,t), f(x,t) € CYY(Z). Then
lui(z, )| < C,  for (z,t) € Z.
Proof. One can find the proof of this lemma in [14] O

Lemma 3.3 (Stability). Assume that a(x,t), f(x,t) € C*2(Z), with a(x,t) = a(z) (i.e., independent of t). Let
%K(JJ,S) € C([0,1] x [0,1]) for n = 0,1,2,3,4, and suppose || < . Then the solution u(x,t) of Equation (1.5)
satisfies the following stability bounds:

lu(z,1)] < C,
o 1 1—
[u®) (z,t)| < C {1 + g (_a(ex)ﬂ , for0<i+4+j <4, (3.2)
where u(h7) = %, and C is a constant independent of €.

Proof. By Equation (3.1), |u(z,t)| < Ct, (x,t) € Z. Since t € (0, T therefore
lu(z,t)] < C, (z,t) € Z.

Proof of the Equation (3.2) using Lemma 3.1 and 3.2 and similar manner in [14, 26]. (]
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3.1. Numerical discretization for SPFPIDESs. In this section, the equation is first discretized in time using the
backward Euler method. This time discretization results in a sequence of spatially dependent linear problems. To
solve the spatial component at each time level, a fitted operator finite difference method is employed, while the integral
term is approximated using the trapezoidal rule. The time interval [0, 7] is uniformly partitioned as

T
oM ={t; =14, 0<j <M, r:M}.

Then Equation (1.5) discretized on @™,

U t) e bo) g et + L) = Fat), 1< < M, 83

u(z,0) =wug, Vx € (0,1), u(0,t;) = u(1,t;) = 0.

To facilitate uniform convergence analysis, an auxiliary function @(z,t;) is introduced. It satisfies the following
equation:

w(z,t;) —u(x,tj—1)

- + Lea (i, t5)) + L(i(z, t5)) = f(x,t;), 1 <j <M,
u(0,t;) = u(l,t;) = 0.
This leads to the compact operator form:
(Z+7TLeg +1I)u(z,t;) = 7f(x,t;) + u(x, tj—1). (3.4)

where @(z,t;) is the solution at time level ¢; of this Equation (3.4). The local truncation error of the time semi-
discretization of Equation (3.3) is defined by E; = u(x,t;) — a(x,t;).

In the temporal discretization, local error estimates at each time step contribute to the global error. The global
error at time level ¢; is denoted by e;. where

J
ej:ZEl, ]ST/T
=0

1 S—
Now, consider the integral term [ K (z,s)u(s,t)ds, where u(z,t) € C*?[0,1] and K (z,s) € C*(Z).

0
Let s = k(Ah), k =0,1,2,--- , N employing an analogous methodology as outlined in the Equation (2.3), then
the composite trapezoidal rule is

1
1
/K(xi, s)u(s,tj) ds ~ T apyK (@i, s)u(s, t;) := (Ah) [2[((%, so)u(so,t;) + K(xi, s1)u(sy,t;) + - -
0

1
+ K(z;,snv—1)u(sy—1,t;) + iK(x“ sy)u(sw,t;)|.
Let I,U/ be the numerical discretization of the integral part in Equation (1.5). Then

N L fork=0,N
LU = \(Ah 0 K*ul, where KF = K(x;,s1), 0 =4 2 T
P = A )kzz;) RIGE g where K = Klwis), O =01 ¢ 010 N1

Next, construct a FOFD method to tackle this collection of linear equations. Consider the interval [0,1] with N

subintervals, denoted as " = {z; :=i(Ah) |1 =0,1,...,N},, where Ah = % and let 7™M = 2V x @M be the
mesh of z,t variables and ZN-M = 7N’M NnZz.

Now applying Mickens’ theory [21] of difference equations and building the following scheme:
oyl it . , ,
R R S RS R ] (3.5)
; . :
an
BE
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where
A Ul —oUu) + U Ul U o
Lé\fozJ == = ¢2l = +a§ - Ahz ! +bgUij»
here
A I(A
»? = ( h) (exp <a1( h)> — 1) .
al €
Now the Equation (3.5) becomes
oy it Ul —oul + U/ Uyl ey
N,M . 7 i i+1 i i—1 7 1—1
Le,x Uz] = - — € gb? ag T + bz Ulj

2

N
+ AMAR 0. KFul, wh 0, =
(Ah) > 0uKFui, where G 1, fork=1,2--- N—1,

k=0

Lof =0,N
{ or k=0, N, (3.6)

with discrete initial and boundary conditions
U = ug(xi), i=0,1,---, N,
Ul =U} =0,1<j<M,

The Equation (3.6) is a linear system equation AU = b. Solving the linear system (3.6) is given in Algorithm 2.

Algorithm 2 Numerical Solution of parabolic SPFIPDE

function solve_linear_system(A, b)
Input: A=ali,j], U=w;, b= f; +uli,j —1](1/7)
Initial _condition: wu[i,0] = ug
boundary_conditions: u[0,j] = u[N,j] =0
for j =1to M do
U+ A\b
return U
end for
Output: numerical _solution U

3.2. Error analysis for SPFPIDEs. If up,(z;,t;),up,(x;,t;), ur(x;,t;) be the continuous solution of time deriv-
ative, spatial derivative and integral part respectively and (Up,)!, (Up,)?, (Ur)] be the numerical solution of time
derivative, spatial derivative and integral part respectively.

Lemma 3.4. The local error E; = up, (x,t;) — (Up,)} associated with the Equation (3.3) satisfies
1Ejlloe < C7%, 1 <5 < M.

Proof. The proof can be found in [9]. O

J
Theorem 3.5. The global error e; = Y Ej is estimate with (3.3), its satisfies
=0

lejlloe < C1, 1< j < M.

Proof. One can find the proof of this theorem in [9]. O



14 P. ANTONY PRINCE, L. GOVINDARAO, AND S. ELANGO

Theorem 3.6. Let u(x;,t;) be the continuous solution for the differential part of (3.3) and Uij be the numerical
solution for the differential part of (3.6) both at time level j. Then

sup - max. lup, (xi,t;) — (Up,)l| < C(Ah).
0<e<1 0<:i<
0< ng

where C is an independent constant of € and Ah.

Proof. As a consequence, the temporal discretization is uniformly convergent in the first order. Keeping things simple,
leave out the time level index temporarily.

L ((up,)i = (Up,)i) = (Lew — L Jus,

U1 — 2U; + Uj—1 Ui — Uj—1
= —euy +au; + [e s | - ||

®? ((AR), e, t) Ah

Using proper Taylor series expansions and considering the truncated Taylor expansion # = Alh)z - 26( Ah) + 1262
Then the Equation (3.7) becomes,

LY (up, )i~ (Up,)) = —euf + [ (o - s+ 1) (@ B ) | + 200,

(3.7)

h)? ai(Ah) a;(Ah)? a2(Ah)?
|LN uD |_ IR ””(771) + 17“2/ + 1Tu;'m(7]i) + TU;/
a;(Ah a;(Ah
* %u;m(m) + %u;’ , where 7 € (%41, Ti-1),

using Ah > (Ah)? > (Ah)* relation and also using Lemma 2.2 and 3.3, then
LY ((up,)i — (Up,)i) | < C(Ah).
Restoring the time level index, we obtain:
LM ((up, )] = (Up, )] ) | < C(AR).
It follows the proof of this theorem. O

Lemma 3.7. If us(x;,t;) is the integral part continuous solution and (Ul)f is the numerical solution of the integral
part. Then the composite trapezoidal Tule has a convergence order of two

sup Ur(@i,t;) = (UT)]1'< C(AR)?,
0<i<

where C' is an independent constant of Ah.

Proof. using the technique of Lemma 2.4, the theorem follows.

1
62
/K x“ tj)ds_T(Ah)K(xivs)u(s’tj) (Ah) 652 (xivg)u(gvtj) ) 5 € [07 1}7
0
apply Lemma 2.5 in a similar manner the rate of convergence of the composite trapezoidal rule is two. ]

Theorem 3.8. Let u(x,t) be the continuous solution and U? be the numerical solution of Equation (1.5). Then

sup max |ul — Uf’ <C(Ah+T).
0<e<1 0SiSN
0<j<M

where C' is an independent constant of €, T and Ah.

(=)=
E)NE
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Proof. Using Theorems 3.5, 3.6 and Lemma 3.7 then error bound is
|u] = U7| =|(up, (@i,t;) +up, (@i, t;) + wr(i, t5)) = (Up,)! + (Up,)] + (U],
<lup, (x:,t;) = Up)i| + |up, (zi,t;) = (Up,)i| + |ur (i, ;) — (U],
<CT + C(Ah) + C(AR)?,
<C(Ah+T).
|
3.3. Numerical calculation for SPFPIDEs. Theoretical research indicates that independent of the perturbation

parameter €, the devised approach shows a uniform convergence rate of order one in time and space. The numerical
approach and results for three test problems are shown below.

Example 3.9. Consider the SPFPIDE example

ou(z,t)  9*u(x,t) n ou(z,t)
—€

1
ot 0a? Oz +/ u(s,t)ds = f(x,t), (2,1) € Z,

0
u(z,0) =ug, u(0,t) =u(l,t)=0.

The exact solution of Example 3.9 is u(x,t) = e~ " [e%l +x (1 - 6%1) — e’(lziw)} :

Example 3.10. Consider the SPFPIDE example

ou(z,t) €a2u(x, t)

Ju(x,t)
o1 02 2 or

+(1+x)u(z,t)+/u(s,t)ds:f(x,t), (z,t) € Z,
0

u(x,0) = ug, u(0,t) =wu(l,t)=0.

w2 -2z
The exact solution of Example 3.10 is u(z,t) = et { e te _ x]

—2
1—e~<

Example 3.11. Consider the SPFPIDE example

du(z,t) 682u(x,t) b2+ xg)au(z,t)

1
_ 43
T 92 o + u(z,t) + /(x + Du(s,t)ds =t>, (x,t) € Z,
0

u(z,0) =u(0,t) = u(l,t) = 0.
The maximum absolute error estimate of Example 3.9 and 3.10 are
eNT = |u(zi, ty) — Uij|7

and the computed e—uniform pointwise maximum error EN'7 = max, e™N'", where u(z;, t;) is the exact solution and

Uij is the approximation solution. The computed parameter rate of uniform convergence is defined by
N,t
N, 7 __ e
P = log, ( aNF ) :

. L N
and the maximum order of convergence is given by PY'™ = log, (EL;T%) .

In Example 3.11 the exact solution is unknown. Therefore, a double mesh approach and a modified version of a double
mesh concept to assess the error in the computed approximations

Nr = irj J
€. = max _
¢ 0<i<N.0<j<M | ©N.T €2N,% |
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F1GURE 4. Solution plots of Example 3.9 with corresponding values of e.

where UZ{VT is the approximation solution with N mesh points and time step 7. In the same way U:Q N3 is the

approximation solution with 2N mesh points and 7/2 time step.

Surface plots for € = 107" and € = 107!'° are shown in Figures 3, 6, and 9 for Examples 3.9, 3.10, and 3.11,
respectively, on a uniform mesh. Figures 4 and 7 display the solutions for ¢ = 107! and ¢ = 1075 for Examples
3.9 and 3.10, while Figure 10 shows the solutions for ¢ = 10~! and ¢ = 10710 for Example 3.11 at different time
levels. Figures 5, 8, and 11 display the solution for different values of € at fixed time levels ¢ = 0.5 and ¢ = 1 for
Examples 3.9, 3.10, and 3.11, respectively. These results indicate the presence of boundary layers near z = 1. Figures
12(a) and 12(b) present the numerical convergence rates on a log-log scale, providing a graphical representation of
the method’s performance. Furthermore, Table 4, Table 5 and Table 6 display the maximum pointwise error and rate
of convergence of order one for Example 3.9, Example 3.10 and Example 3.11. Table 7 presents a comparison of the
maximum absolute errors between the standard finite difference and the NSFD methods for Example 3.9. As shown,
the NSFD method is specifically designed to handle singular perturbations and accurately resolve sharp boundary
layers. By using fitted meshes or specially constructed denominator functions, NSFD ensures stability and uniform
convergence even for very small values of €. Although it involves a more complex, problem-specific implementation, the
NSFD method consistently delivers greater accuracy and reliability compared to standard finite difference schemes.

(=)=
E)NE
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FI1GURE 5. Solution plots of Example 3.9 with corresponding values of ¢.
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FIGURE 6. Surface plots of numerical solution of Example 3.10 for N = 64.

The general workflow for this article is illustrated in the flowchart below in Figure 13.

4. CONCULSION

This research aimed to determine the maximum pointwise error and the convergence rate for the numerical compu-
tations of SPFIODEs and SPFIPDEs. A significant use of the current methodologies, which nearly achieve first-order
convergence rates in both spatial and temporal directions. Our methodology employed a non-standard finite difference
scheme for spatial derivatives, the composite trapezoidal rule for integral components with a uniform mesh, and the
backward Euler method for time derivatives on uniform meshes in SPFIPDEs. Approaching singularly perturbed
integro-differential equations with a tiny independent parameter and attaining first-order convergence rates in both
spatial and temporal directions represent significant novelty in this area of research. The significant discoveries and
contributions of our studies are:

e Understanding boundary layer processes in the solution using a uniform spatial mesh.
e The effective utilization of the non-standard finite difference approach for spatial derivatives with a small
parameter e.

(&)
ENE
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FI1GURE 7. Solution plots of Example 3.10 with corresponding values of e.
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FIGURE 8. Solution plots of Example 3.10 with corresponding values of ¢.

e Achievement of first-order convergence rates for both SPFIODEs and SPFIPDESs, representing a significant

improvement over previous efforts.
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TABLE 4. Pointwise maximum error and convergence rate of Example 3.9.
Number of intervals N and 7= %
el 64 128 256 512 1024
1072 | 2.5367¢-3 | 1.1060e-3 | 5.1111e-4 | 2.4493¢-4-| 1.1981c-4
1.1975 1.1137 1.0613 1.0316 1.0160
107% | 4.9148e-3 | 2.4879¢-3 | 1.2356e-3 | 5.9940e-4 | 2.7926e-4
0.9822 1.0097 1.0436 1.1019 1.2104
1079 | 4.9540e-3 | 2.5283¢-3 | 1.2769¢-3 | 6.4113¢-4 | 3.2092¢-4
0.9704 0.9856 0.9939 0.9984 1.0009
1078 | 4.9544e-3 | 2.5287e:3 | 1.2773e-3 | 6.4155¢-4 | 3.2134e-4
0.9703 0.9853 0.9934 0.9975 0.9990
10710 | 4.9544e-3 | 2.5287e-3 | 1.2773e-3 | 6.4155¢-4 | 3.2134e-4
0.9703 0.9853 0.9934 0.9974 0.9990
ENT | 4.9544e-3 | 2.5287e-3 | 1.2773e-3 | 6.4155¢-4 | 3.2134e-4
PNT | 0.9703 0.9853 0.9935 0.9975
o T
w0 T~
)
-~ -~
-~ ~
» T~
o o -~
5 8 103 e
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z g
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X

(a) Example 3.9.

(b) Example 3.11.

F1GURE 12. Log-log plot with corresponding values of e.
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TABLE 5. Pointwise maximum error and convergence rate of Example 3.10.

TABLE 6.

TABLE 7. Maximum absolute errors comparison for standard and non-standard finite difference meth-

ods of Example 3.9,

Number of intervals N and 7 =

1

el 64 128 256 512 1024
1072 | 1.6464e-3 | 6.7875e-4 | 2.9506e-4 | 1.3597e-4 | 6.5069e-5
1.2784 1.2019 1.1177 1.0633 1.0326
107% | 2.5166e-3 | 1.2827e-3 | 6.4472e-4 | 3.1950e-4 | 1.5507¢-4
0.9723 0.9924 1.0128 1.0429 1.1005
107% | 2.5265e-3 | 1.2929¢-3 | 6.5510e-4 | 3.3002e-4 | 1.6569e-4
0.9665 0.9808 0.9891 0.9941 0.9973
1078 | 2.5266e-3 | 1.2930e-3 | 6.5520e-4 | 3.3013e-4 | 1.6579¢-4
0.9665 0.9807 0.9889 0.9936 0.9964
10719 | 2.5266e-3 | 1.2930e-3 | 6.5520e-4 | 3.3013e-4 | 1.6579e-4
0.9665 0.9807 0.9889 0.9936 0.9963
EN7T | 2.5266e-3 | 1.2930e-3 | 6.5520e-4 | 3.3013e-4 | 1.6579e-4
pNT 0.9665 0.9807 0.9889 0.9937

Pointwise maximum error and convergence rate of Example 3.11.

Number of intervals N and 7= =

1

N
€l 64 128 256 512 1024
1072 | 6.1340e-4 | 3.5310e-4 | 1.8993e-4 | 9.8452e-5 | 5.0109e-5
0.7968 0.8946 0.9480 0.9744 0.9873
107% | 5.4388e-4 | 2.8011e-4 | 1.4212e-4 | 7.1581e-5 | 3.5922e-5
0.9573 0.9789 0.9895 0.9947 0.9898
107°% | 5.4388¢-4 | 2.8011e-4 | 1.4212e-4 | 7.1581e-5 | 3.5921e-5
0.9573 0.9789 0.9895 0.9947 0.9974
1078 | 5.4388¢-4 | 2.8011e=4 | 1.4212e-4 | 7.1581e-5 | 3.5921e-5
0.9573 0.9789 0.9895 0.9947 0.9974
10710 | 5.4388e-4 | 2.8011e-4 | 1.4212e-4 | 7.1581e-5 | 3.5921e-5
0.9573 0.9789 0.9895 0.9947 0.9974
EN'T | 6.5193e-4 | 3.5310e-4 | 1.8993e-4 | 9.8452e-5 | 5.0109e-5
pN.T 0.8846 0.8946 0.9480 0.9744

. Noand r— L Maximum absolute error | Maximum absolute
N | (standard finite difference) error (NSFD)
64 1.5849e-1 2.5367e-3
128 9.4261e-2 1.1060e-3
102 256 5.6225¢-2 5.1111e-4
512 3.0303e-2 2.4493e-4
1024 1.5779¢-2 1.1981e-4
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