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Abstract

This paper tackles singularly perturbed second-order ordinary differential equations and parabolic part‘ial differ-

ential equations with the Fredholm integral term. A non-standard finite difference method is applied the derivative

terms, the trapezoidal rule treats the integral term and the backward Euler method deals with the temporal de-
rivative phrase. The approximate numerical technique for the second-order Fredholm integro-ordinary differential

(convection-diffusion type) equations provides a convergence rate of order one. The time-dependent parabolic
Fredholm integro-partial differential (convection-diffusion type) equations possess a convergence rate of order one.

Specific numerical examples are provided to illustrate the effectiveness of the theoretical findings.
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Notations:
y Solution of Equation (1.4)
Y Fully discrete solution of (1.4)

uji = u(xi, tj) Solution of Equation (1.5)

U ji Fully discrete solution of (1.5)
(∆h) Mesh size in space direction
τ Mesh size in time direction
C Positive constant independent of (∆h) and ϵ
Cn([0, 1]) Continuously differentiable n times on [0, 1]
Cn,m([0, 1]× [0, T ]) n,m− times continuously differentiable
∥ξ∥∞ max

[0,1]
|ξ(x)|,

ℜ max
x∈[0,1]

1∫
0

|K(x, s)|ds

yD(xi) Continuous solutions for a differential part in (1.4)
Y Di Numerical solutions for a differential part in (1.4)
yI(xi) Continuous solutions for a integral part in (1.4)
Y Ii Numerical solutions a integral part in (1.4)
uDt(xi, tj) Continuous solution of time derivative in (1.5)
uDx

(xi, tj) Continuous solution of spatial derivative in (1.5)
uI(xi, tj) Continuous solution of integral part in (1.5)

(UDt
)ji Numerical solution of time derivative part in (1.5)

(UDx)
j
i Numerical solution of spatial derivative part in (1.5)

(UI)
j
i Numerical solution of integral part in (1.5)
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1. Introduction

In general, a differential equation created by multiplying a tiny parameter with the higher derivative term of a
differential equation is referred to as a singularly perturbed differential equations (SPDEs). Such a parameter is
known as the singular perturbation parameter. The solutions to these equations establish a very thin layer, referred
to as either an interior or boundary layer, depending on the domain. SPDEs are extremely popular due to their
widespread use in various scientific and technical fields. The major objective is to find numerical solutions for these
problems to achieve accuracy and convergence. Within the finite differences framework; there are several types of
numerical techniques for solving SPDEs. In [11, 20, 23, 27, 29, 36] are presented one and multidimensional singularly
perturbed problems (SPPs) solved by fitted mesh and fitted operator methods. SPDEs find wide applications
across various scientific and engineering fields-for instance, Udupa et al. [42] applied a singular perturbation approach
to study blood flow through a stenosed artery under body acceleration, while Govindarao and Sekar [13] employed
numerical methods to analyze an RLC closed series circuit with small inductance values.

Integro-differential equations (IDEs) are important in domains including physics, engineering, biology and chem-
istry [1, 2, 35, 38]. IDEs are divided into two types based on their components: Fredholm integro-ordinary differential
equations (FIODEs), which contain integral terms with a finite range and Volterra integro-ordinary differential equa-
tions (VIODEs), which contain integral terms that are bound by respected variables. A wide variety of analytical
and numerical techniques developed to provide exact and approximate solutions for FIODEs and plenty of innovative
numerical techniques specifically created for solving FIODEs can be found in the literature. Chen et al. proposed
a Galerkin method to solve FIODEs and analyze the behaviour of the solution in [7]. In [3] Akyuz-Dascioglu et al.
solved linear FIODEs by the Taylor polynomial method.

Authors of [19], consider the stochastical financial model of the Black-Scholes equation with the value of W =
W (S, τ), which is a European call option, where W (S, τ) denotes the value of a contingent claim with current time τ
that is dependent on the price of the underlying asset S,

∂W

∂τ
+

1

2
σ2S2 ∂

2W

∂S2
+ rS

∂W

∂S
− rW = 0, (s, τ) ∈ (0,∞)× (0, T ], (1.1)

with the initial and boundary financial conditions,

W (S, T ) = max(S, T ) = max(S − E, 0), S ∈ R+,

W (0, τ) = 0, W (S, τ)→ S for S →∞, τ ∈ [0, T ).

Here σ is volatility, E is the exercise price, T is the expiry time and r is the interest rate. Applying the transformations

S = E exp(x), τ = T − tr−1, W = Ez(x, t),

and introducing the notation k = 2σ−2r, t∗ = rT , the Equation (1.1) is transformed into the following dimensionless
parabolic equation in the new variables x, τ :

Lz(x, τ) ≡
{
∂2

∂x2
+ (k − 1)

∂

∂x
− k − k ∂

∂τ

}
z(x, τ) = 0, (x, τ) ∈ R× (0, τ∗],

with the initial condition

z(x, 0) = φz(x), x ∈ R,

where

φz(x) = max(exp(x)− 1, 0), x ∈ R,

and with the condition at infinity{
z(x, τ)→ 0, for x→ −∞,
z(x, τ)→ exp(x), for x→∞, τ ∈ (0, τ∗].
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Now, set τ = t/r, so ∂
∂τ = r ∂∂t . Substituting these into the above equation, we obtain:{

∂2

∂x2
+ (k − 1)

∂

∂x
− k − kr ∂

∂t

}
z(x, t) = 0.

Now divide through by kr to normalize:{
1

kr

∂2

∂x2
+
k − 1

kr

∂

∂x
− 1

r
− ∂

∂t

}
z(x, t) = 0.

Introduce the small parameter ϵ = 1
2σ

2r−1 ∈ (0, 1). Since k = 2σ−2r, it follows that:

1

kr
= ϵ,

k − 1

kr
= (1− ϵ).

Then the equation becomes:

Lz(x, t) =

{
ϵ
∂2

∂x2
+ (1− ϵ) ∂

∂x
− 1− ∂

∂t

}
z(x, t) = 0, (x, t) ∈ R× (0, t∗]

with initial and boundary conditions:
z(x, 0) = max(exp(x)− 1, 0), x ∈ R,
z(x, t)→ 0, for x→ −∞,
z(x, t)→ exp(x), for x→∞, t ∈ (0, t∗],

Here, ϵ = 2−1σ2r−1 is a dimensionless “perturbation” parameter, ϵ ∈ (0, 1).
Next, the application of the singularly perturbed Fredholm integro-partial differential equations (SPFIPDE) is

formulated as follows:

∂W

∂τ
+

1

2
σ2S2 ∂

2W

∂S2
+ (r − λκ)S ∂W

∂S
− (r + λ)W + λ

∞∫
0

W (Sη)g(η) dη = 0, (s, τ) ∈ (0,∞)× (0, T ]. (1.2)

Equation (1.2) is a stochastic partial integro-differential equation model for option pricing in jump-diffusion and
exponential Levy model, it is mentioned in [15]. Here W (S, τ) denotes the value of a contingent claim with current
time τ that is dependent on the price of the underlying asset S, r is the risk-free interest rate, λ is the intensity of the
independent Poisson process, g(η) is the probability density function of the jump with amplitude η with properties

that for all η, g(η) ≥ 0,
∞∫
0

g(η) dη = 1 and κ = eµJ+
σ2
J
2 − 1, where µJ is a mean and σ2

J is the variance of jump in

return.
Using change the variable x = ln

(
S
K

)
and y = ln(η), where K is strike price and t = T − τ . Define the transformed

function z(x, t) = W (Kex, T − t) and f(y) = g(ey)ey. Under this transformation, the integral term
∞∫
0

W (Sη)g(η) dη

becomes
∞∫

−∞
z(x + y, t)f(y) dy, which is a convolution in log-space. This also transforms the differential operators

accordingly, and Equation (1.2) becomes:

∂z

∂t
=

1

2
σ2 ∂

2z

∂x2
+ (r − σ2

2
− λκ)∂z

∂x
− (r + λ)u+ λ

∞∫
−∞

z(y, t)f(y − x) dy. (1.3)

The price of a European put option’s initial condition and asymptotic behaviour are explained by

z(x, 0) = max(K −Kex, 0),

z(x, t) =

{
Ke−rt −Kex, x→ −∞,
0, x→∞.
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Further, if we take ϵ = σ2

2 as a dimensional parameter in Equation (1.3), it becomes

∂z

∂t
= ϵ

∂2z

∂x2
+ (r − ϵ− λκ)∂z

∂x
− (r + λ)u+ λ

∞∫
−∞

z(y, t)f(y − x) dy.

The transformation equation inspired us to form our singularly perturbed Ferdholm partial integro-differential equa-
tions. Based on these motivations our objectives are to present, second-order convection diffusion singularly per-
turbed integro-ordinary differential equations (SPFIODEs) in Equation (1.4) and time-dependent parabolic convection-
diffusion type SPFIPDEs in Equation (1.5).

Consider, a class of linear second-order convection-diffusion SPFIODEs of the form,−ϵy
′′(x) + a(x)y′(x) + b(x)y(x) + λ

1∫
0

K(x, s)y(s) ds = f(x), 0 < x < 1,

y(0) = A, y(1) = B,

(1.4)

where 0 < ϵ≪ 1, λ is a given parameter. The function a(x) ≥ α > 0, b(x) ≥ 0, f(x) are smooth functions, K(x, s) is
a kernel function and A,B are constants.

Next, define a class of convection-diffusion SPFIPDEs of parabolic type is considered as follows,
(
∂
∂t + Lϵ,x + Ix

)
u(x, t) = f(x, t), (x, t) ∈ Z ≡ Ω × (0, T ] ≡ (0, 1)× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,
u(0, t) = u(1, t) = 0, t ∈ [0, T ],

(1.5)

where

Lϵ,xu(x, t) = −ϵuxx(x, t) + a(x, t)ux(x, t) + b(x, t)u(x, t), 0 < ϵ≪ 1,

Ixu(x, t) = λ

1∫
0

K(x, s)u(s, t)ds,

where a(x, t) ≥ α > 0, b(x, t) ≥ 0, f(x, t) are in C4,2(Z), a(x, t) is independent of t, K(x, s) is kernal function and Z
is closure of Z. Applying the compatibility conditions, the solution u(x, t) of Equation (1.5) exhibits a layer at the
boundary values.

In solving SPDEs, standard techniques based on equal step lengths produce erroneous results. They are unstable and
unsatisfactory in the majority of circumstances [22, 32–34, 40]. Therefore many researchers solve SPDEs numerically
in [6, 24, 30, 31, 37]. Similarly, SPFIODEs show the same features. Therefore, certain researchers utilise numerical
techniques to solve SPFIODEs.

Lange and Smith [18] derived the existence and uniqueness of SPFIODEs. Interpolating quadrature rules worked
by Cimen et al. [8] to compute SPFIODEs with uniform mesh. A numerical solution for the non-linear first-order
singularly perturbed VIODEs developed by Sevgin [39]. Amiraliyev et al. [5] developed a method to calculate error
estimates that are consistent across different parameters for estimating solutions of first-order SPFIODEs with uniform
mesh and also developed a customized differentiation technique in second-order SPFIODEs with Shishkin mesh [4].
The second-order reaction-diffusion SPFIODEs investigated by Durmaz et al. [10] using a fitted homogeneous type
difference scheme on a Shishkin mesh reached a second-order non-optimal rate of convergence. Sekar Elango et al. [38]
successfully solved the second-order reaction-diffusion SPFIODEs, using a central difference scheme applied for the
second-order derivative part and integral component used by the composite trapezoidal rule of non-uniform meshes
like Shishkin mesh, Bakhvavov-Shishkin mesh. They achieve a rate of convergence of order two. Later, they used a
post-processing technique to change the rate of convergence from two to four. Govindarao et al. [12] handled the
reaction-diffusion SPFIODEs with integral boundary conditions. The second-order derivative is constructed using a
central difference scheme, while the integral component is determined using the composite trapezoidal rule of non-
uniform Shishkin-type meshes. They succeeded in attaining a second-order convergence rate and later by applying the
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extrapolation technique a fourth-order convergence rate is obtained. Prince et al. [28] solved the system of SPFIDE
with a uniform mesh.

Due to the presence of a tiny parameter ϵmultiplying the highest-order derivative, standard finite difference methods
often fail to provide accurate solutions when ϵ is very small. The purpose is to solve SPFPIDEs with high accuracy,
therefore our approach is to change from finite difference to non-standard finite difference for tiny parameter ϵ.

This article aims to get a convergence rate of order one for the second-order convection diffusion SPFIODEs and
parabolic convection-diffusion SPFIPDEs. Initially, a non-standard finite difference (NSFD) scheme is used for the
derivative part and the trapezoidal rule applies to an integral part of the uniform mesh. Hence, the Equation (1.4)
converges with order one when using N mesh points. Similarly Equation (1.5) is solved by NSFD scheme with N
number of mesh points in spatial and M number of mesh points in the time direction, as the results the rate of
convergence of order one in the time and spatial directions, it is shown theoretically. Then the global convergence rate
of order one is shown computationally.

In this article section 2 presents the stability of the Second-order SPFIODEs and its numerical discretization
through a non-standard finite difference for the differential part and trapezoidal rule for the integral term, followed by
the parabolic SPFIPDEs in section 3, employing the backward Euler method for time discretization and the NSFD
method for spatial discretization. The trapezoidal rule approaches the integral part, followed by an estimation of the
error analysis and the verification of the numerical simulations.

2. Second order SPFIODE

In this section consider the singularly perturbed linear second-order Fredholm integro-ordinary differential equations
of the form Equation (1.4). The solution y(x) of Equation (1.4) generally occurs near the boundary layer x = 1 for
tiny values of ϵ. The stability analysis of the solution is based on the following lemma.

Lemma 2.1 (Stability). Assume that a(x), f(x) ∈ Cn([0, 1]), ∂n

∂xnK(x, s) ∈ C([0, 1] × [0, 1]), (n = 0, 1, 2, 3, 4) and

|λ| < α

ℜ
. Then, the solution y(x) of Equation (1.4) satisfies the inequalities

(i) ∥y∥∞ ≤ C0,

where C0 =

(
|B −A|+

(
1

α
∥f∥∞

)
+

(
1

α
|A| ∥b∥∞

)
+ |A|

)(
1−

(
|λ|ℜ
α

))−1

and

(ii) |y(n)(x)| ≤ C
[
1 + 1

ϵn exp
(

−α(1−x)
ϵ

)]
, x ∈ [0, 1].

Proof. Set z(x) = y(x)−A for 0 ≤ x ≤ 1 and F (x) = f(x)− λ
1∫
0

K(x, s)y(s) ds.

Then z(0) = 0, z(1) = B −A,

|Lz(x)| = |F (x)−Ab(x)| ≤ ∥F (x)∥∞ +A∥b∥∞,

Using comparison principle to bound |z(x)| by the barrier function (Pg.no 25, [41])

θ(x) =
x

α
(α|B −A|+ ∥F (x)∥∞ + |A| ∥b∥∞) ,

This implies |z(x)| ≤ θ(x), ∀x ∈ [0, 1].

Note that: ∥F (x)∥∞ ≤ ∥f∥∞ + |λ| max
x∈[0,1]

1∫
0

|K(x, s)|ds∥y∥∞.

Then it follows,

∥y∥∞ ≤ C0.

The next bound of |y(n)(x)| is followed by the induction hypothesis, this proof technique is the same as the Kellogg
and Tsan technique [16]. □
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Lemma 2.2. For all integer w on a fixed mesh, it gives

lim
ϵ→0

max
1≤i≤N−1

(
e
− C√

ϵ
xi

ϵ
w
2

)
= 0 and lim

ϵ→0
max

1≤i≤N−1

(
e
− C√

ϵ
(1−xi)

ϵ
w
2

)
= 0,

where xi = i(∆h).

Proof. One can find proof of this lemma in [25]. □

2.1. Numerical discretization for second-order SPFIODEs. On [0, 1], the uniform mesh step ∆h is used to

discretize the interval. Here ∆h :=
1

N
such that xi = i(∆h), where N is a number of finite mesh points. For each

mesh point the Equation (1.4) becomes

−ϵy′′(x)
∣∣
x=xi

+ a(xi)y
′(x)

∣∣
x=xi

+ b(xi)y(xi) + λ

1∫
0

K(xi, s)y(s) ds = f(xi), i = 0, 1, · · · , N. (2.1)

Let the differential part in Equation (2.1) −ϵy′′+ aiy′+ biy = 0. This equation has two linearly independent solutions
exp(γ1x) and exp(γ2x), where the roots of the associated characteristic equation are

γ1,2 =
−ai ±

√
a2i + 4biϵ

−2ϵ
.

Thus, setting yi = y(xi), the theory of difference equations shows that the second order linear difference equation∣∣∣∣∣∣
yi−1 exp(γ1xi−1) exp(γ2xi−1)
yi exp(γ1xi) exp(γ2xi)
yi+1 exp(γ1xi+1) exp(γ2xi+1)

∣∣∣∣∣∣ = 0,

or equivalently

− exp

(
−ai(∆h)

2ϵ

)
yi+1 + 2 cosh

(
(∆h)

√
a2i + 4biϵ

2ϵ

)
yi − exp

(
ai(∆h)

2ϵ

)
yi−1 = 0,

is an exact scheme of the original differential equation [21], after suitable manipulations, the scheme

−ϵ yi+1 − 2yi + yi−1

ϵ(∆h)
ai

(
exp

(
ai(∆h)

ϵ

)
− 1
) + ai

yi − yi−1

∆h
+ biyi = 0.

Therefore, we obtain

−ϵy′′(x)
∣∣
x=xi

+ aiy
′(x)

∣∣
x=xi

+ biyi = −ϵ
yi+1 − 2yi + yi−1

ψ2
i

+ ai
yi − yi−1

∆h
+ biyi, (2.2)

where, ψ2
i = ϵ(∆h)

ai

(
exp

(
ai(∆h)

ϵ

)
− 1
)
, yi = y(xi), ai = a(xi) and bi = b(xi).

Let g(x, s) = K(x, s)y(s) ∈ C2([0, 1] × [0, 1]), the Newton-Cotes quadrature formula of order n = 1 is applied in
integral part of Equation (2.1), then

1∫
0

g(xi, s) ds ≃
1

2
[g(xi, 0) + g(xi, 1)].

To increase the accuracy, apply the higher-order Newton-Cote rule. Let sj = j(∆h) be an equidistant subdivision
with step size ∆h = 1

N , where j = 0, 1, · · · , N . Then

1∫
0

g(xi, s) ds ≃ T(∆h)g(xi, s) := (∆h)

[
1

2
g(xi, s0) + g(xi, s1) + · · ·+ g(xi, sN−1) +

1

2
g(xi, sN )

]
. (2.3)
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This is known as the composite trapezoidal rule.
In Equation (2.1) substitute Equations (2.2) and (2.3) then,

−ϵyi+1 − 2yi + yi−1

ψ2
i

+ a(xi)
yi − yi−1

∆h
+ b(xi)y(xi) + λ

N∑
j=0

θj(∆h)K(xi, sj) y(sj) = f(xi), (2.4)

where yi = y(xi), θj =

{
1
2 for j = 0, N,
1 for j = 1, 2, · · · , N − 1.

The Equation (2.4) forms a system of linear equationMY = b. Solving this linear system by the following Algorithm
1.

Algorithm 1 Numerical Solution of second-order SPFIODE.

1: function solve linear system(M, b)

2: [N,N ]← size(A)
3: Input: M = m[i, j], Y = yi, b = fi
4: Boundary conditions: y0 = A, yN = B
5: Output: Y ←M\b

2.2. Error analysis for second-order SPFIODEs. Here, y(xi) is the continuous solution and Yi is the numerical
solution for each mesh point of Equation (1.4). The solution is split into a differential part and an integral part and
the error estimation follows like

|y(xi)− Yi| = |(yD(xi) + yI(xi))− (Y Di + Y Ii )|,

where yD(xi), yI(xi) are the continuous solutions for a differential and integral part, similarly Y Di , Y Ii are the numerical
solutions for the differential part and integral part. The following lemma shows the error estimate of the differential
part.

Lemma 2.3. If yD(xi) is the continuous solution for the differential part and Y Di is the numerical solution for the
differential part. Then the NSFD scheme is uniformly ϵ−convergent of order one.

i.e, sup
0<ϵ<1

max
0≤i≤N

|yD(xi)− Y Di | ≤ C(∆h),

where C is an independent constant of ϵ and ∆h.

Proof.

LNϵ (yi − Yi) = (Lϵ,x − LNϵ,x)yi,

= −ϵy′′i + aiy
′
i −
[
ϵ
yi+1 − 2yi + yi−1

ψ2
i

]
− ai

[
yi − yi−1

∆h

]
. (2.5)

Using proper Taylor series expansions and considering the truncated Taylor expansion 1
ψ2

i
= 1

(∆h)2 −
ai

2ϵ(∆h) +
a2i
12ϵ2 .

Then the Equation (2.5) becomes,

LNϵ (yi − Yi) = −ϵy′′i +

[(
ϵ

(∆h)2
− ai

2(∆h)
+

a2i
12ϵ

)(
(∆h)2y′′i +

(∆h)4

12
y′′′′(ηi)

)]
+
ai(∆h)

2
y′′i ,∣∣LNϵ (yi − Yi)

∣∣ ≤ ∣∣∣∣ϵ(∆h)212
y′′′′(ηi)

∣∣∣∣+ ∣∣∣∣ai(∆h)324
y′′′′(ηi)

∣∣∣∣+ ∣∣∣∣a2i (∆h)212ϵ
y′′i

∣∣∣∣+ ∣∣∣∣a2i (∆h)4144ϵ
y′′′′(ηi)

∣∣∣∣ ,
where ηi ∈ (xi−1, xi+1) and using the reation (∆h) > (∆h)2 > (∆h)4 and also using Lemma 2.1 and 2.2, then it
follows,

|LNϵ (Yi − yi)| ≤ C(∆h).
The result follows from the above truncation error analysis, as in [22]. □



Unco
rre

cte
d Pro

of

8 P. ANTONY PRINCE, L. GOVINDARAO, AND S. ELANGO

Lemma 2.4. Let g : C2([0, 1] × [0, 1]) → R be twice continuously differentiable. Then the error for the composite
trapezoidal rule is

1∫
0

K(xi, s)y(s) ds− T(∆h)g(xi, s) =
−1
12

(∆h)2
∣∣∣∣ ∂2∂ξ2K(xi, ξ)y(ξ)

∣∣∣∣ , ξ ∈ [0, 1].

Proof. The proof of this lemma can be found in (Pg.no 299, [17]). □

Lemma 2.5. If yI(xi) is the integral part continuous solution and Y Ii is the integral part numerical solution. Then
composite trapezoidal rule is convergent of order two.

i.e, sup
0≤i≤N

|yI(xi)− Y Ii | ≤ C(∆h)2,

where C is an independent constant of ∆h.

Proof. Using Lemma 2.4 and |λ| < α

ℜ
, then

sup
0≤i≤N

|yI(xi)− Y Ii | = max
0≤xi≤1

∣∣∣∣∣∣λ
1∫

0

K(xi, s)y(s) ds− λT(∆h)g(xi, s)

∣∣∣∣∣∣ ,
≤ 1

12
|λ|(∆h)2 max

0≤xi,s≤1

∣∣∣∣ ∂2∂s2 [K(xi, s)y(s)]

∣∣∣∣ ,
≤ C(∆h)2.

□

Theorem 2.6. Let y(xi) and Yi be the continuous and numerical solution of the Equations (2.1) and (2.4) respectively.
Then

sup
0<ϵ<1

max
0≤i≤N

|y(xi)− Yi| ≤ C(∆h),

where C is an independent constant of ϵ and ∆h.

Proof. From Lemma 2.3 and 2.5 can be used to formulate the convergence following the result,

sup
0<ϵ<1

max
0≤i≤N

|y(xi)− Yi| = |(yD(xi) + yI(xi))− (Y Di + Y Ii )|,

≤ |yD(xi)− Y Di |+ |yI(xi)− Y Ii |,
≤ C(∆h).

□

2.3. Numerical result for second order SPFIODEs. According to the theoretical analysis, the developed method
exhibits a uniform first-order convergence rate, independent of the perturbation parameter ϵ. To validate its efficiency,
numerical experiments were conducted using the proposed NSFD scheme in conjunction with the trapezoidal rule,
applied to the given test problems.

Example 2.7. Consider the second-order SPFIODE example−ϵy
′′(x) + (1 + exp(x− 4)) y′(x) + y(x) + 1

2

1∫
0

y(s) ds = f(x),

y(0) = y(1) = 0.

The exact solution of Example 2.7 is y(x) = x−
(
e−

(1−x)
ϵ −e

−1
ϵ

1−e
−1
ϵ

)
.
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Figure 1. Numerical solution and exact solution of Example 2.7 for N = 64.

Example 2.8. Consider the second-order SPFIODE example−ϵy
′′(x) +

(
1− x2

2

)
y′(x) + y + 1

4

1∫
0

x y(s) ds = 1,

y(0) = y(1) = 0.

The maximum absolute error estimate for Example 2.7 is

eNϵ = max
0<i<N

|y(xi)− Yi|,

and the converge rate is

pNϵ = log2
(
eNϵ /e

2N
ϵ

)
,

where y(xi) is exact solution and Yi is approximation solution.
Example 2.8 does not possess an exact solution. Consequently, an error estimate is followed by a double mesh error
analysis. The maximum absolute error obtained by

eNϵ = max
0<i<N

∣∣yϵ,N − ỹϵ,2N ∣∣,
where yϵ,N , ỹϵ,2N are the approximate solutions of the related method with the mesh points N and 2N respectively.
Now ϵ−uniform pointwise maximum error EN = maxϵ e

N
ϵ and also the parameter uniform convergence rate is

PN = log2

(
EN

E2N

)
.

For various values of ϵ, a numerical and exact solution of Example 2.7 is plotted in Figure 1. The numerical solution of
Example 2.8 with various ϵ values is plotted in Figure 2. These figures show that when ϵ decreases, a layer is presented
around x = 1. Tables 1 and 2 display Example 2.7 and Example 2.8 approximated maximum pointwise errors and
rate of convergence respectively with various mesh points N . Table 3 compares the maximum absolute errors obtained
using the standard finite difference method and the proposed NSFD scheme for Example 2.7.

3. Parabolic SPFIPDE

This section considers the singularly perturbed Fredholm integro-partial differential equation given in Equation (1.5).
For small values of the perturbation parameter ϵ, the solution u(x, t) typically exhibits a boundary layer near x = 1.
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Figure 2. Solution plot of Example 2.8.

Table 1. Pointwise maximum error and convergence rate of Example 2.7.

ϵ ↓ N = 64 128 256 512 1024

10−2 5.0960e-4 1.6297e-4 6.4125e-5 2.9043e-5 1.3881e-5
1.6447 1.3457 1.1427 1.0650 1.0298

10−4 2.0055e-3 9.9520e-4 4.8585e-4 2.3013e-4 1.0196e-4
1.0109 1.0345 1.0781 1.1744 1.2982

10−6 2.0312e-3 1.0211e-3 5.1180e-4 2.5612e-4 1.2801e-4
0.9922 0.9964 0.9988 1.0005 1.0025

10−8 2.0315e-3 1.0213e-3 5.1206e-4 2.5638e-4 1.2827e-4
0.9921 0.9961 0.9981 0.9990 0.9995

10−10 2.0315e-3 1.0213e-3 5.1207e-4 2.5638e-4 1.2828e-4
0.9921 0.9961 0.9980 0.9990 0.9995

EN 2.0315e-3 1.0213e-3 5.1207e-4 2.5638e-4 1.2828e-4

PN 0.9921 0.9960 0.9981 0.9990

Table 2. Pointwise maximum error and convergence rate of Example 2.8.

ϵ ↓ N = 64 128 256 512 1024

10−2 1.7749e-3 1.0822e-3 6.0924e-4 3.2248e-4 1.6598e-4
0.7137 0.8289 0.9178 0.9582 0.9786

10−4 9.5268e-4 4.8149e-4 2.4203e-4 1.2046e-4 5.6052e-5
0.9845 0.9923 1.0066 1.1038 0.7923

10−6 9.5268e-4 4.8149e-4 2.4204e-4 1.2135e-4 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990

10−8 9.5268e-4 4.8149e-4 2.4204e-4 1.2135e-4 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990

10−10 9.5268e-4 4.8149e-4 2.4204e-4 1.2135e-4 6.0755e-5
0.9845 0.9922 0.9961 0.9981 0.9990

EN 1.7749e-3 1.0822e-3 6.0924e-4 3.2248e-4 1.6598e-4

PN 0.7138 0.8289 0.9178 0.9582

To ensure smooth behavior at the corners (0, 0) and (1, 0), the following compatibility conditions are applied:

u0(0) = 0, and u0(1) = 0,

− ϵu′′0(0) + a(0, 0)u′0(0) + b(0, 0)u0(0) + λ

∫ 1

0

K(0, s)u0(s) ds = f(0, 0),
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Table 3. Maximum absolute errors comparison for standard and non-standard finite difference meth-
ods of Example 2.7.

ϵ N
Maximum absolute error
(Standard finite difference)

Maximum absolute
error (NSFD)

10−2

64 1.7684e-1 5.0960e-4
128 1.0392e-1 1.6297e-4
256 6.1874e-2 6.4125e-5
512 3.3349e-2 2.9043e-5
1024 1.7339e-2 1.3881e-5

− ϵu′′0(1) + a(1, 0)u′0(1) + b(1, 0)u0(1) + λ

∫ 1

0

K(1, s)u0(s) ds = f(1, 0).

Under these conditions, the solution satisfies the following estimates:

|u(x, t)− u0(x)| ≤ Ct, (3.1)

|u(x, t)| ≤ C(1− x) ∀(x, t) ∈ Z.

where C is a positive constant depending on the data, but independent of ϵ. These bounds form the basis for the
stability analysis.

Lemma 3.1. Assume a(x, t), f(x, t) ∈ C1,1(Z), and
∂n

∂xn
K(x, s) exists and is continuous on [0, 1]× [0, 1] for n = 0, 1.

Further, suppose that |λ| < α

ℜ
. Then the solution u(x, t) of Equation (1.5) satisfies the following bound:

|ux(x, t)| ≤ C
[
1 + ϵ−1 exp

(
−α(1− x)

ϵ

)]
, for all (x, t) ∈ Z,

where C is a constant independent of ϵ.

Proof. Fix any t ∈ [0, T ] by using argument of Lemma 2.1 on the line segment {(x, t)|0 ≤ x ≤ 1}.
□

Lemma 3.2. If a(x, t), f(x, t) ∈ C1,1(Z). Then

|ut(x, t)| ≤ C, for (x, t) ∈ Z.

Proof. One can find the proof of this lemma in [14] □

Lemma 3.3 (Stability). Assume that a(x, t), f(x, t) ∈ C4,2(Z), with a(x, t) = a(x) (i.e., independent of t). Let
∂n

∂xnK(x, s) ∈ C([0, 1] × [0, 1]) for n = 0, 1, 2, 3, 4, and suppose |λ| < α
ℜ . Then the solution u(x, t) of Equation (1.5)

satisfies the following stability bounds:

|u(x, t)| ≤ C,

|u(i,j)(x, t)| ≤ C
[
1 +

1

ϵi
exp

(
−α(1− x)

ϵ

)]
, for 0 ≤ i+ j ≤ 4, (3.2)

where u(i,j) = ∂i+ju
∂xi∂tj , and C is a constant independent of ϵ.

Proof. By Equation (3.1), |u(x, t)| ≤ Ct, (x, t) ∈ Z. Since t ∈ (0, T ] therefore

|u(x, t)| ≤ C, (x, t) ∈ Z.

Proof of the Equation (3.2) using Lemma 3.1 and 3.2 and similar manner in [14, 26]. □
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3.1. Numerical discretization for SPFPIDEs. In this section, the equation is first discretized in time using the
backward Euler method. This time discretization results in a sequence of spatially dependent linear problems. To
solve the spatial component at each time level, a fitted operator finite difference method is employed, while the integral
term is approximated using the trapezoidal rule. The time interval [0, T ] is uniformly partitioned as

ωM = {tj = τj, 0 ≤ j ≤M, τ =
T

M
}.

Then Equation (1.5) discretized on ωM ,

u(x, tj)− u(x, tj−1)

τ
+ Lϵ,x(u(x, tj)) + Ix(u(x, tj)) = f(x, tj), 1 ≤ j ≤M, (3.3)

u(x, 0) = u0, ∀ x ∈ (0, 1), u(0, tj) = u(1, tj) = 0.

To facilitate uniform convergence analysis, an auxiliary function ŭ(x, tj) is introduced. It satisfies the following
equation:

ŭ(x, tj)− u(x, tj−1)

τ
+ Lϵ,x(ŭ(x, tj)) + Ix(ŭ(x, tj)) = f(x, tj), 1 ≤ j ≤M,

ŭ(0, tj) = ŭ(1, tj) = 0.

This leads to the compact operator form:

(I + τLϵ,x + τIx)ŭ(x, tj) = τf(x, tj) + u(x, tj−1). (3.4)

where ŭ(x, tj) is the solution at time level tj of this Equation (3.4). The local truncation error of the time semi-
discretization of Equation (3.3) is defined by Ej = u(x, tj)− ŭ(x, tj).

In the temporal discretization, local error estimates at each time step contribute to the global error. The global
error at time level tj is denoted by ej . where

ej =

j∑
l=0

El, j ≤ T/τ.

Now, consider the integral term
1∫
0

K(x, s)u(s, t)ds, where u(x, t) ∈ C4,2[0, 1] and K(x, s) ∈ C2
(
Z
)
.

Let sk = k(∆h), k = 0, 1, 2, · · · , N employing an analogous methodology as outlined in the Equation (2.3), then
the composite trapezoidal rule is

1∫
0

K(xi, s)u(s, tj) ds ≃ T(∆h)K(xi, s)u(s, tj) := (∆h)

[
1

2
K(xi, s0)u(s0, tj) +K(xi, s1)u(s1, tj) + · · ·

+K(xi, sN−1)u(sN−1, tj) +
1

2
K(xi, sN )u(sN , tj)

]
.

Let IxU
j
i be the numerical discretization of the integral part in Equation (1.5). Then

IxU
j
i = λ(∆h)

N∑
k=0

θkK
k
i u

j
k, where K

k
i = K(xi, sk), θk =

{
1
2 , for k = 0, N,

1, for k = 1, 2, · · · , N − 1.

Next, construct a FOFD method to tackle this collection of linear equations. Consider the interval [0, 1] with N

subintervals, denoted as Ω
N

= {xi := i(∆h) | i = 0, 1, . . . , N}, , where ∆h = 1
N and let Z

N,M
= Ω

N × ωM be the

mesh of x, t variables and ZN,M = Z
N,M ∩ Z.

Now applying Mickens’ theory [21] of difference equations and building the following scheme:

LN,Mϵ,x U ji =
U ji − U

j−1
i

τ
+ LNϵ,xU

j
i + IxU

j
i = f ji , (3.5)
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where

LNϵ,xU
j
i = −ϵ

[
U ji+1 − 2U ji + U ji−1

ϕ2i

]
+ aji

U ji − U
j
i−1

∆h
+ bjiU

j
i ,

here

ϕ2i =
ϵ(∆h)

aji

(
exp

(
aji (∆h)

ϵ

)
− 1

)
.

Now the Equation (3.5) becomes

LN,Mϵ,x U ji =
U ji − U

j−1
i

τ
− ϵ

[
U ji+1 − 2U ji + U ji−1

ϕ2i

]
+ aji

U ji − U
j
i−1

∆h
+ bjiU

j
i

+ λ(∆h)
N∑
k=0

θkK
k
i u

j
k, where θk =

{
1
2 , for k = 0, N,

1, for k = 1, 2, · · · , N − 1,
(3.6)

with discrete initial and boundary conditions

U0
i = u0(xi), i = 0, 1, · · · , N,

U j0 = U jN = 0, 1 ≤ j ≤M,

The Equation (3.6) is a linear system equation AU = b. Solving the linear system (3.6) is given in Algorithm 2.

Algorithm 2 Numerical Solution of parabolic SPFIPDE

1: function solve linear system(A, b)

2: Input: A = a[i, j], U = ui, b = fi + u[i, j − 1](1/τ)
3: Initial condition: u[i, 0] = u0
4: boundary conditions: u[0, j] = u[N, j] = 0
5: for j = 1 to M do
6: U ← A\b
7: return U
8: end for
9: Output: numerical solution U

3.2. Error analysis for SPFPIDEs. If uDt(xi, tj), uDx(xi, tj), uI(xi, tj) be the continuous solution of time deriv-

ative, spatial derivative and integral part respectively and (UDt
)ji , (UDx

)ji , (UI)
j
i be the numerical solution of time

derivative, spatial derivative and integral part respectively.

Lemma 3.4. The local error Ej = uDt
(xi, tj)− (UDt

)ji associated with the Equation (3.3) satisfies

∥Ej∥∞ ≤ Cτ2, 1 ≤ j ≤M.

Proof. The proof can be found in [9]. □

Theorem 3.5. The global error ej =
j∑
l=0

El is estimate with (3.3), its satisfies

∥ej∥∞ ≤ Cτ, 1 ≤ j ≤M.

Proof. One can find the proof of this theorem in [9]. □



Unco
rre

cte
d Pro

of

14 P. ANTONY PRINCE, L. GOVINDARAO, AND S. ELANGO

Theorem 3.6. Let u(xi, tj) be the continuous solution for the differential part of (3.3) and U ji be the numerical
solution for the differential part of (3.6) both at time level j. Then

sup
0<ϵ<1

max
0≤i≤N
0≤j≤M

|uDx(xi, tj)− (UDx)
j
i | ≤ C(∆h).

where C is an independent constant of ϵ and ∆h.

Proof. As a consequence, the temporal discretization is uniformly convergent in the first order. Keeping things simple,
leave out the time level index temporarily.

LNϵ ((uDx
)i − (UDx

)i) = (Lϵ,x − LNϵ,x)ui,

= −ϵu′′i + aiu
′
i +

[
ϵ
ui+1 − 2ui + ui−1

ϕ2i ((∆h), ϵ, t)

]
− ai

[
ui − ui−1

∆h

]
. (3.7)

Using proper Taylor series expansions and considering the truncated Taylor expansion 1
ϕ2
i
= 1

(∆h)2 −
ai

2ϵ(∆h) +
a2i
12ϵ2 .

Then the Equation (3.7) becomes,

LNϵ ((uDx
)i − (UDx

)i) = −ϵu′′i +
[(

ϵ

(∆h)2
− ai

2(∆h)
+

a2i
12ϵ

)(
(∆h)2u′′i +

(∆h)4

12
u′′′′i (ηi)

)]
+
ai(∆h)

2
u′′i ,∣∣LNϵ ((uDx

)i − (UDx
)i)
∣∣ = ∣∣∣∣ϵ (∆h)212

u′′′′i (ηi)

∣∣∣∣+ ∣∣∣∣ai(∆h)2
u′′i

∣∣∣∣+ ∣∣∣∣ai(∆h)324
u′′′′i (ηi)

∣∣∣∣+ ∣∣∣∣a2i (∆h)212ϵ
u′′i

∣∣∣∣
+

∣∣∣∣a2i (∆h)4144ϵ
u′′′′i (ηi)

∣∣∣∣+ ∣∣∣∣ai(∆h)2
u′′i

∣∣∣∣ , where ηi ∈ (xi+1, xi−1),

using ∆h > (∆h)2 > (∆h)4 relation and also using Lemma 2.2 and 3.3, then

|LNϵ ((uDx)i − (UDx)i) | ≤ C(∆h).

Restoring the time level index, we obtain:

|LN,Mϵ

(
(uDx)

j
i − (UDx)

j
i

)
| ≤ C(∆h).

It follows the proof of this theorem. □

Lemma 3.7. If uI(xi, tj) is the integral part continuous solution and (U I)ji is the numerical solution of the integral
part. Then the composite trapezoidal rule has a convergence order of two

sup
0≤i≤N

|UI(xi, tj)− (U I)ji | ≤ C(∆h)
2,

where C is an independent constant of ∆h.

Proof. using the technique of Lemma 2.4, the theorem follows.

1∫
0

K(xi, s)u(s, tj) ds− T(∆h)K(xi, s)u(s, tj) =
−1
12

(∆h)2
∣∣∣∣ ∂2∂ξ2K(xi, ξ)u(ξ, tj)

∣∣∣∣ , ξ ∈ [0, 1],

apply Lemma 2.5 in a similar manner the rate of convergence of the composite trapezoidal rule is two. □

Theorem 3.8. Let u(x, t) be the continuous solution and U ji be the numerical solution of Equation (1.5). Then

sup
0<ϵ<1

max
0≤i≤N
0≤j≤M

∣∣∣uji − U ji ∣∣∣ ≤C(∆h+ τ).

where C is an independent constant of ϵ, τ and ∆h.
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Proof. Using Theorems 3.5, 3.6 and Lemma 3.7 then error bound is

|uji − U
j
i | =|(uDt

(xi, tj) + uDx
(xi, tj) + uI(xi, tj))− ((UDt

)ji + (UDx
)ji + (UI)

j
i )|,

≤|uDt
(xi, tj)− (UDt

)ji |+ |uDx
(xi, tj)− (UDx

)ji |+ |uI(xi, tj)− (UI)
j
i |,

≤Cτ + C(∆h) + C(∆h)2,

≤C(∆h+ τ).

□

3.3. Numerical calculation for SPFPIDEs. Theoretical research indicates that independent of the perturbation
parameter ϵ, the devised approach shows a uniform convergence rate of order one in time and space. The numerical
approach and results for three test problems are shown below.

Example 3.9. Consider the SPFPIDE example
∂u(x, t)

∂t
− ϵ∂

2u(x, t)

∂x2
+
∂u(x, t)

∂x
+

1∫
0

u(s, t) ds = f(x, t), (x, t) ∈ Z,

u(x, 0) = u0, u(0, t) = u(1, t) = 0.

The exact solution of Example 3.9 is u(x, t) = e−t
[
e

−1
ϵ + x

(
1− e−1

ϵ

)
− e−

(1−x)
ϵ

]
.

Example 3.10. Consider the SPFPIDE example
∂u(x, t)

∂t
− ϵ∂

2u(x, t)

∂x2
+ 2

∂u(x, t)

∂x
+ (1 + x)u(x, t) +

1∫
0

u(s, t) ds = f(x, t), (x, t) ∈ Z,

u(x, 0) = u0, u(0, t) = u(1, t) = 0.

The exact solution of Example 3.10 is u(x, t) = e−t

[
−e−2

ϵ + e−2
(1−x)

ϵ

1− e−2
ϵ

− x

]
.

Example 3.11. Consider the SPFPIDE example
∂u(x, t)

∂t
− ϵ∂

2u(x, t)

∂x2
+ (2 + x2)

∂u(x, t)

∂x
+ u(x, t) +

1∫
0

(x+ 1)u(s, t) ds = t3, (x, t) ∈ Z,

u(x, 0) = u(0, t) = u(1, t) = 0.

The maximum absolute error estimate of Example 3.9 and 3.10 are

eN,τϵ = |u(xi, tj)− U ji |,

and the computed ϵ−uniform pointwise maximum error EN,τ = maxϵ e
N,τ
ϵ , where u(xi, tj) is the exact solution and

U ji is the approximation solution. The computed parameter rate of uniform convergence is defined by

pN,τ = log2

(
eN,τ

e2N,
τ
2

)
.

and the maximum order of convergence is given by PN,τ = log2

(
EN,τ

E2N, τ
2

)
.

In Example 3.11 the exact solution is unknown. Therefore, a double mesh approach and a modified version of a double
mesh concept to assess the error in the computed approximations

eN,τϵ = max
0≤i≤N,0≤j≤M

∣∣∣U i,jϵ,N,τ − U i,jϵ,2N, τ2 ∣∣∣ ,
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Figure 3. Surface plots of numerical solution of Example 3.9 for N = 64.
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Figure 4. Solution plots of Example 3.9 with corresponding values of ϵ.

where U i,jϵ,N,τ is the approximation solution with N mesh points and time step τ . In the same way U i,jϵ,2N, τ2
is the

approximation solution with 2N mesh points and τ/2 time step.
Surface plots for ϵ = 10−1 and ϵ = 10−10 are shown in Figures 3, 6, and 9 for Examples 3.9, 3.10, and 3.11,

respectively, on a uniform mesh. Figures 4 and 7 display the solutions for ϵ = 10−1 and ϵ = 10−5 for Examples
3.9 and 3.10, while Figure 10 shows the solutions for ϵ = 10−1 and ϵ = 10−10 for Example 3.11 at different time
levels. Figures 5, 8, and 11 display the solution for different values of ϵ at fixed time levels t = 0.5 and t = 1 for
Examples 3.9, 3.10, and 3.11, respectively. These results indicate the presence of boundary layers near x = 1. Figures
12(a) and 12(b) present the numerical convergence rates on a log-log scale, providing a graphical representation of
the method’s performance. Furthermore, Table 4, Table 5 and Table 6 display the maximum pointwise error and rate
of convergence of order one for Example 3.9, Example 3.10 and Example 3.11. Table 7 presents a comparison of the
maximum absolute errors between the standard finite difference and the NSFD methods for Example 3.9. As shown,
the NSFD method is specifically designed to handle singular perturbations and accurately resolve sharp boundary
layers. By using fitted meshes or specially constructed denominator functions, NSFD ensures stability and uniform
convergence even for very small values of ϵ. Although it involves a more complex, problem-specific implementation, the
NSFD method consistently delivers greater accuracy and reliability compared to standard finite difference schemes.
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Figure 5. Solution plots of Example 3.9 with corresponding values of t.

Figure 6. Surface plots of numerical solution of Example 3.10 for N = 64.

The general workflow for this article is illustrated in the flowchart below in Figure 13.

4. Conculsion

This research aimed to determine the maximum pointwise error and the convergence rate for the numerical compu-
tations of SPFIODEs and SPFIPDEs. A significant use of the current methodologies, which nearly achieve first-order
convergence rates in both spatial and temporal directions. Our methodology employed a non-standard finite difference
scheme for spatial derivatives, the composite trapezoidal rule for integral components with a uniform mesh, and the
backward Euler method for time derivatives on uniform meshes in SPFIPDEs. Approaching singularly perturbed
integro-differential equations with a tiny independent parameter and attaining first-order convergence rates in both
spatial and temporal directions represent significant novelty in this area of research. The significant discoveries and
contributions of our studies are:

• Understanding boundary layer processes in the solution using a uniform spatial mesh.
• The effective utilization of the non-standard finite difference approach for spatial derivatives with a small
parameter ϵ.
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Figure 7. Solution plots of Example 3.10 with corresponding values of ϵ.
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Figure 8. Solution plots of Example 3.10 with corresponding values of t.

• Achievement of first-order convergence rates for both SPFIODEs and SPFIPDEs, representing a significant
improvement over previous efforts.
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Figure 9. Surface plots of numerical solution of Example 3.11 for N = 64.
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Figure 11. Solution plots of Example 3.11 with corresponding values of ϵ.

Table 4. Pointwise maximum error and convergence rate of Example 3.9.

Number of intervals N and τ = 1
N

ϵ ↓ 64 128 256 512 1024

10−2 2.5367e-3 1.1060e-3 5.1111e-4 2.4493e-4 1.1981e-4

1.1975 1.1137 1.0613 1.0316 1.0160

10−4 4.9148e-3 2.4879e-3 1.2356e-3 5.9940e-4 2.7926e-4

0.9822 1.0097 1.0436 1.1019 1.2104

10−6 4.9540e-3 2.5283e-3 1.2769e-3 6.4113e-4 3.2092e-4

0.9704 0.9856 0.9939 0.9984 1.0009

10−8 4.9544e-3 2.5287e-3 1.2773e-3 6.4155e-4 3.2134e-4

0.9703 0.9853 0.9934 0.9975 0.9990

10−10 4.9544e-3 2.5287e-3 1.2773e-3 6.4155e-4 3.2134e-4

0.9703 0.9853 0.9934 0.9974 0.9990

EN,τ 4.9544e-3 2.5287e-3 1.2773e-3 6.4155e-4 3.2134e-4

PN,τ 0.9703 0.9853 0.9935 0.9975
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(a) Example 3.9.
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(b) Example 3.11.

Figure 12. Log-log plot with corresponding values of ϵ.
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Table 5. Pointwise maximum error and convergence rate of Example 3.10.

Number of intervals N and τ = 1
N

ϵ ↓ 64 128 256 512 1024

10−2 1.6464e-3 6.7875e-4 2.9506e-4 1.3597e-4 6.5069e-5

1.2784 1.2019 1.1177 1.0633 1.0326

10−4 2.5166e-3 1.2827e-3 6.4472e-4 3.1950e-4 1.5507e-4

0.9723 0.9924 1.0128 1.0429 1.1005

10−6 2.5265e-3 1.2929e-3 6.5510e-4 3.3002e-4 1.6569e-4

0.9665 0.9808 0.9891 0.9941 0.9973

10−8 2.5266e-3 1.2930e-3 6.5520e-4 3.3013e-4 1.6579e-4

0.9665 0.9807 0.9889 0.9936 0.9964

10−10 2.5266e-3 1.2930e-3 6.5520e-4 3.3013e-4 1.6579e-4

0.9665 0.9807 0.9889 0.9936 0.9963

EN,τ 2.5266e-3 1.2930e-3 6.5520e-4 3.3013e-4 1.6579e-4

PN,τ 0.9665 0.9807 0.9889 0.9937

Table 6. Pointwise maximum error and convergence rate of Example 3.11.

Number of intervals N and τ = 1
N

ϵ ↓ 64 128 256 512 1024

10−2 6.1340e-4 3.5310e-4 1.8993e-4 9.8452e-5 5.0109e-5

0.7968 0.8946 0.9480 0.9744 0.9873

10−4 5.4388e-4 2.8011e-4 1.4212e-4 7.1581e-5 3.5922e-5

0.9573 0.9789 0.9895 0.9947 0.9898

10−6 5.4388e-4 2.8011e-4 1.4212e-4 7.1581e-5 3.5921e-5

0.9573 0.9789 0.9895 0.9947 0.9974

10−8 5.4388e-4 2.8011e-4 1.4212e-4 7.1581e-5 3.5921e-5

0.9573 0.9789 0.9895 0.9947 0.9974

10−10 5.4388e-4 2.8011e-4 1.4212e-4 7.1581e-5 3.5921e-5

0.9573 0.9789 0.9895 0.9947 0.9974

EN,τ 6.5193e-4 3.5310e-4 1.8993e-4 9.8452e-5 5.0109e-5

PN,τ 0.8846 0.8946 0.9480 0.9744

Table 7. Maximum absolute errors comparison for standard and non-standard finite difference meth-
ods of Example 3.9.

ϵ N and τ = 1
N

Maximum absolute error
(standard finite difference)

Maximum absolute
error (NSFD)

10−2

64 1.5849e-1 2.5367e-3
128 9.4261e-2 1.1060e-3
256 5.6225e-2 5.1111e-4
512 3.0303e-2 2.4493e-4
1024 1.5779e-2 1.1981e-4
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Figure 13. Workflow chart.
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