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Abstract

This study analyzes a fractional-order SI parasite-host model. We focus on examining key properties of the

solutions, such as existence, uniqueness, positivity, and boundedness. Additionally, we examine the local and
global stability of the equilibrium points, with particular attention to the basic reproduction number R0. Finally,

numerical simulations are carried out to illustrate the theoretical part.
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1. Introduction and mathematical model

Mathematical modeling has increasingly become a recognized and vital research tool for public health, particularly
in epidemiology, which examines the distribution and determinants of diseases in populations, how diseases spread,
their causes, and methods of control [8, 14]. These models enhance our understanding of disease transmission dynamics
and help address pertinent challenges [19]. Dynamical system models in this context are commonly formulated using
ordinary or partial differential equations. This approach provides a rigorous framework for analyzing the temporal
and spatial dynamics of disease transmission, enabling the resolution of complex public health challenges.

The parasite-host model is a vital framework for studying the transmission dynamics of infectious diseases and the
complex interactions between hosts and parasites. Deterministic models, as discussed in [4, 13], serve as a foundation
for studying the dynamics of these interactions. These mathematical frameworks provide valuable insights into the
evolution and consequences of parasite-host relationships, with applications in public health and evolutionary biology
[21, 28]. By offering a theoretical perspective, they help uncover the biological mechanisms driving these interactions
and their long-term evolutionary implications, which are often difficult to observe experimentally. Additionally, factors
such as direct contact and specific behaviors influence disease transmission. Several studies have explored parasite-host
and epidemiological models using ordinary differential equations to capture the complex dynamics of these interactions.
One study reveals that an outbreak can originate from a small population of infected individuals [7]. Another explores
the influence of host mobility and environmental heterogeneity on disease dynamics [9]. A separate investigation
revises an existing model to demonstrate that parasite-induced host extinction may occur under specific conditions
[16]. Finally, another analysis corrects earlier models, emphasizing the role of initial conditions in determining host
extinction [17].

Fractional models generalize classical calculus to non-integer orders, offering a robust framework for analyzing sys-
tems with memory, long-term dependencies, and complex natural phenomena. This approach is extensively applied
in disciplines such as physics, finance, biology, and engineering [5, 6, 18, 22], where such characteristics or anomalous
behaviors are prevalent. In epidemiology, fractional calculus proves invaluable for capturing the multifaceted dynamics
of disease spread, including memory effects, anomalous diffusion, and persistent infections [11, 33]. A central element
in this framework is the fractional kernel function, which accounts for the influence of past events on the present
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system [26]. Building on these theoretical foundations, recent studies have employed fractional modeling techniques
to understand and simulate the dynamics of infectious diseases. For instance, the study [25] introduces a stochastic
framework that incorporates random perturbations and behavioral shifts, providing a more realistic representation of
epidemic dynamics. Another proposes a fractional-order model for toxoplasmosis, capturing complex host interactions
and memory effects inherent in disease transmission [1]. Moreover, the study in [31] presents advanced numerical
techniques based on Bessel polynomials to solve a fractional HIV-1 model that accounts for the impact of antiviral
treatment. Also, COVID-19 transmission models based on fractional derivatives, incorporating both the Caputo and
fractal-fractional approaches, have been proposed [23, 24]. These studies rigorously examine the models’ fundamen-
tal properties, integrate the effects of public health interventions, and substantiate their results through numerical
simulations, highlighting their potential applicability on a global scale. In parasite-host models, the kernel captures
the effects of prior infections, interactions, or environmental factors on disease transmission, effectively addressing
non-local and historical influences. By incorporating fractional-order terms and kernel functions, these models provide
a more precise representation of disease progression, improving predictions and supporting the development of effec-
tive control strategies. We focus on the following SI model, adapted from [32], which classifies parameters as either
susceptible or infected:

dS

dt
= η(S + ζI)[1− γ(S + I)]− βSI

S + I
,

dI

dt
=

βSI

S + I
− µI.

(1.1)

We consider N(t) = S(t) + I(t) with S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0, where the functions S := S(t) and I := I(t)
denote the density of susceptible and infected hosts at time t respectively. All parameters are non-negative, such as

1/γ is the carrying capacity of γ ̸= 0 and
βSI

S + I
is the frequency-dependent transmission. See [32] for more details.

Table 1. Parameter descriptions.

Parameter Description

η Maximum birth rate of the hosts
γ Reduction in the per capita birth rate
µ Natural death rate of the host population
ζ Reduction reproduction ability of infected hosts
β Disease transmission rate

In the case of susceptible-free, i.e., S = 0, if infected hosts remain at low prevalence, i.e., γI < 1, the net reproduction
rate of newborns of susceptible hosts will be ηζI(1− γI) > 0, and susceptible hosts will grow; if infected hosts remain
at high prevalence, i.e., γI ≥ 1, the net reproduction rate of newborns of susceptible hosts will be zero [9].

This study introduces a fractional-order SI parasite-host model, providing a more comprehensive understanding of
the dynamics of parasite-host infections, particularly in terms of disease transmission and system stability. The model
employs fractional order derivatives, specifically the Liouville-Caputo fractional derivative, and does not account for
diffusion. The fractional-order formulation of (1.1) is outlined as follows:

LCDα
t S(t) = η(S + ζI)[1− γ(S + I)]− βSI

S + I
,

LCDα
t I(t) =

βSI

S + I
− µI.

(1.2)

The following sections detail the paper’s contents: Section 2 includes preliminaries and definitions. Section 3
introduces the fundamental properties of the epidemic model. Section 4 outlines the equilibrium points. Section



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-14 3

5 provides the stability analysis of the equilibrium points and a bifurcation analysis. Section 6 presents numerical
simulations, and section 7 concludes the study.

2. Preliminaries

This section provides brief definitions of essential concepts in the theory of fractional-order ordinary differential
equations. For more details, one can refer to [11].

Definition 2.1. ([11]) Riemann–Liouville fractional integral of order β > 0 of a function g(t) ∈ C[a, b] is expressed as

Iβt g(t) =
1

Γ(β)

∫ t

a

(t− x)β−1g(x)dx.

Definition 2.2. ([27]) The Liouville-Caputo fractional derivative of order β > 0 of a function g ∈ Cn[a, b] such that
n ∈ N and n > 0, is defined as

LCDβ
ag(t) :=

g(n)(t), β = n,

1

Γ(n− β)

∫ t

a

(t− x)n−β−1g(n)(x) dx, n− 1 < β < n.

Proposition 2.3. ([11]) The Liouville-Caputo fractional derivation operator
(
LCDβ

t

)
has the following properties:

(1)
(
LCDβ

t

)
is a linear operator.

(2)
(
LCDβ

t

)(
Iβt g

)
(t) = g(t).

(3) Iβt

(
LCDβ

t g(t)
)
= g(t) +

∑n−1
j=0 cj(t− a)j , (c)j=0,...,n−1 ∈ R.

Definition 2.4. ([26]) For β, α ∈ C with ℜ(β) > 0 and ℜ(α) > 0, the two-parameter Mittag-Leffler function is defined
as follows:

Eβ,α(z) =
∞∑
k=0

zk

Γ(βk + α)
, z ∈ C.

Theorem 2.5. ([26]) Let g(t) be a function that has a Liouville–Caputo fractional derivative of order β, where
β ∈ (n− 1, n), ∀n ∈ N and n > 0. The Laplace transform of this fractional derivative is given by

L
(
LCDβ

t g(t)
)
(s) = sβG(s)−

n−1∑
k=0

sβ−k−1g(k)(0),

where G(s) = L(g(t))(s) represents the Laplace transform of g(t).

Theorem 2.6. ([26]) The Laplace transform of the function defined by the two-parameter Mittag-Leffler function can
be written as

L
(
tα−1Eβ,α

(
±γtβ

))
(s) =

sβ−α

sβ ∓ γ
,

where α, β > 0, γ ∈ R, and s is the Laplace variable.

The global stability of the equilibrium points is proven by introducing a fundamental lemma that establishes
sufficient conditions for their stability.

Lemma 2.7. ([15]) Let A be a bounded closed set. For every solution of LCDβz(t) = g(z(t)) with z ∈ R, suppose
there exists a function V (z) : A → R with continuous first partial derivatives that satisfies the condition

LCDβV (z) ≤ 0.

Let F =
{
z, LCDβV (z) = 0

}
and B denote the largest invariant set of F . Then, every solution z(t) originating in A

converges to B as t → ∞. In particular, if B = {0}, then z → 0 as t → ∞.
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3. Basic proprieties of the system

In this section, we explore the various mathematical properties of the model. These include examining the existence,
uniqueness, positivity, and boundedness of the solution.

3.1. Existence and uniqueness of solution. Let g be a C∞ function and z(t) ∈ R2
+ be the solution to the fractional

system given by
LCDα

t z(t) = g(t, z(t)),

z (t0) = z0, α ∈ (0, 1],
(3.1)

where
R2

+ =
{
z ∈ R2 | z ≥ 0

}
and z(t) = (S(t), I(t))⊤.

To analyze the existence and uniqueness of the system solution (3.1), we consider D ⊂ R2
+ to be a compact positively

invariant region for the system defined by

D =
{
z = (S, I)⊤ ∈ R2

+ | 0 ≤ S, I ≤ M
}
.

Proposition 3.1. If g(t, z) is continuous and satisfies the Lipschitz condition in z ∈ D, then the fractional system in
(3.1) has a unique solution for any initial condition z0 = (S(0), I(0))⊤.

Proof. Let g be defined as

g(t, z(t)) =

(
g1 (t, z(t))
g2 (t, z(t))

)
=

 η(S + ζI)[1− γ(S + I)]− βSI

S + I
βSI

S + I
− µI

 .

Let z, z̄ ∈ D such as z = (S, I)⊤ and z̄ = (S̄, Ī)⊤. Then, we have

∥g(t, z(t))− g(t, z̄(t))∥ = ∥g1(t, z(t))− g1(t, z̄(t))∥+ ∥g2(t, z(t))− g2(t, z̄(t))∥ ,

=

∣∣∣∣η(S + ζI)[1− γ(S + I)]− βSI

S + I
− η(S̄ + ζĪ)[1− γ(S̄ + Ī)] +

βS̄Ī

S̄ + Ī

∣∣∣∣
+

∣∣∣∣ βSI

S + I
− µI − βSĪ

S̄ + Ī
+ µĪ

∣∣∣∣
=

∣∣∣∣η[((S − S̄) + ζ(I − Ī))
(
1− γ(S + I)

)
− γ(S̄ + ζĪ)((S − S̄) + (I − Ī))

]
− β(

SI

S + I
− S̄Ī

S̄ + Ī
)

∣∣∣∣
+

∣∣∣∣β( SI

S + I
− S̄Ī

S̄ + Ī
)− µ(I − Ī)

∣∣∣∣ ,
where

SI

S + I
− S̄Ī

S̄ + Ī
=

SS̄(I − Ī) + ĪI(S − S̄)

(S + I)(S̄ + Ī)
.

We obtain

∥g(t, z(t))− g(t, z̄(t))∥ ≤ η
∣∣((S − S̄) + ζ(I − Ī))

(
1− γ(S + I))− γ(S̄ + ζĪ)((S − S̄) + (I − Ī))

∣∣
+2β

∣∣∣∣SS̄(I − Ī) + ĪI(S − S̄)

(S + I)(S̄ + Ī)

∣∣∣∣+ µ
∣∣(I − Ī)

∣∣ .
Since z, z̄ ∈ D and all parameters are strictly positive, there exist constants C1, C2 > 0 such that the nonlinear terms
are uniformly bounded on D. Then

|1− γ(S + I)| ≤ 1 + 2γM = C1,

|S̄ + ζĪ| ≤ (1 + ζ)M = C2.
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As all variables are bounded on D, there exists δ > 0 such that (S + I)(S̄ + Ī) ≥ δ, we have∣∣∣∣SS̄(I − Ī) + ĪI(S − S̄)

(S + I)(S̄ + Ī)

∣∣∣∣ ≤ M2

δ

∣∣(I − Ī) + (S − S̄)
∣∣ .

Then

∥g(t, z(t))− g(t, z̄(t))∥ ≤ η
(
|S − S̄|+ ζ|I − Ī|

)
C1 + ηC2γ

(
|S − S̄|+ |I − Ī|

)
+ µ

∣∣(I − Ī)
∣∣+ 2β

M2

δ

∣∣(I − Ī) + (S − S̄)
∣∣

≤ L1|S − S̄|+ L2|I − Ī|,

with

L1 = ηC1 + ηC2γ + 2β
M2

δ
, and L2 = ηζC1 + ηC2γ + 2β

M2

δ
+ µ.

Then, we have

∥g(t, z(t))− g(t, z̄(t))∥ ≤ L ∥z − z̄∥,
where L = max{L1, L2}. Therefore, g(t, z(t)) is a Lipschitz function, ensuring the existence and uniqueness of the
solution to the model in (3.1).

□

3.2. Positivity and boundedness. Positivity is crucial for ensuring biologically meaningful model solutions, while
boundedness guarantees that the solutions remain finite.

Proposition 3.2. The solutions of (1.2) remain non-negative and bounded for all positive values of t, given any
non-negative initial conditions.

Proof. - Positivity:
From model (1.2), we have

LCDα
t S(t) ≥ −βS(t).

We apply the Laplace transform method, assuming the initial condition S(0) ≥ 0. We have

S(t) ≥ Eα(−βtα)S(0),

where Eα,η is the Mittag-Leffler function. Since S(0) ≥ 0, one obtains S(t) ≥ 0. Thus, S(t) stays non-negative for all
t > 0.
Likewise, we get

I(t) ≥ Eα(−µtα)I(0) ≥ 0.

Then I(t) is non-negative for all t > 0.
-Boundedness:

To demonstrate that the system in (1.2) is bounded, the growth of the population is given by the following expression:

LCDα
t N(t) = LCDα

t S(t) +
LCDα

t I(t).

We have
LCDα

t N(t) ≤ −ηγN(t).

Then

N(t) ≤ Eα(−ηγtα)N(0).

Due to 0 ≤ Eα (−ηγtα) ≤ 1 then one has N(t) ≤ N(0). Consequently, all solutions of (1.2) with non-negative initial
conditions remain bounded, with the realizable domain for this system given by

Ω = {(S, I) ∈ R2
+ | S + I ≤ N(0)}.

□
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4. Equilibrium Points

4.1. Disease-free equilibrium. We set the expressions LCDα
t S(t) = 0 and LCDα

t I(t) = 0. By assuming I = 0, we
can determine the equilibrium E0 of the system (1.2) as

E0 = (S0, I0) =

(
1

γ
, 0

)
.

4.2. The basic reproductive number R0. The basic reproduction number R0 is a measure of the average number
of secondary infections generated by a single infected individual. If R0 is less than one, it indicates a decline in disease
prevalence, while a value of one indicates stability. Conversely, when R0 exceeds 1, it signals the potential for disease
spread that could lead to an outbreak. A value below one indicates the presence of the disease within the community,
with the potential for effective management [29]. If we consider z(t) = (I(t), S(t)), then we represent the system (1.2)
as

dz

dt
= F(z)− V(z),

with

F =

[
∂F
∂z

(z0)

]
and V =

[
∂V
∂z

(z0)

]
.

Then R0 is described as the spectral radius of the next-generation matrix K = −FV −1, such as R0 = ρ(−FV −1). In
this case, we have E0 = (S0, I0) with S0 = 1

γ . We can easily obtain

F = β and V = −µ, then R0 =
β

µ
.

4.3. Endemic equilibrium. We can resolve the equations LCDα
t S(t) = 0 and LCDα

t I(t) = 0 simultaneously, to
determine the equilibrium E∗ of Equation (1.2). This yields the following results:

S∗ =
µθ

γβη(ζ(R0 − 1) + 1)
and I∗ = (R0 − 1)S∗.

We can define

ηe :=
µ(R0 − 1)

ζ(R0 − 1) + 1
.

If R0 > 1 and η > ηe, then we have θ = η[ζ(R0 − 1) + 1]− µ(R0 − 1) > 0. Thus, E∗ = (S∗, I∗) represents the unique
endemic equilibrium of system (1.2).

In addition, the proposal ensures the uniqueness of the positive equilibrium solution by considering the value of R0.

Proposition 4.1.
- If R0 ≤ 1, (1.2) has only one equilibrium E0.
- Besides the disease-free equilibrium E0, system (1.2) admits a unique equilibrium E∗ when R0 > 1 and η > ηe.

5. Equilibrium stability analysis

This section will analyze the local and global stability of the fractional model at the disease-free and endemic
equilibrium points.

5.1. Disease-Free equilibrium stability. Here, we present the stability analyses for the disease-free equilibrium
point E0.

Lemma 5.1. ([20]) Let z∗ be an equilibrium of (3.1). Then, for all eigenvalues λ of the Jacobian matrix J(z∗), z∗

is locally asymptotically stable if

| arg(λ) |> απ

2
.

Proposition 5.2. The equilibrium E0 is locally asymptotically stable when R0 < 1.
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Proof. Consider the Jacobian matrix obtained from (1.2) at E0, we have

J(E0) =

 −η −(η + β)

0 µ(R0 − 1)

 .

The eigenvalues of J(E0) are λ1 = −η and λ2 = µ(R0 − 1). Thus, all eigenvalues of J(E0) are negative if and only if
R0 < 1, thus | arg(λi) |= π, i = 1, 2. Therefore, E0 is locally asymptotically stable.

□

Lemma 5.3. ([2]) Let z : [0,+∞) → R+ be a continuous and differentiable function. Then

1

2
LC
t0 Dβ

t z
2(t) ≤ z(t)LC

t0 Dβ
t z(t), ∀t ≥ t0, β ∈ (0, 1).

Proposition 5.4. The equilibrium E0 is globally asymptotically stable when R0 ≤ 1.

Proof. We present

V : {(S, I) ∈ R2
+ : S > 0, I ≥ 0} → R,

by

V (S, I) =
1

2
I2.

The time derivative of V is expressed as

LCDα
t V (S, I) =

1

2
LCDα

t I
2 ≤ I2

S + I
(βS − µ(S + I))

≤ −µ
I2

S + I
((1−R0) + I).

We have LCDα
t V (S, I) ≤ 0 for R0 ≤ 1 with LCDα

t V (S, I) = 0 if and only if I = I0 = 0, then{
(S, I) ∈ R2

+ : LCDα
t V (S, I) = 0

}
= {E0}. Then, by Lemma 2.7, E0 is globally asymptotically stable, whenever

R0 ≤ 1.
□

5.2. Endemic equilibrium stability. Now let’s demonstrate the stability of the endemic equilibrium point E∗.

Proposition 5.5. The equilibrium E∗ is locally asymptotically stable when R0 > 1.

Proof. Consider the Jacobian matrix obtained from (1.2) at E∗, we have

J(E∗) =

 a11 a12

a21 a22

 ,

where

a11 =
1

β(ζ(β − µ) + µ)

[
−(ζ(β − µ) + µ)θ − (β − µ)

(
ζ(µ− β)2 − µ2

)]
,

a12 =
1

β(ζ(β − µ) + µ)

[
−(ζ(β − µ) + µ)θ + µ

(
ζ(µ− β)2 − µ2

)]
,

a21 =
(β − µ)2

β
, and a22 = −µ(β − µ)

β
.

The characteristic equation of J(E∗) is

X2 − Tr(J(E∗))X + det(J(E∗)) = 0,
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with

Tr(J(E∗)) =
1

β(ζµ(R0 − 1) + µ)

[
−(ζµ(R0 − 1) + µ)θ − βζ(β − µ)2

]
,

det(J(E∗)) =
(R0 − 1)µθ

β
.

Thus, if R0 > 1 then det(J(E∗)) > 0 and Tr(J(E∗)) < 0. By the Routh-Hurwitz criterion [3] for a second-order
polynomial X2 + b1X + b0 = 0, all roots have negative real parts if and only if b1 > 0 and b0 > 0 . In this case,

b1 = −Tr(J(E∗)) > 0, and b0 = det(J(E∗)) > 0.

Therefore, both eigenvalues of J(E∗) have negative real parts, implying that the endemic equilibrium E∗ is locally
asymptotically stable whenever R0 > 1. □

Lemma 5.6. ([30]) Let z : [0,+∞) → R+ be a continuous and differentiable function. Then

LC
t0 Dβ

t

[
z(t)− z∗ − z∗ ln

z(t)

z∗

]
≤

(
1− z∗

z(t)

)
LC
t0 Dβ

t z(t), z∗ ∈ R+, β ∈ (0, 1), ∀t ≥ t0.

Proposition 5.7. If R0 > 1, then E∗ is globally asymptotically stable.

Proof. We assume Λ the per-capita birth rate define by Λ = η(S + ζI)[1− γ(S + I)].
We define

V : {(S, I) ∈ R2
+ : S > 0, I > 0} → R,

by

V (S, I) =

[
(S + I)− (S∗ + I∗)− (S∗ + I∗) ln

(S + I)

(S∗ + I∗)

]
+

µ(S∗ + I∗)

βI∗

(
I − I∗ − I∗ ln

I

I∗

)
.

We take

Λ = µI∗ and µ =
βS∗

S∗ + I∗
.

Using the result of the Lemma 5.6, we obtain

LCDα
t V (S, I) ≤

(
1− S∗ + I∗

S + I

)
LCDα

t (S + I) +
µ(S∗ + I∗)

βI∗

(
1− I∗

I

)
LCDα

t (I)

≤
(
1− S∗ + I∗

S + I

)
(Λ− µI) +

µ(S∗ + I∗)

βI∗

(
1− I∗

I

)(
βSI

S + I
− µI

)
≤

(
(S − S∗) + (I − I∗)

S + I

)
(−µ(I − I∗)) +

µ(S∗ + I∗)

I∗
(I − I∗)

(
S

S + I
− S∗

S∗ + I∗

)
.

Notice that
S

S + I
− S∗

S∗ + I∗
=

I∗(S − S∗)− S∗(I − I∗)

(S + I)(S∗ + I∗)
.

Thus,

LCDα
t V (S, I) ≤

(
(S − S∗) + (I − I∗)

S + I

)
(−µ(I − I∗)) +

µ(I − I∗)

I∗

(
I∗(S − S∗)− S∗(I − I∗)

(S + I)

)
≤ −µ

(I − I∗)2

S + I

(
1 +

S∗

I∗

)
.

Then LCDα
t V (S, I) is negative definite. In addition LCDα

t V (S, I) = 0 if and only if S = S∗ and I = I∗ then{
(S, I) ∈ R2

+ : LCDα
t V (S, I) = 0

}
= {E∗}. Then, by Lemma 2.7, if R0 > 1 then E∗ is globally asymptotically

stable. □
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5.3. Bifurcation analysis. We assume that z = (z1, z2)
⊤ and G = (G1, G2)

⊤, then (1.2) can be written in the form
LCDα

t z = G(z) as
LCDα

t z1 = η(z1 + ζz2) [1− γ(z1 + z2)]−
βz1z2
z1 + z2

:= G1,

LCDα
t z2 =

βz1z2
z1 + z2

− µz2 := G2.
(5.1)

We apply the result of Castillo-Chavez and Song [10] to analyze the nature of the bifurcation occurring at the critical
threshold R0 = 1, where the bifurcation parameter β∗ satisfies β∗ = β = µ.

The Jacobian matrix of system (5.1) at the equilibrium point E0 and bifurcation parameter β∗ can be expressed as

J(E0, β
∗) =

 −η −(η + µ)

0 0

 ,

with the eigenvalues are λ1 = −η and λ2 = 0. Therefore, the Jacobian matrix J(E0, β
∗) has a simple zero eigen-

value, and the remaining eigenvalue has a negative real part. The corresponding left and right eigenvectors as-
sociated with this zero eigenvalue at the critical equilibrium are respectively given by v = (v1, v2) = (0, 1) and

w = (w1, w2)
⊤ =

(
−η+µ

η , 1
)⊤

.

We now compute the bifurcation coefficients a and b, as rigorously detailed in Theorem 4.1 of [10], which are defined
by

a =
2∑

k,i,j=1

vkwiwj
∂2Gk

∂xi∂xj
(E0, β

∗), and b =
2∑

k,i=1

vkwi
∂2Gk

∂xi∂β
(E0, β

∗).

Since the left eigenvector is v = (0, 1), only the second component G2 of the vector field contributes to the sums.
Therefore, the coefficients reduce to

a =
2∑

i,j=1

wiwj
∂2G2

∂xi∂xj
(E0, β

∗) = w2
1

∂2G2

∂S2
+ 2w1w2

∂2G2

∂S∂I
+ w2

2

∂2G2

∂I2
,

and

b =

2∑
i=1

wi
∂2G2

∂xi∂β
(E0, β

∗) = w1
∂2G2

∂S∂β
+ w2

∂2G2

∂I∂β
.

The only non-zero second-order partial derivatives of the functions G are

∂2G2

∂I2
(E0, β

∗) = −2µγ, and
∂2G2

∂I∂β
(E0, β

∗) = 1.

The bifurcation coefficients are given by

a = −2µγ < 0, and b = 1 > 0.

The opposite signs of the bifurcation coefficients a < 0 and b > 0, as described by the Castillo-Chavez and Song theory,
indicate that the system experiences a forward (transcritical) bifurcation at the critical threshold R0 = 1. This means
that when R0 < 1, the disease-free equilibrium E0 is unique and stable. However, when R0 > 1, this equilibrium
loses stability, and a unique, stable endemic equilibrium E∗ emerges. The following figure illustrates the bifurcation
behavior of the system as described.
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Figure 1. Forward bifurcation at R0 = 1.

6. Numerical simulations

In this part, we present a numerical simulation to support the theoretical results derived in the previous sections.
We used Python software with the parameters provided in Table 2.

We examine the Liouville-Caputo fractional differential equation of the form
LCDα

t z(t) = g(t, z(t)),

z (t0) = z0, α ∈ (0, 1],

where g is a Lipschitz-continuous function, such as

g(t, z(t)) =

 η(S + ζI)[1− γ(S + I)]− βSI

S + I
βSI

S + I
− µI

 , z(t) = (S(t), I(t))⊤.

Taking the Riemann-Liouville integral on each side, we have

z(t) = z0 +
1

Γ(α)

∫ t

0

(t− λ)αg(λ, z(λ))dλ.

To construct an iterative procedure, a uniform grid [0, T ] with step size h = T
l is considered, where t0 = 0 < t1 <

· · · < tl = T , l ∈ N, l > 0, and tj = t0 + jh. Let zm be the approximate solution of z(tm) at t = tm. Employing the
fractional Euler method [12], well-regarded for its simplicity and compatibility with the Liouville–Caputo fractional
derivative, we use the following numerical scheme:

zm+1 = z0 +
hα

Γ(α+ 1)

m∑
i=0

[(m+ 1− i)α − (m− i)α] g (ti, z (ti)) . (6.1)

To ensure numerical stability and accuracy, the interval [0, T ] is discretized into l = 400 time steps with a final time
T = 400, resulting in a time step size h = 1. This choice effectively balances computational cost while accurately
capturing the system’s dynamic behavior. Moreover, it is well established that the fractional Euler method converges
under standard regularity assumptions on the function g(t, z(t)), particularly when it satisfies a Lipschitz condition
[12]. As the assumptions in our model are satisfied, the method is deemed stable and convergent.
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Thus, by using the scheme derived in (6.1), the iterative formulae for the proposed fractional case system (1.2) are
obtained as

Sm+1 = S0 +
hα

Γ(α+ 1)

m∑
i=0

[(m+ 1− i)α − (m− i)α] (η(Si + ζIi)[1− γ(Si + Ii)]−
βSiIi
Si + Ii

),

Im+1 = I0 +
hα

Γ(α+ 1)

m∑
i=0

[(m+ 1− i)α − (m− i)α]

(
βSiIi
Si + Ii

− µIi

)
.

In the following, we utilize the parameters listed in Table 1 along with various values of α to illustrate the accuracy
of the theoretical findings.

Table 2. Parameters estimation.

Parameters Values References

η 0.6 [32]
γ 1 [32]
µ 0.1-1 Assumed
ζ 0.1 [32]
β 0.1-1 Assumed

The analysis indicates that the disease will be effectively eliminated from the population. This conclusion is derived
using the parameter values outlined in Table 2. Specifically, with β = 0.2 and µ = 1, we have R0 = 0.2 ≤ 1. For
values of α = 0.6, 0.7, 0.8, 0.9, 1, numerical simulations show that the susceptible population asymptotically approaches
S0 = 1 = 1/γ (Figure 2(a)), while the infected population tends to I0 = 0 (Figure 2(b)), confirming the stability of
the equilibrium E0. Biologically, this result suggests that the disease cannot persist in the population under the given
conditions, emphasizing the crucial impact of model parameters on the long-term dynamics of disease transmission.

However, for the choice of parameter values β = 1 and µ = 0.9, we obtain R0 = 1.1112 > 1, indicating the possibility
of an endemic equilibrium. This equilibrium is represented by E = (S, I ) = (0.7888, 0.0877). Numerical simulations
for α = 0.6, 0.7, 0.8, 0.9, 1 show that the susceptible population asymptotically approaches S = 0.7888 (Figure 3(a)),
while the infected population converges to I∗ = 0.0877 (Figure 3(b)), confirming the stability of the equilibrium
E∗. Biologically, this suggests that under these specific conditions, the disease will sustain a stable presence in the
population, with the susceptible and infected groups reaching equilibrium. The transmission and recovery rates are
crucial in determining the persistence and steady-state levels of the disease.

In this study, the classical integer-order model corresponds to α = 1. Comparing the dynamics at α = 1 with those
at fractional orders α < 1 reveals that smaller values (e.g., α = 0.6) result in slower convergence to equilibrium due to
the memory effects inherent to fractional derivatives. In contrast, the classical model stabilizes more rapidly, closely
matching the behavior of integer-order formulations, as illustrated in Figures 2 and 3. These observations underscore
the enhanced flexibility of the fractional model in capturing the complex, history-dependent temporal dynamics of
disease spread, offering a more accurate description compared to classical approaches. That highlights the importance
of α not only in determining the system’s steady state but also in modulating the speed of disease progression.

7. Conclusions

This study aimed to investigate the stability of a fractional-order SI parasite-host model incorporating the Liouville-
Caputo fractional derivative. By considering memory effects and long-term dependencies, factors often overlooked in
traditional integer-order models, this approach offers valuable insights into disease persistence and transmission dy-
namics. The study successfully demonstrated the existence and uniqueness of the solution, guaranteeing its positivity
and boundedness. Furthermore, the asymptotic analysis identified two equilibrium points characterized by the basic
reproduction number R0: the disease-free equilibrium and the endemic equilibrium. When R0 ≤ 1, the equilibrium
E0 is globally stable, signifying the eventual elimination of the disease. Conversely, when R0 > 1, the equilibrium E∗
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Figure 2. Stability of E0 for various values of α.

Figure 3. Stability of E∗ for various values of α.

becomes stable, indicating the potential for the disease to persist within the population. Additionally, the bifurcation
analysis confirmed that the model exhibits a forward transition at the critical threshold R0 = 1, ensuring a smooth
change in disease dynamics as parameters vary. Numerical simulations verified the stability of these equilibria, em-
phasizing the effect of changes in α on the system’s dynamics. From a biological standpoint, this study highlights
the long-term dynamics of parasite-host interactions. It underscores the significance of critical parameters, including
transmission and recovery rates, in shaping disease dynamics and determining the persistence of infections. Our future
research could first focus on exploring alternative numerical methods to enhance the accuracy and efficiency of simu-
lations, thus providing a deeper qualitative understanding of the model. Subsequently, extending the fractional-order
framework to incorporate spatial diffusion would allow for a more realistic modeling of disease spread in heterogeneous
environments. Finally, applying our study to real existing diseases would allow for model validation and more accurate
estimation of key epidemiological parameters.
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