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Abstract

In this paper, we examine the existence of solutions for a hybrid fractional differential equation involving the
p-Hilfer derivative with a non-local condition. First, we establish the equivalence between our problem and an
integral equation. Then, we utilize Dhage’s renowned fixed point theorem to prove the existence of solutions.
Finally, we present an illustrative example to validate our results.
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1. INTRODUCTION

Fractional calculus is currently gaining great popularity among researchers in both fundamental and applied sciences.
The concept of fractional order operators was defined in the 19th century by Riemann and Liouville, their aim was to
extend the derivation or integration of fractional order by employing not only an integer order but also non-integer
orders. Initially, it was almost a mental exercise for some renowned mathematicians who wanted to generalize the
notion of differentiation from integer orders to fractional orders, allowing for the calculation of the real or complex
order derivative of a differentiable function f, such as:

df(t)

(o) =0

Fractional differential equations (FDEs) naturally arise in various scientific fields such as physics, engineering,
medicine, electrochemistry, control theory, etc. See [4, 11, 12, 157 | 16]. The effectiveness of these equations in
modeling several real-world phenomena has motivated many researchers to study their quantitative and qualitative
aspects.

Quadratically perturbed equations are interesting equations that form another step for solving problems in the
modeling field. The problem perturbed in this way are called hybrid differential equations [10, 14, 19, 21]. The study
of hybrid systems has caught the attention of the automation community, as well as that of the computing community.
The objectives that can be assigned to the study of hybrid dynamical systems consist in providing a solution in terms
of model, method, of performance and global quality to problems poorly treated by homogeneous approaches. For
more details on the theory of Quadratically perturbed systems. See [1, 6, 9, 18-20].

Dhage and Lakshmikantham [6] discussed the following first order hybrid differential equation

d x(t)
dt [ f(t, (1))
where f € C1([0,1] x R,R*) and g € Car([0,1] x R,R). They established the existence, uniqueness results and some

fundamental differential inequalities for hybrid differential equations initiating the study of theory of such systems and
proved utilizing the theory of inequalities, its existence of extremal solutions and a comparison results.

] = gt x(t), 1€ [0,1),2(t0) = 7o, (L1)
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Sun et al. [7], discuss the existence of solutions for the boundary value problem of fractional Hybrid differential
equations

{Dﬂ[fﬁgm]+g@x@y_a telo,1] 12)

z(0) = (1),
where 0 < 5 < 2 is a real number,Déi(.) is the Riemann-Liouville fractional derivative.

Hilal and Kajouni [9] studied boundary fractional hybrid differential equations involving Caputo differential oper-
ators of order 0 < o <1

{CD&: ] = gt w(t), teo,T)

(© #(T)
45 ato) + VTR =

where f € C*([0,T] x R,R*) and g € Car([0,T] x R,R) and a, b, c are real constants with a + b # 0. They proved
the existence result for boundary fractional hybrid differential equations under mixed Lipschitz and Caratheodory
conditions.

Inspired by the aforementioned works, in this paper, we investigate the existence of solutions for the following
nonlinear y-Hilfer hybrid fractional differential equation:

DG (il + Ut u(t)) = Htu(t), teT = [0,0)
1-¢; u(t) —
Iy, ’ (V(t,u(t)))tzo +x(u) =X €R,
where 0 <a<1,0<o<1,{=a+o(l —a), HDgf’“”(.) is the p-Hilfer fractional derivative of order « and type o,

VeCT xR,RY), and U, H € C(J x R,R).

The key contributions of this study can be outlined as follows:

(1.3)

C,

(1.4)

1. In this work, we employ the fractional derivative in place of the classical derivative, leveraging its advantages
and the enhanced analytical outcomes it offers. Specifically, we employ the ¢-Hilfer fractional derivative
which offers several advantages that enhance its applicability in mathematical modeling and analysis. As a
generalization of various classical and fractional derivatives, including the Riemann-Liouville, Caputo, and
Hilfer types, it provides a unified framework that can capture a wide range of dynamic behaviors. The presence
of the function ¢ introduces a high degree of flexibility, allowing the derivative to adapt to non-uniform
time scales or heterogeneous media, which is particularly useful in modeling systems with time-dependent or
nonlinear structures.

2. As far as we are aware, this study represents the first effort to analyze the structure of the nonlinear p-Hilfer
hybrid fractional differential equation with a non-local condition, within the framework of the system defined
n(l4).

3. Utilizing the -Hilfer fractional derivative type and its properties we provide the integral solution to the given
problem (1.4); see Lemma 3.1.

4. In Section 3, we establish a framework based on the hypotheses (H;), (Hz), and (H3) concerning the continuous
functions U, V, H, and x. This framework supports the existence results through the application of fixed-point
techniques.

5. The main existence theorem is derived using alternative fixed-point theorems developed by Dhage. Addition-
ally, Section 4 provides a concrete example to illustrate the applicability of the obtained results.

6. Moreover, this study builds upon and advances earlier research found in the literature, particularly the works
cited in [3, 8, 13].

2. PRELIMINARIES

In this section, we provide definitions and lemmas related to the @-Hilfer fractional derivative, which will be used
throughout the following sections of this study.
an
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e Let J = [0,b] with b < oo and C(J,R) the space continuous functions, endowed with the norm ||g|| =

supc s {lg(t)[}. /
e Throughout this paper, we consider that ¢ € C*(J,R) is an increasing differentiable function, with ¢ (¢) # 0,
vte J.

e We consider the following space

Cr—¢,([0,0]) = {@: (0,b] = R, (p(t) — ¢(0))'~@(t) € C*[0,b]},

such that

12()lly .o (0.6) = 5uPrefo,p] (9 (1) — (0)' ().
Definition 2.1. [? | The left-sided ¢-Riemann-Liouville fractional integral and fractional derivative of order a,
(n—1<a<n, n=][a]+1) ofafunction ®:[0,b] — R, are respectively defined as follows

. Y L
IYPP(t) = —— t) — =1 (s)ds,
5B = gy [ ¢ 600 — s D (s)ds

and

: 1 d\" 1 1od\" [*
DSP®(t) = | ——=— | IJ7¥°P(t) = —— — t) — a1 (s)d
200 = () B0 = st (i) [ ¢ 00 =) 2
where T'(.) is the Euler gamma function defined by
—+oo
I(z) = / e tt*ldt, 2 > 0.
0
Definition 2.2. [17] The left-sided o-Hilfer fractional derivative of order o and type o € [0,1] of a function ® €
C"(J,R) is given by

1 n
HDSL_;—G'#P(I)( ) — I‘T(” a)p ( i)

J=0) =) gy
0+ o'(t) at ),

0+
in other way
TDETC() = I DG (),
where "
Diram~ (Zpa) B0 e,

with(=a+o(n—a),(n—1<a<n),and n=[a] + 1.
Lemma 2.3. [? ] Let o, 8 > 0. Then we have

() 57 (p(t) — (0))P 1 = 55 (o(t) — p(0) 451,

(i) #DG7* (p(t) — ()= 0.
Lemma 2.4. [2] Let o, 8 > 0. Then we have

IF IS0 (t) = If TP a(t).

Lemma 2.5. [? | Let a >0, then I57®(t) € C(J,R) and
lim 89D (t) = I§9D(0) = 0.

t—0+
Lemma 2.6. [17] Let ® € C"(J,R), n—1<a<n,0<c<1,and (=a+0c(n—a). Then for allt € (0,b)
TDFTPITe(t) = (t).

and

(C—Fk)
o(t) — »(0)) H(n—k) [(n=0)(n-a); W(b(o)

oz (H aaga
IO+( D (I) §—/€+1) ® 0+

HM:
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n—k
n—k
where (I)<(p )fl)(t) = ga/l(t) %) D).
In particular, if 0 < o < 1, we have

Igiw(HDgia;saq)(t)) = B(t) — ((t) }(i()O))C_lféio)(la);w@(o)-

Theorem 2.7. [5] Let S be a bounded, closed, and convex subset of the Banach space X. Suppose that the operators
P:X = X and F: S — X satisfy the following conditions:

a) P is a Lipschitz operator with a Lipschitz constant 0.
b) F is completely continuous.

c) u=PuFv=u€S, forallvesS.

d) oM < 1, where M = || F(S)|-

Then, the operator Tu = PuFu has at least a fized point in S.

3. RESULTS

In this section, we demonstrate the equivalence between the nonlinear ¢-Hilfer hybrid fractional differential Equation
(1.4) and an integral equation, while introducing several key hypotheses. These hypotheses will play a crucial role in
proving the existence theorem for the solution of the nonlinear ¢-Hilfer hybrid fractional differential Equation (1.4) .

Lemma 3.1. Let V € C(J x R,R*) and U, H € C(J x R,R), for all u € Ci_¢,,(J,R). Then, the problem (1.4) has
a solution given by

u(t) = V(t,ut) {=V(t, u(t)) + Q5 (1, 0)(A — x(w) + I§IPH(t,u(t)} (3.1)
where Q5 (t,0) = %.

Proof. Applying the operator Igi‘p on both sides of the problem (1.4) and using Lemma 2.6 , we obtain

u(t) _o¢ (1-Q)sp ( u(t) ) _ 7o
V(t,u(t)) +u(ta U(t)) Qcp(t’0)10+ V(t,u(t)) +u(t3 U(t)) 0 - IO+ H(t7u(t))7 te ‘-7,
using Lemma (2.5)(ii) and the initial condition Ié;c“" (V(Z(utgt)))tzo + x(u) = A, we get
u(t) = V(t,u(®) {~U(t,uB) + Q5 (6, 0)(A = x(w) + I H(Lu®) }, te . (3.2)
On the other hand, suppose that u(t) satisfies Equation (3.1) for all t € J. Then, we have
u(t) —_ 0O¢ o a;p
(p iy Ut e} | = (4,00~ x(w) + Mttt € 3. (33

Applying the operator HDgf’“o(.) on both sides of Equation (3.3) , then thanks to Lemma 2.6 , and Lemma 2.3(ii) ,
we get

H no,o,¢ & " _ .
Dy <V(t,u(t))+u(t’ (t))> H(t,ut), teJ.

To verify the initial condition, we apply the operator I&;CW(.) to both sides of Equation (3.3) , putting ¢ = 0 and
using Lemmas 2.3(i) and 2.5(ii), we get

¢ t)
e (_ult) —)\eR.
5 (e, T X0 =

The proof is complated. |
an
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Next, we introduce the following hypotheses:
(H1) The functions V and U are bounded, and there exists a constant § > 0 such that

V(t,p) —V(t,q)| <élp—q|l, VYp,qeR, teJ.
(Hz) There exists a function K € C1_¢ (J,R) such that

[H(t,p)| < (o) = (0)' “K(t) teT.peR.
(H3) There exists a constant € > 0 such that the function x : C1—¢,, — R is continuous and satisfies:

Ix(u)] <e.
Let X := (C1-¢,o(J,R), [Illc,_¢.,(7.r))> then X is a Banach space. Define
§= {U € X, HU”Cl—C,so(JJR) < R} ’

where
e+, (o) —p(0) ¢

rQ I(a+1) |K|cl_<,¢<J,R)> ;

R = L1 ((0(0) ~ p(0) Lo +

with Ly, Lo > 0 are constants such that
‘V(tvp)‘ Sle |u(t7p)‘ SL27 p,qGR,tEJ.
It is clear that S is a bounded, closed, and convex subset of X.
Let P: X — X and F : S — X such that
Pu(t) = V(t,u(t)).
Fu(t) = =U(t,u(t)) + Q5 (1, 0)(A = x(w)) + I H(t, u(t)),
and let 7 : S — X defined by:
Tu(t) = Pu(t)Fu(t).

Theorem 3.2. Consider that the hypotheses (Hy), (Hs),-and (Hy) hold. Then, the nonlinear p-Hilfer hybrid fractional
differential Equation (1.4) has a solution w € C1_¢ ,(J,R) provided

& a+1-¢
o { Latott) — ptoy =<+ 5Ly LOZEQ

|K|cl_<,¢<J,R)} <1 (3.4)

Proof. According to Theorem 2.7, the proof is given in the following steps:
Step 1: P is a Lipschitz operator.
Let t € [0,b] and u,v € S. Thanks to hypothesis (H7), we have

[(p(t) = @(0)' =< (Pult) — Pu(t))|

= [(p(t) = @(0))' =V (t,ult)) = V(¢ v(t)))]
<3 |(p(t) = @(0)' = (u(t) — v(t))|
<dllu—vlle,_( . (7R)

then, P is a Lipschitz operator.
Step 2: The operator F is completely continuous.
(i) F: S — X is continuous.
Let ¢ € [0, b], we consider the sequence (uy,)nen of S such that u, — n as n — oo in §. Then we have

[Fun = Fulle,_ (7.2 = max |(¢(t) - 9(0)! ¢ (—U(t tn (1)) + QG (8, 0)x (1) + IG7H(E, un (1)) + UL, u(t))

— QL0 () — A () )|
< max(p(t) = @(0)' {Jd(t un (1)) = U, u(®))] + Q4 (¢ 0)x(un) = x(w)
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+ | I8 ua (1)) Igfﬂ(t,u(t))]} :

By the continuity of the functions H, U, x and Lebesgue dominated convergence theorem, we get

| F iy — ‘F“”Cl—c,w(J,R) — 0, asn — oo.

This implies that F : S — X is continuous.
(13) F(S) = {Fu:u € S} is uniformly bounded.
Let u € S and t € J. Using hypotheses (H;) and (Hz), then we have

[(p(t) = 9(0))' < Fult)] = | (2(t) = 9(0)*~ (Ut ult)) + QL (E,0)(A = x(w)) + I H(E, u(t) )|

< (1) — p(0)'C U (t, u(t))]| + !A Eégu)

+ (lt) - ﬂo»l*ﬁ / & (5)((t) — () (5, u(s))| ds

< (p(b) — (0)) S L + ;( OA'

+ (p(b) - w(O))l_Cﬁ / & (5)((t) — 9()° 7 (5) — 9(0)) S K (5)] ds
e+ A

+(p(b) — sa<o>>1*<||K||cl,<,¢<J,R>ﬁ / & ()(p(t) — p(s)°\ds

e Al (o) - p(0))* ¢
T T(a+1)

< (p(b) = 9(0)" Lz + 15 lloy ¢ (7.8

therfore

e+, (0b) = p(0))* ¢
T(0) T(a+1)

1Kl o7R)-

(#91) F(S) is equicontinuous.
Let u € S and 7,72 € J with 71 < 7. By using hypothesis (Hs), we get

(=)=
E)NE

!<so<n>—sa<o>>1—<fu<m> (1) =(0))'~ <fu<n>!

= |=(e(r2) = p(O)' Uz u(2)) + (p(72) = (0)' I H (72, u(r2)
+ (o(m1) — @O =SU (1, u(r)) (<p(7'1) VI H u(n))‘

< [((r2) = m(0)) Uz, u(r2) — (o() - éa( >>1 Ulry,u(m))|

+ |(e(r2) = p(O) I Mo, u(r2) = (p() = 9O)) TG FH(r ()|
< [(p(m2) = @(0))' = U(T2, u(r2)) = (@(11) = 2(0)' U (71, u(m))|

+ ‘(@(rz) — p(0)¢ ﬁ /O " 5 (5) () — 9(5))° (s, u(s))|ds

— (p(m) - w<o>>1-<ﬁ / "0 (8)(p(m) — (s)* " H(s, uls))|ds

< Ly [(p(72) = 9(0))! ¢ = (o(11) — 9(0))"~¢|

T5) — a+1-¢ T1) — atl=¢
(el )F(fioi)) ||K||clfc,¢<J,R)*(¢( )F(awioi)) 1ller—com

"
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< Lo |(e(72) = 9(0))' ¢ = (p(11) — 0(0))' ¢
# IRt ) — 04176 — () — 01
Thanks to the continuity of the function ¢, we get
[((72) = (0)' = Fu(re) = (p(m1) = (0))! " Fu(m)| =0, as |1 — 7| 0.

From (i1), (i4i), and by Arzela-Ascoli theorem it follows that F(S) is relatively compact. Since F is continuous, then
it is completely continuous.

Step 3:

Lett € J,u € Ci—¢,o(J,R), and v € S such that u(t) = Pu(t)Fuv(t) then, we have

[(p(t) = w ()" ut)] = V(tu®)] ((p(t) = 9(0)) [<UE v(®) + Q52 00\ = x(w)) + I H(E v(D))))

1— e+ Al 1-C pese
< W at)] (900 = o) <0 o0 + S5+ [(6lt) & 0 rze e ()
oy St (o) — (0
< 21 (o) — pt0) Lo+ L+ PO AV S o).

this implies that [Jullc, . (7r) <R, thenu € S.

Step 4:

Let M = [ F(S)llev_. .72 = supl|Fulle,_, .7z : u € S},
From inequality (3.4) and (3.5) , we have

_ a+1=¢
oM <6 {Lz(cp(b) — (0)¢ + 5;?8' (@(b)r(s(f)l)) ”K”C’lc.«p(J,R)} <1

We observe that all the conditions of Dhage’s fixed point Theorem 2.7 hold. Then the operator T has at least a fixed
point in S, this implies that the nonlinear p-Hilfer hybrid fractional differential Equation (1.4) has at least a solution
in C1p (7, R). -

4. EXAMPLE

In this section, we give an illustrative example to demonstrate our results. We consider the particular case when
@(t) =t and o = 1, in this case, the space C1_¢ ,(J,R) reduces to the space C(J,R) and the o-Hilfer derivative
coincides with the Caputo fractional derivative.

Let J = [0,1], V(b u(t) = 1+ “5u(t), U(t, u(t)) = “Fpimrs Hitu(t) = iy and X(w) = sy
Then, consider the following nonlinear hybrid fractional differential equation involving Caputo fractional derivative:

CD(i < W) sin(t)u(t)) _ Lo ],

cos(t) T+ u(D)] 2+u(®)]’
1+ =25 u(t) (4.1)

-Gy [ uw(®) . _1
T, 1+C"z“'>|u(t)|>t_0 s T 2

Comparing problem (4.1) with the nonlinear hybrid fractional differential Equation (1.4). Then a = 5,0 =1, ( =1,
¢(t) =t, and A = 3. Let’s check the hypotheses (H;), (Hz), and (H3). Then, we have:

Vit u(®) ~ Vit o) = | S u(e) - | < Ly
ute.uto)] = | T <1
i) = |50 | <



Therefore, the hypotheses (H;), (Hs), and (H3) hold, with k(t) =1, Ly = 1, and § = 1
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1 1
)l = Sy <5

1

Now we check for condition (3.4). Further, consider

et (1) =)=y _ 1 1+3 1
5 { 1ot (00!~ S 1Kl o PRI | = {14 5 + iy )

~ 0,707 < 1.

We observe that all the conditions of Theorem 3.2 hold. Therefore, the system of nonlinear hybrid fractional differential
Equation (4.1) has a solution in C(J,R).

5. CONCLUSION

In this paper, we have developed an existence theory for solutions to a nonlinear hybrid fractional differential
equation involving the p-Hilfer derivative under non-local conditions. The method employed is based on Dhage’s fixed
point theorem, and an example is provided to illustrate the main results. As a perspective for future research, one
may explore the development of numerical schemes for approximating these solutions or extend the analysis to more
general classes of hybrid systems involving multi-term or distributed-order fractional operators.
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