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Abstract

This paper presents a numerical collocation method based on Cubic Unified Extended Trigonometric Tension B-

Spline (CUETTB-spline) functions for solving the Time Fractional Telegraph (TFT) equation. The time-fractional
derivative in the TFT equation is discretized using Caputo’s definition, followed by the construction of a CUETTB-

spline based collocation method to approximate the solution. The precision and efficiency of the proposed method

are demonstrated through three numerical examples, where the results are compared against existing methods for
the error norms L2, L∞, and the RMS. The findings reveal that the proposed method achieves higher accuracy

than previously reported approaches. Furthermore, a detailed stability analysis confirms that the method is

unconditionally stable, while the rate of convergence (ROC) analysis establishes an order of O(h2, τ2−α). The
results validate the robustness and effectiveness of the proposed method for solving the time-fractional telegraph

equation.
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1. Introduction

Fractional calculus is implemented efficiently to show various physical phenomena in engineering sciences [18, 25].
Numerous applications are reported that are usually conveyed by fractional partial differential equations (PDEs).
For example, Sabermahani [31] proposed a new set of fractional functions based on the Lagrange polynomials to
approximate a class of fractional differential equations (FDEs). The authors of [32] presented a numerical method
based on two-dimensional Müntz–Legendre hybrid functions to solve FPDEs. Rahimkhani et al. [26] used Bernoulli
wavelets and the least squares support vector regression to develop a new hybrid method to approximate systems of
FDEs. In addition, several phenomena such as propagation of analog and digital signals across media [17], random
walk [6], and neutrons diffusive transport in nuclear reactors [36] are portrayed by a class of hyperbolic PDEs, so-
called fractional telegraph equations [10]. This model is a hyperbolic type, which means the speed of the wave and
the propagation are finite. It requires two initial conditions for the uniqueness, even if the order of the model is
any number. The suspension flows are best modeled by the time fractional telegraph equation. The rise of such
an important model gives its importance, and researchers have been investigating the possible solution for such an
equation. However, it is noted that few analytical and numerical methods exist in the literature to solve the TFT
equation. For example, the natural transform decomposition method is applied by the authors of [1, 9] to approximate
TFT equations, while the authors of [8] applied the homotopy analysis method to approximate it. Momani [20]
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used the ADM to approximate the space-time fractional telegraph (STFT) equations. Wei et al. [37] developed a
fully discrete local discontinuous Galerkin finite element method (GFEM), while Tasbozan and Esen [34] applied the
Galerkin method based on Quadratic B-Spline (QBS) functions. The authors of [4, 28, 29, 41] employed collocation
methods based on the cubic trigonometric B-spline (CTBS) function, Sinc-Legendre, Sinc-Chebyshev polynomials,
and redefined extended uniform cubic B-spline (CBS) functions, respectively, to approximate it numerically. Tasbozan
and Esen [35] applied the FEM based on CBS functions. Mishra et al. [7, 21] used a collocation method based on
Legendre functions and a meshless method by amalgamation of Chebyshev polynomials and cubic RBF to approximate
STFT equations. Hosseini et al. [11] implemented a technique by coupling radial basis functions with FDM for the
numerical approximation of the TFT equation, while the authors of [12, 40] presented Legendre wavelet methods.
Hariharan et al. [13] introduced a capable operational matrix approach based on Haar wavelets to approximate space-
and-time-fractional telegraph equations. In [22, 30], the authors proposed operational matrix approaches using block
pulse functions with a combination of Legendre polynomials and Fibonacci wavelets to approximate TFT equations,
respectively.
Additionally, Abdollahy et al. [2] proposed the Haar wavelets approach to investigate the time fractional Riesz space
telegraph equation. For the stable density, Fourier transformation solutions, for any α, are investigated by Orsingher
and Beghin [23], while Orsingher and Zhao [24] investigated the Fourier transform of the space-fractional telegraph
equation’s elementary solution. Hashmi et al. [14] suggested a DQM based on CBS functions for the TFT equation.
An amalgamation of geometric procedure and method of line is presented by Hashemi and Baleanu [15], while Asgari et
al. [3] proposed a new technique using Bernstein polynomials. In [16, 19], the authors employed FDM with generalized
fractional derivative terms and a Neural Network method to approximate the TFT equation, respectively. Wang et
al. [39] introduced a piecewise approach with the reproducing kernel space for a class of aforesaid equation. For more
information, the reader may refer to [4, 7] and references therein.
Since B-spline functions have abundant striking properties and are the vector space’s basis generated by the splines
with the least support for an assured degree of smoothness and subdivisions of the domain. The present spline
functions, such as B-splines, hyperbolic and usual polynomial B-spline functions, etc., are all remarkable situations of
unified and extended splines (UE-splines). In recent times, [38] introduced hyperbolic, polynomial, and trigonometric
UE-splines. The authors of [5] reported a scheme based on trigonometric tension B-spline functions.
This work is presented to adapt the CUETTB-spline collocation method for solving the fractional order telegraph-
type equations. Since most real-world physical problems can be excellently demonstrated with the fractional telegraph
equation, the approximation approaches, and their stability and consistency are essential. The proposed CUETTB-
spline collocation method offers several important advantages that enhance its practical applicability and robustness
over other compared to other methods, such as the spectral and pseudo-spectral methods. The method is based on
basis functions with local support and tunable tension parameters, which allow for greater flexibility in capturing sharp
gradients and localized features in the solution, scenarios where global spectral methods often struggle. Additionally,
the structure of the collocation scheme leads to sparse linear systems, resulting in lower computational complexity and
memory requirements compared to the dense matrices typical of spectral approaches. This advantage is demonstrated
in the comparative CPU time performance across multiple test cases. Moreover, the method is unconditionally stable,
as confirmed through von Neumann stability analysis, and achieves second-order convergence in space and fractional-
order convergence in time. The use of CUETTB-spline functions also enables straightforward implementation on non-
uniform meshes and complex domains, unlike spectral methods, which often require transformations into orthogonal
function spaces. Finally, the numerical results presented in this study, including very low error norms and strong
agreement with exact solutions, validate the accuracy, efficiency, and reliability of the proposed method as a competitive
alternative for solving time-fractional telegraph equations.
Motivated by the above points, we aim to utilize the CUETTB-spline approach to approximate the TFT equation.
The novelty of our paper lies within the following points:

(1) We introduce a novel collocation scheme based on CUETTB-spline functions to approximate the solutions for
the TFT equation.

(2) The proposed method innovatively integrates Caputo’s definition to discretize the time-fractional derivative,
enabling the accurate handling of fractional-order problems.
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(3) A detailed stability analysis is presented to confirm that the proposed method is unconditionally stable.
(4) The efficiency and accuracy of the method are demonstrated through three diverse numerical examples, show-

casing its versatility in solving TFT equations.
(5) The method’s results highlight its potential for practical applications in fields requiring accurate solutions to

fractional-order telegraph equations.

The rest of the article is organized as follows. Section 2 illustrates the formulation of the model, followed by section 3,
which highlights the CUETTB-spline basis functions and the collocation technique. Section 4 gives a full discretization
of the problem, while section 5 analyzes the stability of the discretized system of the TFT equation. The results
obtained and discussion are presented in section 6. Finally, section 7 completes the study.

2. Problem Formulation

This section illustrates the main problem formulation of the model under study. The main goal of this work is to
demonstrate an efficient, accurate, and stable approach for the following TFT equation [4, 21, 41]. The main problem
is of the following form:

∂αv

∂τα
+ λ1

∂α−1v

∂τα−1
+ λ2v = λ3

∂2v

∂ξ2
+ f (ξ, τ) , 1 < α < 2, (2.1)

associated with the following initial and boundary conditions

v (ξ, 0) = ϕ1 (ξ) , vτ (ξ, 0) = ϕ2 (ξ) , 0 ≤ ξ ≤ 1, (2.2)

v (0, τ) = ψ1 (τ) , v (1, τ) = ψ2 (τ) , 0 ≤ τ ≤ 1, (2.3)

where λ1, λ2, λ3, α, ϕ1 (ξ), ϕ2 (ξ), ψ1 (τ), and ψ2 (τ) are given constants and functions. The fractional derivatives
considered in the problem are in the Caputo sense and are given by [11]

∂αv

∂τα
=

{
1

|j−α

∫ τ

0
∂jv
∂sj (τ − s)

j−α−1
ds, if j − 1 < α < j

∂jv
∂sj , if α = j

(2.4)

3. CUETTB-spline basis functions

In this section, the authors illustrate the cubic unified extended trigonometric tension B-spline basis functions that
are used for the proposed collocation technique. First, the domain ξ ∈[0, 1] is partitioned uniformly into a mesh of
length h = 1

M , by the knots ξi = ih i = 0, 1, . . . ,M , so that we possess 0 = ξ0 < ξ1 < ξ2 < . . . < ξM = 1. Now, in

the span of
{
cos ςξ, sin ςξ, 1, ξ, ξ2, ...ξl, ...

}
where l is a positive integer, we define the UE-spline functions of second

order (r = 2) as [38]

T̂i,2 (ξ) =
1

sin(ςh)


sin (ς(ξ − ξi−2)) , [ξi−2, ξi−1) ,

sin (ς(ξi − ξ)) , [ξi−1, ξi) ,

0, Otherwise,

(3.1)

Here ς =
√
ς̄j and ς̄j ∈ R are the frequency sequence and the tension parameter, respectively. The tension parameter

ς bears a value as a zero, real nonzero, or pure imaginary number based on ς̄j = 0, ς̄j > 0, ς̄j < 0. To ensure the

non-negativity, we proceed with ς̄j ≤ mink=j,j+1 (π/(ξk+1 − ξk))
2
. The recurrence formula for r ≥ 3 is given as:

T̂i,r(x) =

∫ ξ

−∞

(
δi,r−1T̂i,r−1(s)− δi+1,r−1T̂i+1,r−1(s)

)
ds, (3.2)

where δi,r =
(∫∞

−∞ T̂i,r(s)ds
)−1

, i = 0,±1, .... Additionally, T̂i,m(ξ) = 0, then we take∫ ξ

−∞
δi,rT̂i,r(s)ds =

{
1, ξ ≥ ξi+r−2,

0, ξ < ξi+r−2.
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If 0 < ς ≤ π
h , the aforementioned spline functions are trigonometric. Using (3.2) for r = 3 with 0 < ς̄j ≤

mink=j,j+1 (π/(ξk+1 − ξk))
2
, the quadratic unified extended trigonometric tension B-spline functions of order 3 can be

obtained as follows:

T̂i,3 (ξ) =
1

1− cos (ςh)


1− cos (ς(ξ − ξi−2)) , [ξi−2, ξi−1)

−1 + cos (ς(ξi − ξ))− cos (ςh) + cos (ς(ξ − ξi−1)) , [ξi−1, ξi)

1− cos (ς(ξi+1 − ξ)) , [ξi, ξi+1)

0, else.

(3.3)

Now, utilizing the recursive formula (3.2) for r = 4 and taking 0 < ς ≤ π
h , the 4th order CEUTTB-spline functions

can be found as [5]:

T̂i,4 (ξ) =
1

ϑ



(ξ − ξi−2)− sin(ς(ξi−2−ξ)
η , ξ ∈ [ξi−2, ξi−1)

(ξi − ξ) + (2ξi−1 − ξ) cos(ςh)− 2 sin(ς(ξi−1−ξ))+sin(ς(ξi−ξ))
η , ξ ∈ [ξi−1, ξi)

(ξ − ξi)− (2ξi+1 − ξ) cos(ςh) + sin(ς(ξi−ξ))+2 sin(ς(ξi+1−ξ))
η , ξ ∈ [ξi, ξi+1)

(ξi+2 − ξ)− sin(ς(ξi+2−ξ)
ς , ξ ∈ [ξi+1, ξi+2)

0, Otherwise.

(3.4)

where, ϑ = 2h(1−cos(ςh)). The CUETTB-spline functions
{
T̂0,4, T̂1,4, ..., T̂M,4, T̂M+1,4

}
form a basis over the problem

domain. The CUETTB-spline functions and their derivatives values at knots are given in Table 1, where σ1 =
1
ϑ

(
h− sin(ςh)

ς

)
σ2 = 1

ϑ

(
2 sin(ςh)

ς − 2h cos(ςh)
)
, σ3 = − 1−cos(ςh)

ϑ , σ4 = ς sin(ςh)
ϑ , and σ5 = − 2ς sin(ςh)

ϑ .

Table 1. Values of T̂i,4(ξ), T̂
′
i,4(ξ), and T̂

′′
i,4(ξ) at knots ξi.

ξi−2 ξi−1 ξi ξi+1 ξi+2

T̂i,4(ξ) 0 σ1 σ2 σ1 0

T̂ ′
i,4(ξ) 0 σ3 0 −σ3 0

T̂ ′′
i,4(ξ) 0 σ4 σ5 σ4 0

We define the approximated solution as

v(ξ, τ j) ∼=
M+1∑
i=−1

T̂i,4 (ξ)Ci(τ
j), (3.5)

where Ci(tj) are unknown time-dependent quantities. The variation of the v (ξ, τj) is asserted as

v (ξ, τj) =
i+1∑

k=i−1

T̂k,4 (ξ)Ck (τj) . (3.6)

Using (3.6), we approximated v vξ, and vξξ as

vji = σ1C
j
i−1 + σ2C

j
i + σ1C

j
i+1, (3.7)

(vξ)
j
i = −σ3Cj

i−1 + σ3C
j
i+1, (3.8)

(vξξ)
j
i = σ4C

j
i−1 + σ5C

j
i + σ4C

j
i+1. (3.9)

Next, we demonstrate the discretization of the main model to be solved by the proposed technique.
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4. Discretization of the problem

In this section, we highlight the discretization procedure to solve the main problem. According to the considered
problem (2.1), the fractional derivatives can be written as [11]

∂αv

∂τα
=

{
1

|2−α

∫ τ

0
∂2v
∂s2 (τ − s)

1−α
ds, if 1 < α < 2,

∂2v
∂τ2 , if α = 2,

, (4.1)

and

∂α−1v

∂τα−1
=

{
1

|2−α

∫ τ

0
∂v
∂s (τ − s)

1−α
ds, if 1 < α < 2,

∂2v
∂τ2 , if α = 2.

(4.2)

The discretization of ∂αv
∂τα and ∂α−1v

∂τα−1 for 1 < α < 2 at τ = τ j+1 is given as [11]

∂αvj+1
i

∂τα
= a0

j∑
k=0

Pk

(
vj−k+1
i − 2vj−k

i + vj−k−1
i

)
+ rj+1

1 , j = 0, 1, ..., N, (4.3)

and

∂α−1vj+1
i

∂τα−1
= a0∆τ

j∑
k=0

Pk

(
vj−k+1
i − vj−k

i

)
+ rj+1

2 , j = 0, 1, ..., N, (4.4)

where a0 = ∆τ−α

|3−α
, Pk = (k + 1)

2−α − k2−α, ∀k = 0, 1, 2....j, while rj+1
1 and rj+1

2 are truncation errors at τ = τ j+1.

Now, τ = τ j+1, using Equations (4.3) and (4.4) for time-fractional derivatives and the Crank-Nicolson scheme for
spatial derivatives, we get

a0

j∑
k=0

Pk

(
vj−k+1
i − 2vj−k

i + vj−k−1
i

)
+ λ1a0∆τ

j∑
k=0

Pk

(
vj−k+1
i − vj−k

i

)
+ λ2

(
vj+1
i + vji

)
2

= λ3

(
(vξξ)

j+1
i + (vξξ)

j
i

)
2

+

(
f j+1
i + f ji

)
2

, i = 0, 1, ...,M, j = 0, 1, ..., N. (4.5)

Rearranging the terms in (4.5), we get(
a0 + λ1a0∆τ +

λ2
2

)
vj+1
i − λ3

2
(vξξ)

j+1
i =

(
2a0 + λ1a0∆τ −

λ2
2

)
vji +

λ3
2

(vξξ)
j
i − a0v

j−1
i

− a0

j∑
k=1

Pk

(
vj−k+1
i − 2vj−k

i + vj−k−1
i

)

− λ1a0∆τ

j∑
k=1

Pk

(
vj−k+1
i − vj−k

i

)
+

(
f j+1
i + f ji

)
2

,

i = 0, 1, ...,M, j = 0, 1, ..., N. (4.6)

For j = 0, using the initial condition vτ (ξ, 0) = ϕ2 (ξ), i.e.

v1i − v−1
i

2∆τ
= ϕ2 (ξi) ⇒ v−1

i = v1i − 2∆τϕ2 (ξi) ,
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we obtain the following(
2a0 + λ1a0∆τ +

λ2
2

)
v1i −

λ3
2

(vξξ)
1
i =

(
2a0 + λ1a0∆τ −

λ2
2

)
v0i +

λ3
2

(vξξ)
0
i + 2a0∆τϕ2 (ξi)

+

(
f j+1
i + f ji

)
2

, i = 0, 1, ...,M. (4.7)

Let 2a0 + λ1a0∆τ +
λ2

2 = Â and 2a0 + λ1a0∆τ − λ2

2 = B̂, then the above equation becomes

Âv1i −
λ3
2

(vξξ)
1
i = B̂v0i +

λ3
2

(vξξ)
0
i +

(
f1i + f0i

)
2

+ 2a0∆τϕ2 (ξi) , i = 0, 1, ...,M. (4.8)

Now, using approximated values of spatial derivatives by the CEUTTB-spline collocation technique, we get(
Âσ1 −

λ3σ4
2

)
C1

i−1 +

(
Âσ2 −

λ3σ5
2

)
C1

i +

(
Âσ1 −

λ3σ4
2

)
C1

i+1 =

(
B̂σ1 +

λ3σ4
2

)
C0

i−1

+

(
B̂σ2 +

λ3σ5
2

)
C0

i +

(
B̂σ1 +

λ3σ4
2

)
C0

i+1 + 2a0∆τϕ2 (ξi) +

(
f1i + f0i

)
2

, i = 1, 2...,M − 1. (4.9)

Using Âσ1 − λ3σ4

2 = A∗, Âσ2 − λ3σ5

2 = B∗, B̂σ1 +
λ3σ4

2 = D∗and B̂σ2 +
λ3σ5

2 = E∗, the above equation, becomes

A∗C1
i−1+B

∗C1
i +A

∗C1
i+1 = D∗C1

i−1+E
∗C0

i +D
∗C1

i+1+2a0∆τϕ2 (ξi)+

(
f1i + f0i

)
2

, i = 1, 2, ...,M −1. (4.10)

Equation (4.10) forms a linear system with M + 1 equations and M + 3 unknowns. To make it uniquely solvable, we
use the boundary conditions v (0, τ) = ψ1 (τ) , and v (1, τ) = ψ2 (τ) as

σ1C
j
−1 + σ2C

j
0 + σ1C

j
1 = ψj

1 (τ) , (4.11)

and

σ1C
j
M−1 + σ2C

j
M + σ1C

j
M+1 = ψj

2 (τ) . (4.12)

Then, by solving Eqs. (4.11) and (4.12), we get

Cj
−1 = −σ2

σ1
Cj

0 − Cj
1 +

1

σ1
ψj
1(τ) and C

j
M+1 = −σ2

σ1
Cj

M − Cj
M−1 +

1

σ1
ψj
2(τ). (4.13)

For i = 0 and i =M , using the Eq. (4.13) in the Eq. (4.10), we get(
−σ2
σ1
A∗ +B∗

)
C1

0 =

(
−σ2
σ1
D∗ + E∗

)
C0

0 +
D∗ψ0

1

σ1
− A∗ψ1

1

σ1
+ 2a0∆τϕ2 (ξ0) +

(
f10 + f00

)
2

, (4.14)

and (
−σ2
σ1
A∗ +B∗

)
C1

M =

(
−σ2
σ1
D∗ + E∗

)
C0

M +
D∗ψ0

2

σ1
− A∗ψ1

2

σ1
+ 2a0∆τϕ2 (ξM ) +

(
f1M + f0M

)
2

. (4.15)

Now, for j = 1, 2, ..., N , the Eq. (4.6) can be written as(
Â− a0

)
vj+1
i − 1

2
λ3 (vξξ)

j+1
i = B̂vji +

1

2
λ3 (vξξ)

j
i − a0v

j−1
i − (a0 + a0λ1∆τ)

j∑
k=1

Pkv
j−k+1
i +

(2a0 + a0λ1∆τ)

j∑
k=1

Pkv
j−k
i − a0

j∑
k=1

Pkv
j−k−1
i − a0Pjv

1
i + 2a0Pj∆τϕ2 (ξi) +

(
f j+1
i + f ji

)
2

, (4.16)
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Now, using approximated values of v and vξξ by the CEUTTB-spline collocation technique, we get

A∗∗Cj+1
i−1 +B∗∗Cj+1

i +A∗∗Cj+1
i+1 = D∗∗Cj

i−1 + E∗∗Cj
i +D∗∗Cj

i+1 − a0

(
σ1C

j−1
i−1 + σ2C

j−1
i + σ1C

j−1
i+1

)
− F ∗∗

j∑
k=1

Pk

(
σ1C

j−k+1
i−1 + σ2C

j−k+1
i + σ1C

j−k+1
i+1

)
+ B̂

j∑
k=1

Pk

(
σ1C

j−k
i−1 + σ2C

j−k
i + σ1C

j−k
i+1

)

− a0

j−1∑
k=1

Pk

(
σ1C

j−k−1
i−1 + σ2C

j−k−1
i + σ1C

j−k−1
i+1

)
− a0Pj

(
σ1C

1
i−1 + σ2C

1
i + σ1C

1
i+1

)
+ 2a0Pj∆τϕ2 (ξi)

+

(
f j+1
i + f ji

)
2

, i = 1, 2, ...,M − 1, j = 1, 2, ..., N, (4.17)

where A∗∗ =
(
Â− a0

)
σ1 − 1

2λ3σ4, B
∗∗ =

(
Â− a0

)
σ2 − 1

2λ3σ5, D
∗∗ = B̂σ1 +

1
2λ3σ4, E

∗∗ = B̂σ2 +
1
2λ3σ5, and

F ∗∗ = a0 + a0λ1∆τ .
For i = 0 and i =M , implementing the Eq. (4.13) in the above equation, we get(

−σ2
σ1
A∗∗ +B∗∗

)
Cj+1

0 =

(
−σ2
σ1
D∗∗ + E∗∗

)
Cj

0 +
D∗∗

σ1
ψj
1 −

A∗∗

σ1
ψj+1
1 − a0ψ

j−1
1 − F ∗∗

j∑
k=1

Pkψ
j−k+1
1

+ B̂

j∑
k=1

Pkψ
j+1
1 − a0

j−1∑
k=1

Pkψ
j−k−1
1 − a0Pjψ

1
1

+ 2a0Pj∆τϕ2 (ξ0) +

(
f j+1
0 + f j0

)
2

, j = 1, 2, ..., N, (4.18)

and (
−σ2
σ1
A∗∗ +B∗∗

)
Cj+1

M =

(
−σ2
σ1
D∗∗ + E∗∗

)
Cj

M +
D∗∗

σ1
ψj
2 −

A∗∗

σ1
ψj+1
2 − a0ψ

j−1
2 − F ∗∗

j∑
k=1

Pkψ
j−k+1
2

+ B̂

j∑
k=1

Pkψ
j−k
2 − a0

j−1∑
k=1

Pkψ
j−k−1
2 − a0Pjψ

1
2

+ 2a0Pj∆τϕ2 (ξM ) +

(
f j+1
M + f jM

)
2

, j = 1, 2, ..., N. (4.19)

At the time τj j = 0, 1, ..., N , the Eqs. (4.10), (4.14), and (4.15), as well as Equations (4.17)–(4.19), form a system
of linear equations of (M + 1) × (M + 1) order. To solve these systems, we need to resolve

(
C0

0 , C
0
1 , ..., C

0
M−1, C

0
M

)
from the initial condition, which provides M + 1 equation in N + 3 unknowns. To wipe out C0

−1,C
0
M+1, we use the

initial condition v (ξ, 0) = ϕ1 (ξ) and its first derivative at the boundaries as follows:

σ1C
0
i−1 + σ2C

0
i + σ1C

0
i+1 = ϕ1 (ξi) . (4.20)

Now, for the derivative of the initial condition with respect to ξ, we get

−σ3C0
i−1 + σ3C

0
i+1 =

∂ϕ1 (ξi)

∂ξ
.

At the boundaries, we get

C0
−1 = C0

1 − 1

σ3

∂ϕ1 (ξ0)

∂ξ
, C0

M+1 = C0
M−1 +

1

σ3

∂ϕ1 (ξM )

∂ξ
. (4.21)
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For i = 0 and i =M , using Eq. (4.21) in Eq. (4.20), we get

σ2C
0
0 + 2σ1C

0
1 = ϕ1 (ξ0) +

σ1
σ3

∂ϕ1 (ξ0)

∂ξ
. (4.22)

and

2σ1C
0
M−1 + σ2C

0
M = ϕ1 (ξM )− σ1

σ3

∂ϕ1 (ξM )

∂ξ
. (4.23)

Eqs. (4.20), (4.22), and (4.23) form a linear system as:

σ2 2σ1 0
σ1 σ2 σ1
0 σ1 σ2 σ1

. . .
. . .

. . .

σ1 σ2 σ1 0
σ1 σ2 σ1
0 2σ1 σ2





C0
0

C0
1

C0
2
...

C0
M−2

C0
M−1

C0
M


=



ϕ1 (ξ0) +
σ1

σ3

∂ϕ1(ξ0)
∂ξ

ϕ1 (ξ1)
ϕ1 (ξ2)

...
ϕ1 (ξM−2)
ϕ1 (ξM−1)

ϕ1 (ξM )− σ1

σ3

∂ϕ1(ξM )
∂ξ


. (4.24)

In the next section, we illustrate the stability analysis of the proposed method.

5. Stability analysis

This section establishes the stability of the discretized system of the TFT equation using the von Neumann scheme
[27, 34]. According to Duhamel’s principle [33], it is supposed that the stability of an inhomogeneous problem is an
instantaneous outcome for the stability of the equivalent homogeneous one. Therefore, it is suitable to analyze the
stability of the discretized system for the TFT equation with the force function f = 0. With some manipulation, Eq.
(4.6) can be written as

(
Â− a0

)
vj+1
i − 1

2
λ3 (vξξ)

j+1
i = (a0 + a0λ1∆τ)

(
P0v

j
i −

j∑
k=1

Pk

(
vj−k+1
i − vj−k

i

))

− a0

(
−P0

(
vji − vj−1

i

)
−

j∑
k=1

Pk

(
vj−k
i − vj−k−1

i

))
, (5.1)

which can be written as(
Â− a0

)
vj+1
i − 1

2
λ3 (vξξ)

j+1
i = (a0 + a0λ1∆τ)

(
P0v

j
i −

j−1∑
k=0

Pk+1v
j−k
i +

j∑
k=1

Pkv
j−k
i

)

−

(
−P0

(
vji − vj−1

i

)
−

j−1∑
k=0

Pk+1v
j−k−1
i +

j∑
k=1

Pkv
j−k−1
i

)
,

⇒
(
Â− a0

)
vj+1
i − 1

2
λ3 (vξξ)

j+1
i = (a0 + a0λ1∆τ)

(
(1− P1) v

j
i +

j−1∑
k=1

(Pk − Pk+1) v
j−k
i + Pjv

0

)

− a0

(
(1− P1) v

j−1
i +

j−1∑
k=1

(Pk − Pk+1) v
j−k−1
i + Pjv

−1
i

)
+ a0v

j
i . (5.2)
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Eq. (5.2) can be written as

(
Â− a0

)
vj+1
i − 1

2
λ3 (vξξ)

j+1
i = (a0 + a0λ1∆τ)

(
(1− P1) v

j
i +

j−1∑
k=1

(Pk − Pk+1) v
j−k
i + Pjv

0

)
(5.3)

− a0

(
(1− P1) v

j−1
i +

j−1∑
k=1

(Pk − Pk+1) v
j−k−1
i + Pjv

−1
i − 2∆τPjϕ2 (ξi)

)
+ a0v

j
i .

Next, without loss of generality and for convenience, we suppose that ϕ2 = 0. Using approximated values of v and vξξ
by the CEUTTB-spline collocation technique, we get((

Â− a0

)
σ1 −

1

2
λ3σ4

)
Cj+1

i−1 +

((
Â− a0

)
σ2 −

1

2
λ3σ5

)
Cj+1

i +

((
Â− a0

)
σ1 −

1

2
λ3σ4

)
Cj+1

i+1

= (a0 + a0λ1∆τ)

[
(1− P1)

(
σ1C

j
i−1 + σ2C

j
i + σ1C

j
i+1

)
+

j−1∑
k=1

(Pk − Pk+1)
(
σ1C

j−k
i−1 + σ2C

j−k
i + σ1C

j−k
i+1

)
+ Pj

(
σ1C

0
i−1 + σ2C

0
i + σ1C

0
i+1

) ]
− a0

[
(1− P1)

(
σ1C

j−1
i−1 + σ2C

j−1
i + σ1C

j−1
i+1

)
+

j−1∑
k=1

(Pk − Pk+1)
(
σ1C

j−k−1
i−1 + σ2C

j−k−1
i + σ1C

j−k−1
i+1

)
+ Pj

(
σ1C

1
i−1 + σ2C

1
i + σ1C

1
i+1

) ]
+ a0

(
σ1C

j
i−1 + σ2C

j
i + σ1C

j
i+1

)
. (5.4)

Now, we define the growth factor of a typical Fourier mode as Cj
i = δjekiµh where k =

√
−1 and δ is a factor dependent

on time. Using in the Eq. (5.4), we get

(2A∗∗ cos(µh) +B∗∗) δj+1 = F ∗∗

{
(1− P1)δ

j (2σ1 cos(µh) + σ2)

+

j−1∑
k=1

(Pk − Pk+1)δ
j−k (2σ1 cos(µh) + σ2) + Pjδ

0 (2σ1 cos(µh) + σ2)

}

− a0

{
(1− P1)δ

j−1 (2σ1 cos(µh) + σ2)

+

j−1∑
k=1

(Pk − Pk+1)δ
j−k−1 (2σ1 cos(µh) + σ2) + Pjδ

−1 (2σ1 cos(µh) + σ2)

}
+ a0 (2σ1 cos(µh) + σ2) δ

j (5.5)

where, A∗∗ =
(
Â− a0

)
σ1− 1

2λ3σ4, B
∗∗ =

(
Â− a0

)
σ2− 1

2λ3σ5, and F
∗∗ = a0+a0λ1∆τ . Hence, we get the following

(2A∗∗ cos(µh) +B∗∗) δj+1 = F ∗∗

{
(1− P1)δ

j +

j−1∑
k=1

(Pk − Pk+1)δ
j−k + Pjδ

0

}
(2σ1 cos(µh) + σ2)

− a0

{
(1− P1)δ

j−1 +

j−1∑
k=1

(Pk − Pk+1)δ
j−k−1 + Pjδ

1

}
(2σ1 cos(µh) + σ2)

+ a0 (2σ1 cos(µh) + σ2) δ
j .

(5.6)
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Now, we define

δjmax = max
0≤i≤j

∣∣δi∣∣ . (5.7)

then by using (5.7) in (5.6), we get

(2A∗∗ cos(µh) +B∗∗) δj+1 =

[
F ∗∗

(
(1− P1) +

j−1∑
k=1

(Pk − Pk+1) + Pj

)
δjmax

− a0

{
(1− P1) +

j−1∑
k=1

(Pk − Pk+1) + Pj

}
δjmax + a0δ

j
max

]
(2σ1 cos(µh) + σ2)

⇒ (2A∗∗ cos(µh) +B∗∗) δj+1 = (F ∗∗P0 − a0P0 + a0) δ
j
max (2σ1 cos(µh) + σ2)

⇒ δj+1 =
(a0 + a0λ1∆τ) (2σ1 cos(µh) + σ2)

2A∗∗ cos(µh) +B∗∗ δjmax. (5.8)

Since

2A∗∗ cos (µh) +B∗∗ = ((2a0 + 2a0λ1∆τ)σ1 − λ3σ4) cos (µh) + (a0 + a0λ1∆τ)σ2 −
1

2
λ3σ5,

⇒ 2A∗∗ cos (µh) +B∗∗ = 2a0 (1 + λ1∆τ)σ1 cos (µh)− λ3σ4 cos (µh) + a0 (1 + λ1∆τ)σ2 −
1

2
λ3σ5,

⇒ 2A∗∗ cos (µh) +B∗∗ = a0 (1 + λ1∆τ) (2σ1 cos (µh) + σ2)−
(
λ3σ4 cos (µh) +

1

2
λ3σ5

)
,

Finally, by using σ5 = −2σ4, we get

2A∗∗ cos (µh) +B∗∗ = a0 (1 + λ1∆τ) (2σ1 cos (µh) + σ2) + λ3σ4

(
2 sin2

(
µh

2

))
.

Substituting in the Equation (5.8), we get

δj+1 =
(a0 + a0λ1∆τ) (2σ1 cos (µh) + σ2)

a0 (1 + λ1∆τ) (2σ1 cos (µh) + σ2) + λ3σ4

(
2 sin2

(
µh
2

))δjmax ⇒ |δ| ≤ 1.

Hence, the discretized system of the TFT equation is unconditionally stable.

6. Computational Results

In this section, we illustrate the performance of our proposed technique by testing for three examples. The following
error norms are used for numerical analysis:

L2 =

√√√√h
n∑

j=1

|uexactj − unumerical
j |2, Lmax = max |uexactj − unumerical

j |,

Global Relative Error (GRE) =

∑n
j=1 |uexactj − unumerical

j |∑n
j=1 |uexactj |

, and ROC =
log(εn/εn+1)

log
(
n+1
n

) .

We begin with the following example.

Example 6.1. First, we consider the TFT Equation (2.1) with λ1 = λ2 =1 and λ3 = π together with the exact
solution v(ξ, τ) = τ3 sin2 ξ. The analogous source function is specified by

f(ξ, τ) =

(
6τ3−α

Γ(4− α)
+

6τ4−α

Γ(5− α)
− (2π − 1)τ3

)
sin2 ξ − 2πτ3 cos2 ξ . (6.1)

We select the tension parameter ς =1.25 for this example. Table 2 demonstrates the difference between the projected
and existing methods in a period of RMS errors together with convergence order with ς =1.25, ∆τ =0.001 at τ =1 for



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 11

Figure 1. The exact and numerical v(ξ, τ) values with ς =1.25, α =1.5, M =30, ∆τ =0.01 atτ =0.6,
0.8, and 1 for Example 6.1.

fractional orders α =1.75 and 1.95. Remarkably, the obtained results are better than those accomplished by CTBS
and Sinc-Legender (degree 3) collocation methods [28, 41]. Tables 3 and 4 compare the projected and existing methods
in terms of the L2, L∞ error norms with α =1.5, M =30 at τ =1 for various ∆τ , and with α =1.5, ∆τ =0.001 at τ =1
for various M . It is very clear from these tables that the projected method results are better than those exhibited by
the QBS Galerkin method as well as the CTBS collocation method [34, 41]. It is also followed that the convergence
rate of the projected method is quadratic in the space variable and 2− a order in the time variable. Figure 1 displays
the comparison of the exact and numerical v(ξ, τ) with ς =1.25, α =1.5, M =30, ∆τ =0.01 at τ =0.6, 0.8, and 1. A
remarkable accord is recovered between exact and numerical solutions. Figure 2 shows the RMS error norms vs. space
and fixed ∆τ = 0.001, as well as time grid sizes and fixed M =30 with α =1.2 and α =1.8. This figure shows that
the RMS error norms are decreasing with increasing grid sizes. Figures 3 and 4 display the 3D exact and numerical
v(ξ, τ), and absolute errors profile with ς =1.25, α =1.5, M =10, ∆τ =0.02, and ς =1.25, α =1.5, M =30, ∆τ =0.1
for τ ∈ [0, 1].

Table 2. The RMS error and ROC of the projected and existing methods for various M values with
ς = 1.25, ∆τ = 0.001 at τ = 1, for Example 6.1.

M
α = 1.75 α = 1.95

Projected CTBS Sinc-L ROC CPU Projected CTBS Sinc-L ROC CPU
method [41] [28] time method [41] [28] time

5 2.05e-4 2.86e-4 9.94e-4 – 3.29 1.98e-4 2.81e-4 9.58e-4 – 3.30
10 3.50e-5 7.85e-5 1.60e-4 2.55 5.67 3.64e-5 7.50e-5 1.54e-4 2.44 5.56
15 1.06e-5 3.66e-5 3.71e-5 2.96 8.08 1.26e-5 3.55e-5 3.57e-5 2.62 8.09
20 3.82e-6 2.17e-5 1.05e-5 3.54 10.6 5.55e-6 2.15e-5 1.01e-5 2.84 10.4

Example 6.2. Next, we study the TFT Eq. (2.1) with λ1 = λ2 = λ3 =1 in [0,1] together with the exact solution
v(ξ, τ) =

(
ξ2 − ξ

)
τ . The analogous source function is specified by

f(ξ, τ) =

(
1

Γ(3− α)
τ2−α + τ

)(
ξ2 − ξ

)
− 2τ,

We fix the tension parameter ς =0.015 for this example. Table 5 demonstrates the assessment of projected and existing
methods in a period of absolute errors with α =1.95, ∆τ =0.01 at τ =1 forM =10. This table shows that the obtained
results are better than those attained by CTBS and Sinc-Legender (degree 3) collocation methods [28, 41]. Table 6
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Figure 2. The RMS error norms vs. space grid size (left) and time grid size (right) for Example 6.1.

Figure 3. The 3D exact and numerical ν(ξ, τ), and absolute error profile with ς = 1.25, α = 1.5,
M = 10, ∆τ = 0.02, and τ ∈ [0, 1] for Example 6.1.

Figure 4. The 3D exact numerical ν(ξ, τ) and absolute error profile with ς = 1.25, α = 1.5, for
M = 30, ∆τ = 0.1, and τ ∈ [0, 1] for Example 6.1.
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Table 3. The comparison of methods with ς = 1.25, α = 1.5, M = 30 at τ = 1 at various ∆τ , for
Example 6.1.

∆τ L2 Error ROC L∞ Error ROC CPU
Projected QBS [34] CTBS [41] Projected QBS [34] CTBS [41] time

0.1 1.900e-3 8.338e-3 2.830e-3 – 2.700e-3 1.297e-2 4.078e-3 – 0.18

0.05 1.000e-3 4.188e-3 1.369e-3 0.93 1.500e-3 6.501e-3 1.969e-3 0.85 0.27

0.01 2.159e-4 7.816e-4 2.631e-4 0.95 3.112e-4 1.216e-3 3.767e-4 0.98 0.97

0.005 1.035e-4 3.479e-4 1.332e-4 1.06 1.514e-4 5.454e-4 1.899e-4 1.04 2.03

0.001 1.186e-5 2.003e-5 3.271e-5 1.37 2.053e-5 3.397e-5 4.544e-5 1.24 15.5

Table 4. The comparison of the projected and existing methods with ς = 1.25, α = 1.5, ∆τ = 0.001
at τ = 1 at various grid sizes, for Example 6.1.

M
L2 Error

ROC
L∞ Error

ROC CPU time
Projected QBS [34] CTBS [41] Projected QBS [34] CTBS [41]

5 5.754e-04 3.798e-03 3.280e-04 – 8.393e-04 4.929e-03 5.238e-04 – 3.29

10 1.275e-04 8.222e-04 1.101e-04 2.17 1.886e-04 1.096e-03 1.151e-04 2.15 5.90

15 4.547e-05 3.043e-04 5.840e-05 2.54 7.179e-05 4.080e-04 8.326e-05 2.38 8.11

20 1.855e-05 1.302e-04 4.331e-05 3.11 3.101e-05 1.717e-04 6.58e-05 2.91 10.49

25 1.619e-05 5.307e-05 3.641e-05 2.46 1.619e-05 7.052e-05 5.063e-05 2.91 13.54

illustrates RMS and L∞ errors withM =30, for ∆τ = 0.05, 0.025, 0.02, 0.0125, and 0.01, and fractional orders α =1.4
and 1.95 at τ =1. This table confirms that error norms are very small and decrease with increasing temporal size.
The 2D graph of exact and numerical v(ξ, τ) with α =1.95, M =15, ∆τ =0.001 at τ =0.5, 0.75, and 1 are shown in
Figure 5. Figure 6(a) indicates the 2D profile of the absolute errors with M =30, ∆τ =0.001 at τ =1 for fractional
order α =1.5, 1.75, and 1.95, while Figure 6(b) illustrates RMS, L2, and L∞ errors with α =1.95 and ∆τ =0.005
for various grid sizes at τ =1. It can be viewed from Figures 6(a) and 6(b) that these errors are in order (≈ 10−4).
Figure 7(a) exhibits the 3D profile of exact and numerical v(ξ, τ), together with absolute errors of α =1.95, M =10,
and ∆τ =0.025 for τ ∈ [0, 1], while Figure 7(b) describes it with α =1.95, M =40, and ∆τ =0.01 for τ ∈ [0, 1]. A
remarkable accord is recovered between exact and numerical solutions.

Table 5. The assessment of projected and existing methods in the period of absolute error with
α = 1.95, ∆τ = 0.01 at τ = 1 for Example 6.2.

M = 10
ξ Projected method CPU time CTBS [41] Sinc-Legendre [28]
0.0 0 0.419 0 0
0.1 2.087e-05 0.409 1.52e-04 2.906e-04
0.2 4.275e-05 0.399 2.66e-04 3.789e-04
0.3 6.351e-05 0.406 3.45e-04 3.816e-04
0.4 7.843e-05 0.415 3.91e-04 3.641e-04
0.5 8.378e-05 0.405 4.06e-04 3.547e-04
0.6 7.843e-05 0.392 3.91e-04 3.641e-04
0.7 6.351e-05 0.397 3.45e-04 3.816e-04
0.8 4.275e-05 0.400 2.66e-04 3.789e-04
0.9 2.087e-05 0.406 1.52e-04 2.906e-04
1.0 0 0.395 – 0
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Table 6. The error norms of the projected method with ς = 0.015, M = 30, and various ∆τ at τ = 1
for Example 6.2.

∆τ
α = 1.4

CPU (s)
α = 1.95

CPU (s)
RMS L2 L∞ RMS L2 L∞

0.05 1.19e-04 6.72e-04 9.46e-04 0.383 1.55e-04 8.77e-04 1.20e-03 0.400
0.025 5.20e-05 2.95e-04 4.14e-04 0.639 7.09e-05 4.01e-04 5.65e-04 0.603
0.02 3.96e-05 2.24e-04 3.15e-04 0.707 5.22e-05 2.95e-04 4.16e-04 0.721

0.0125 2.18e-05 1.23e-04 1.73e-04 1.115 2.24e-05 1.27e-04 1.80e-04 1.044
0.01 1.62e-05 9.17e-05 1.29e-04 1.343 1.19e-05 6.72e-05 9.64e-05 1.291

Figure 5. The exact and numerical v(ξ, τ) with α =1.95, M =15, ∆τ =0.001 at τ =0.5, 0.75, and 1
for Example 6.2.

(a) (b)

Figure 6. The 2D errors graph for Example 6.2 with (a) M =30, ∆τ =0, and α =1.5, 1.75, and 1.95
(b) α =1.95 and ∆τ =0.005 at τ =1 for Example 6.2.
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(a) M = 10, ∆τ = 0.025.

(b) M = 40, ∆τ = 0.01.

Figure 7. The 3D profile of exact numerical v(x, t) and absolute error for α = 1.95, τ ∈ [0, 1], with
(a) M = 10, ∆τ = 0.025 and (b) M = 40, ∆τ = 0.01 (Example 6.2).

Example 6.3. Now, we consider the TFT Eq. (2.1) with λ1 = λ2 = λ3 =1 in [0,1] together with the exact solution
v(ξ, τ) = τα tan ξ. The analogous source function is specified by f(ξ, τ) = α(1 + τ) tan ξ Γ(α)− 2τα tan3 ξ − τα tan ξ.
We fix the tension parameter ς =0.15 for this example. Table 7 compares the projected and the CTBS method [41] in
terms of RMS and L2 errors with tension parameter ς =0.15 and fractional order α =1.5 for ∆τ =0.01 and various M
at τ=1, while Table 8 exhibits it for M = 40 with various values of ∆τ . These tables show that the obtained results
are much better than ref. [41]. Table 9 demonstrates the RMS, L2, and L∞ errors of the projected method with
ς =0.15, ∆τ =0.001 at τ =1 for fractional orders α =1.6 and 1.8, and various grid sizes. One can see that error norms
are decreasing on increasing grid sizes increase. Figure 8 displays the absolute error with ς =0.15, α =1.5, M =40 at
τ=1 for ∆τ=0.01, 0.005, 0.0025, and 0.00125, whereas Figure 9 exhibits the 3D appearance of exact and numerical
v(ξ, τ), and abs. errors for fractional orders α =1.5, 1.75, and 1.95 with ς =0.15, M =20, ∆τ =0.002, and τ ∈ [0, 1].
It can be viewed from Figures 8 and 9 that the abs. errors are in order (≈ 10−3).

7. Conclusion

This work proposes a new collocation structure based on CUETTB-spline functions to approximate the Caputo TFT
equation. This scheme is used for discretizing spatial derivatives, while the time-fractional derivative is discretized by
Caputo’s definition. The three examples have been considered to justify the accuracy and competence of the established
method. It has been stated that the projected method provides superior results than those in [20, 34, 37, 41]. The
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Table 7. Comparison of the projected and CTBS methods with ς = 0.15, α = 1.5, ∆τ = 0.01 for
various M at τ = 1 for Example 6.3.

M
RMS L2 CPU

Projected Method CTBS [41] Projected Method CTBS [41] time
20 2.9695e-04 2.0100e-03 1.4000e-03 2.0593e-03 1.026
40 1.6599e-04 1.6212e-03 1.1000e-03 1.6414e-03 1.813
80 1.1017e-04 1.5285e-03 9.9771e-04 1.5381e-03 3.330
160 7.6854e-05 1.5076e-03 9.7821e-04 1.5123e-03 7.241

Table 8. Comparison of the projected and CTBS methods with ς = 0.15, α = 1.5 for M = 40 and
various ∆τ at τ = 1 for Example 6.3.

∆t RMS L2 CPU time
Projected method CTBS [41] Projected method CTBS [41]

0.0125 2.0391e-04 1.8119e-03 1.3000e-03 1.8344e-03 1.414
0.0100 1.6599e-04 1.6212e-03 1.1000e-03 1.6414e-03 1.783
0.00125 3.4666e-05 6.4542e-04 2.2472e-04 6.5344e-04 20.538
0.0010 3.1001e-05 1.5285e-03 2.0102e-04 1.5285e-03 28.635

Figure 8. The absolute error with ς =0.15, α =1.5, M =40 at τ=1 for different ∆τ for Example 6.3.

Table 9. The error norms of the projected method with ς = 0.15, ∆t = 0.001 at τ = 1 for Example 6.3.

α = 1.6 α = 1.8
M RMS L2 L∞ RMS L2 L∞ CPU time
10 6.272e-04 2.200e-03 3.200e-03 5.356e-04 1.900e-03 2.800e-03 8.009
15 2.631e-04 1.100e-03 1.600e-03 2.102e-04 8.682e-04 1.300e-03 11.609
20 1.514e-04 7.110e-04 1.000e-03 1.121e-04 5.266e-04 7.975e-04 14.690
25 1.036e-04 5.386e-04 7.726e-04 7.111e-05 3.698e-04 5.571e-04 18.248
30 7.871e-05 4.455e-04 6.364e-04 5.036e-05 2.850e-04 4.290e-04 21.685
35 6.402e-05 3.896e-04 5.547e-04 3.846e-05 2.340e-04 3.518e-04 25.179
40 5.451e-05 3.534e-04 5.020e-04 3.101e-05 2.010e-04 3.019e-04 31.320
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(a) First case.

(b) Second case.

(c) Third case.

Figure 9. The 3D profile of exact numerical V(ξ, τ) and absolute error with α = 1.95, τ ∈ [0, 1].

graphical outcomes are also displayed, which validate the accuracy of the proposed scheme. As we can see, Figures
1 and 5 are clear representations of the smoothness between numerical and exact solutions, while Figures 2, 3, 6–9
show that absolute and RMS errors are very low (≈ 10−3 to 10−4). It is established that the projected method is
unconditionally stable for the discretized system of the TFT equation. It is also found that the convergence of the
projected method is of O(h2, τ2−α). The numerical analysis proves that the projected method is straightforward and
yields very accurate results.
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finite elements, An. Univ. Vest Timiş. Ser. Mat.-Inf., 57(2) (2019), 131–144.
[36] V. A. Vyawahare and P. Nataraja, Fractional order modelling of neutron transport in a nuclear reactor, Appl.

Math. Model., 37(23) (2013), 9747–9767.
[37] L. Wei, H. Dai, D. Zhang et al., Fully discrete local discontinuous Galerkin method for solving the fractional

telegraph equation, Calcolo, 51 (2014), 175–192.
[38] G. Wang and M. Fang, Unified and extended form of three types of splines, J. Comput. Appl. Math., 216 (2008),

498–508.
[39] Y. L. Wang, M. J. Du, C. L. Temuer, and D. Tian, Using reproducing kernel for solving a class of time fractional

telegraph equation with initial value conditions, Int. J. Comput. Math., 95 (2018), 1609–1621.
[40] X. Xu and D. Xu, Legendre wavelets direct method for the numerical solution of time-fractional order telegraph

equations, Mediterr. J. Math., 15 (2018), 27.
[41] M. Yaseen and M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional

telegraph equation, Appl. Math. J. Chin. Univ., 35 (2020), 359–378.


	1. Introduction
	2. Problem Formulation
	3. CUETTB-spline basis functions
	4. Discretization of the problem
	5. Stability analysis
	6. Computational Results
	7. Conclusion
	Funding
	Availability of data and materials
	Declarations:
	Competing interests
	Authors' contributions
	Acknowldegmnt 
	References



