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Abstract

This study looks at what exact soliton solutions (ESSs) mean in the nonlinear Jaulent-Miodek Hierarchy (NLJMH)

equation, which is important because of its energy-related Schrödinger potential and its uses in areas like op-

tics, physics, soliton theory, geophysics, fluid dynamics, signal processing, plasma physics, and condensed matter
physics. Solitons, as fundamental nonlinear wave structures, perform a crucial role in understanding the dynamic

behavior of complex systems that are governed by the NLJMH equation. Through rigorous mathematical analysis
and symbolic computation techniques, we uncover a range of ESSs, including periodic traveling waves, bright and

dark solitons, kink solitons, and their combinations. Each soliton type manifests distinct physical characteristics

and behaviors, influencing various phenomena in nonlinear sciences and beyond. Our investigation focuses on elu-
cidating the underlying physical significance of these soliton solutions. By analyzing their profiles, velocities, and

interactions, we aim to provide insights into how these nonlinear waves propagate, interact, and impact physical

structures. This research contributes to advancing the theoretical comprehension of soliton dynamics within the
NLJMH equation framework, highlighting their relevance in fields such as fluid dynamics, plasma physics, optical

fibers, and other areas where nonlinear wave phenomena are prevalent. The systematic application of advanced

computational tools and rigorous analytical techniques has proven instrumental in uncovering a diverse spectrum
of soliton solutions within the NLJMH equation. These findings underscore the method’s effectiveness in generat-

ing precise and comprehensive insights into complex nonlinear phenomena. The ability to accurately predict and

analyze various soliton types, including kink solitons, periodic traveling waves, bright and dark solitons, and their
hybrids, showcases the method’s robustness and versatility. Based on this study, we can conclude that the process

used is highly effective, dependable, productive, and potent for resolving any other nonlinear evolution equations
(NLEEs).

Keywords. The nonlinear JMH equation, mG′/GE, exact soliton solutions, nonlinear evolution equations, nonlinear wave propagation, nonlinear

dynamics, Mathematical Physics.
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1. Introduction

Exact soliton solutions (ESSs) for the nonlinear evolution equations (NLEEs) have been a central area of investiga-
tion for the past couple of decades. Applied nonlinear and physical sciences that include telecommunication systems,
biology, chemistry, heat and sound transfer, physics, engineering, fluid dynamics, computer science, space systems,
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artificial intelligence, population growth, image processing, laser optics, acoustics, plasma and electro mechanics can
all benefit from recognizing how to calculate analytical solutions for nonlinear partial differential equations (NLPDEs).
Solitons, for instance, may represent shallow-water surface waves, such as tidal bores or tsunamis, in fluid dynamics,
contributing to making forecasts of their behavior as well as prospective effects [15]. Solitons are crucial in various
fields, particularly in fiber optics, where they help maintain the arrangement of light pulses over extended distances,
thereby enhancing data transmission reliability and efficiency [16, 17]. They also play a significant role in under-
standing stability within fusion reactors and in energy transmission through plasma [37]. Moreover, soliton solutions
provide insights into the dynamics of protein folding and the movement of nerve impulses in neurons [18]. Given their
importance, developing techniques for finding analytical solutions to NLEEs is vital. However, this task is inherently
challenging due to the complexity of NLPDEs. To address these challenges, researchers have developed several analyt-
ical strategies, including the modified mG′/GE approach [4–6, 8], the auxiliary equation technique [21], the simplest
equation technique [30], the unified approach [22], the SSE approach [10], the F-expansion technique [28], the extended
trial equation method [3], Hirota’s direct technique [38], the spectral Galerkin technique [23], the SGE procedure [9],
the EF method [1], the modify extended auxiliary equation mapping technique [29], Hirota bilinear approach [14], the
extended Fan sub-equation approach [36], the Hirota method [34], generalized tanh–coth method [19, 26] and many
more. These methods have been instrumental in overcoming obstacles in solving NLPDEs.

The examination of nonlinear dispersive wave events gives rise to the Jaulent-Miodek (JM) hierarchy equations,
which are frequently used as models for the propagation of optical pulses in nonlinear media, internal waves in
stratified fluids, shallow water waves, and plasma waves. Because dispersion and nonlinearity are perfectly balanced,
the soliton solutions in these systems are real, localised energy packets that act like particles. Understanding the
nature of these solitons’ movements and interactions facilitates understanding the underlying physical systems, such
as the stability of signals in nonlinear optical fibres or the conservation of mass and momentum in fluids. The JMH
equation is a renowned nonlinear evolution equation (NLEE) with valuable applications across various nonlinear
scientific disciplines [33]. It addresses two-dimensional nonlinear physical phenomena, such as wave propagation in
physics [24]. This equation was first developed in 1976 by Jaulent and Miodek during their investigation of the
relationship between energy-dependent Schrödinger potentials and NLEEs [20]. The JMH equation has been utilized
across numerous fields, including enhancing image and signal processing techniques, modeling financial systems with
fractional dynamics such as stock market volatility, and designing control systems with fractional derivatives [11].
Additionally, it is employed in the study of optical and plasma systems, viscoelastic materials, and fluid flow phenomena
with fractional-order effects [27]. The JMH equation also plays a crucial role in modeling the functioning of biological
neurons [7], among other significant phenomena. The investigation of exact soliton solutions (ESSs) for NLEEs is
a topic of considerable interest. Numerous researchers have employed various methods to discover the ESSs for the
JMH equation. For example, Alzahrani utilized the Optimal auxiliary function method [13], Sahoo and Ray applied
both the tanh method and the mG′/GE process [32]. Hu and Qi employed the exp(−ϕ(z))-extension process [? ],
and Akkilic et al. implemented both the (m + 1)/G′(m + 1)-extension procedure and the comprehensive rational
sine-cosine process [2]. Additionally, Kaya and Sayed used Adomian’s decomposition method [25], Sadat and Kassem
applied the integrating factors method [31], Alshammari et al. utilized both the coupled fractional variational iteration
and Adomian decomposition transformation techniques [12], and Taha and Noorani also applied the mG′/GE [35],
discovering three categories of wave solutions when specific parameter values were considered. In addition to these
approaches, numerous other complex methods have been employed to find the ESSs of the JMH equation. In this
experiment, we obtained forty ESSs of the JMH equation by applying a mG′/GE process. These solutions have been
rigorously analyzed and include kink solitons, periodic traveling waves, anti-kink solitons, bright and dark solitons,
and various combinations thereof. Furthermore, we explored the physical structure of eight of these forty solutions,
which, to the best of our knowledge, have not been addressed in previous analyses.

To comprehend complex physical processes like wave propagation, energy localisation, and nonlinear interactions
in different media, it is crucial to examine accurate soliton solutions in nonlinear evolution equations. The nonlinear
Jaulent–Miodek (JM) hierarchy equation provides a complicated mathematical model for explaining dispersive and
nonlinear events in fluid dynamics, plasma waves, and nonlinear optics. The physical interpretation of soliton solutions
within this hierarchy remains largely unexplored despite its significance. Using the mG′/GE process, the present
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research produces new exact solutions and offers an extensive comprehension of their behaviour and physical meaning.
The study’s value for both theoretical research and practical uses in nonlinear wave dynamics is enhanced by its focus
on both mathematical analysis and understanding their physical meaning.

Our paper is organized as follows:

• Section 2 provides an outline of the modified mG′/GE process.
• Section 3 details the formulation of the nonlinear JMH equation.
• Section 4 presents the mathematical analysis and ESSs of the nonlinear JMH equation.
• Section 5 offers the results and discussion, including graphical and physical explanations of the JMH equation.
• Finally, Section 6 concludes the paper.

2. Outline of the mG′/GE process

We consider the nonlinear evolution equation (NLEE) taken as follows:

Y (Wt,Wx,Wxx,Wyy,Wxyxy, . . .) = 0, (2.1)

In Eq. (2.1), Y is a polynomial task for W (x, y, t) and it’s all derivatives. Currently we expound the key phases of
mG′/GE process.
Phase 1: We study that

W (x, y, t) = W (Φ), Φ = x+ y − ωt, (2.2)

Using Eq. (2.2) into Eq. (2.1), then we find:

Z(−ωW ′,W ′,W ′′,W ′′′, . . . ) = 0, (2.3)

Phase 2: The answer for Eq. (2.3) is given as

W (Φ) =
N∑

i=−N

BiT
i, (2.4)

where T =
(

G′

G + λ
2

)
, |B−N |+ |BN | ̸= 0 and G = G(Φ) fulfills the model

G′′ + λG′ + µG = 0, (2.5)

where Bi(±1,±2,±3, . . . ,±N). From Eq. (2.4), we procure

T ′ = s− T 2, (2.6)

where s = λ2−4µ
4 and s is considered employing λ and µ. So, T fulfills the Eq. (2.6) as follows:

T =
√
s tanh(

√
sΦ), s > 0,

T =
√
s coth(

√
sΦ), s > 0,

T =
1

Φ
, s = 0,

T = −
√
−s tan(

√
−sΦ), s < 0,

T =
√
−s cot(

√
−sΦ), s < 0.
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3. ESSs of nonlinear JMH equation

We consider that the JMH equation:

Ut +
3

4

(
∂−1
x Uyy + U ∂−1

x Uy

)
+

1

2

(
Uyy − 2U3

)
x
= 0. (3.1)

where ∂−1
x is the inverse of ∂x such that ∂−1

x ∂x = ∂x∂
−1
x = 1, and (∂−1

x g)(x) =
∫∞
−∞ g(t)dt is called a decaying

condition. Let us consider

U(x, y, t) = Vx(x, y, t). (3.2)

Using (3.2) in (3.1), we find:

Vxt +
3

4
VxxVy +

1

4
Vxxxx +

3

16
Vyy −

3

2
V 2
x Vxx = 0. (3.3)

We consider wave transformation as

V (x, y, t) = V (Φ), Φ = (x+ y − ωt). (3.4)

Using (3.4) in (3.3), we find:

−ωV ′′ +
3

16
V ′′ +

3

4
V ′′V +

1

4
V ′′′′ − 3

4
(V ′)2V ′′ = 0. (3.5)

Integrate Eq. (3.5) w. r. to Φ, then we obtain:

−16ωV ′ + 6(V ′)2 + 4V ′′′ + 3V ′ − 8(V ′)3 = 0. (3.6)

Let us consider that V ′ = W , then obtain:

−16ωW + 6W 2 + 4W ′′ + 3W − 8W 3 = 0. (3.7)

According to the mG′/GE process, then we get:

W (Φ) = B−1T
−1 +B0T

0 +B1T
1. (3.8)

Substituting Eq. (3.8) into Eq. (3.7), we find:
Case I:

λ = λ, µ =
λ2

4
− 1

16
, ω = −1

4
, B0 =

1

4
, B1 = 0, B−1 = − 1

16
.

Substituting Case I into Eq. (3.8), then we achieve:

U11(x, y, t) = − 1

16

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.9)

U12(x, y, t) = − 1

16

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.10)

U13(x, y, t) = − 1

16
(x+ y − ωt) +

1

4
. (3.11)

U14(x, y, t) = − i

16

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.12)

U15(x, y, t) =
i

16

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.13)
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Case II:

λ = λ, µ =
λ2

4
− 1

16
, ω = −1

4
, B0 =

1

4
, B1 = 0, B−1 =

1

16
.

Similarly, we get:

U21(x, y, t) =
1

16

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.14)

U22(x, y, t) =
1

16

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.15)

U23(x, y, t) =
1

16
(x+ y − ωt) +

1

4
. (3.16)

U24(x, y, t) =
i

16

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
. (3.17)

U25(x, y, t) = − i

16

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))
+

1

4
(3.18)

Case III:

λ = λ, µ =
λ2

4
− 1

16
, ω = −1

4
, B0 =

1

4
, B1 = 1, B−1 = 0.

In the same manner, we obtain:

U31(x, y, t) =

√
λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
. (3.19)

U32(x, y, t) =

√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
. (3.20)

U33(x, y, t) =
1

x+ y − ωt
+

1

4
(3.21)

U34(x, y, t) = −
√
−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
(3.22)

U35(x, y, t) =

√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
(3.23)

Case IV:

λ = λ, µ =
λ2

4
− 1

16
, ω = −1

4
, B0 =

1

4
, B1 = −1, B−1 = 0.

Likewise, it follows that:

U41(x, y, t) = −
√

λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
. (3.24)
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U42(x, y, t) = −
√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
. (3.25)

U43(x, y, t) = − 1

x+ y − ωt
+

1

4
. (3.26)

U44(x, y, t) = −

(
−
√

−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

))
+

1

4
. (3.27)

U45(x, y, t) = −
√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
. (3.28)

Case V:

λ = λ, µ =
λ2

4
+

1

32
, ω = −1

4
, B0 =

1

4
, B1 = 1, B−1 =

1

32
.

Analogously, we derive:

U51(x, y, t) =
1

32

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
, (3.29)

U52(x, y, t) =
1

32

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
, (3.30)

U53(x, y, t) =
1

32
(x+ y − ωt) +

1

x+ y − ωt
+

1

4
, (3.31)

U54(x, y, t) =
i

32

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
, (3.32)

U55(x, y, t) = − i

32

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
. (3.33)

Case VI:

λ = λ, µ =
λ2

4
− 1

64
, ω = −1

4
, B0 =

1

4
, B1 = 1, B−1 =

1

64
.
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Following the same approach, we find:

U61(x, y, t) =
1

64

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.34)

U62(x, y, t) =
1

64

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.35)

U63(x, y, t) =
1

64
(x+ y − ωt) +

1

x+ y − ωt
+

1

4
. (3.36)

U64(x, y, t) =
i

64

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
.

(3.37)

U65(x, y, t) = − i

64

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
.

(3.38)

Case VII:

λ = λ, µ =
λ2

4
− 1

64
, ω = −1

4
, B0 =

1

4
, B1 = −1, B−1 = − 1

64
.

Using a similar method, we have:

U71(x, y, t) = − 1

64

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.39)

U72(x, y, t) = − 1

64

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.40)

U73(x, y, t) = − 1

64
(x+ y − ωt)− 1

x+ y − ωt
+

1

4
(3.41)
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U74(x, y, t) = − i

64

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4

(3.42)

U75(x, y, t) =
i

64

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
.

(3.43)

Case VIII:

λ = λ, µ =
λ2

4
+

1

32
, ω = −1

4
, B0 =

1

4
, B1 = −1, B−1 = − 1

32
.

By a comparable argument, we get:

U81(x, y, t) = − 1

32

(
2√

λ2 − 4µ
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
λ2 − 4µ

2
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.44)

U82(x, y, t) = − 1

32

(
2√

λ2 − 4µ
tanh

(√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
λ2 − 4µ

2
coth

(√
λ2 − 4µ

2
(x+ y − ωt)

)
+

1

4
.

(3.45)

U83(x, y, t) = − 1

32
(x+ y − ωt)− 1

x+ y − ωt
+

1

4
. (3.46)

U84(x, y, t) = − i

32

(
2√

λ2 − 4µ
cot

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

+

√
−(λ2 − 4µ)

2
tan

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
.

(3.47)

U85(x, y, t) =
i

32

(
2√

λ2 − 4µ
tan

(
i

√
λ2 − 4µ

2
(x+ y − ωt)

))

−
√
−(λ2 − 4µ)

2
cot

(√
−(λ2 − 4µ)

2
(x+ y − ωt)

)
+

1

4
.

(3.48)
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4. Results and discussion

Let us explore a comparative analysis of the exact soliton solutions (ESSs) derived using the mG′/GE process
method and the EMRE method [15], focusing on their application to the JMH equation. Both methods are unique
approaches within mathematical physics, each offering distinct features and advantages. In the research by Iqbal et
al. [15], the JMH equation was investigated using the EMRE method, resulting in the identification of thirty solutions.
In contrast, our study employed the mG′/GE process, leading to the discovery of forty distinct ESSs expressed through
hyperbolic, trigonometric, and exponential functions. The solutions we derived in our analysis differ significantly from
those obtained by Iqbal et al. [15]. A key distinction lies in the auxiliary equation utilized in our method, which
enabled us to uncover new types of solutions that were not accessible through methods like the EMRE approach. This
highlights the versatility and effectiveness of the mG′/GE process in generating novel and diverse solutions for the
JMH equation.

In this section, we delve into comprehensive discussions comparing the solutions that we have derived. Additionally,
we present graphical representations characterized by various free parameters and showcasing the following aspects of
our obtained solutions of JMH equation by applying mG′/GE process. Various types of 3D, contour and 2D plots
illustrating the derived solutions are generated using MATLAB software, allowing for a comprehensive analysis of
their nature. To emphasize this point, by assigning different values to the free parameters we have generated plots
depicting the solutions of the Equations (3.9), (3.10), (3.14), (3.15), (3.32), (3.33), (3.47) and (3.48). This explorations
showcases different types of exact soliton solutions including kink solitons, bright and dark solitons, periodic traveling
waves, and their combinations. The combinations of different types of parameters utilized in the study may result in
the emergence of diverse soliton solutions. The solution (3.9) describes a solution with dark soliton, where parameters
λ = 0.1, µ = −0.06 , ω = −0.25 , t = 0.001 are employed. This solution is illustrated in Fig. ??(1a–1c): 3D, contour,
and 2D (at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. Next, Figure 1(1d–1f)
illustrates a singular kink soliton as 3D, contour, and 2D (at different time levels) plots, respectively, for the limits
−10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 1. Then, Figure 1(1g–1i)
illustrates 3D, contour, and 2D (at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10,
using parameters λ = 0.01, µ = −0.0625, ω = −0.25, and t = 10. And Figure 1(1j–1l) illustrates 3D, contour, and 2D
(at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using parameters λ = 0.1,
µ = −0.06, ω = −0.25, and t = 100. The expression (3.10) represents a solution with an anti-kink shape, observed
for the parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 0.01. This solution is illustrated in Figure ??(2a–2c): 3D,
contour, and 2D (at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. Next, Figure
2(2d–2f) illustrates 3D, contour, and 2D (at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10,
−10 ≤ y ≤ 10, using parameters λ = 0.01, µ = −0.0625, ω = −0.25, and t = 1. Then, Figure 2(2g–2i) illustrates
3D, contour, and 2D (at different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using
parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 10. And Figure 2(2j–2l) illustrates 3D, contour, and 2D (at
different time levels) plots, respectively, for the limits −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using parameters λ = −0.01,
µ = −0.0625, ω = −0.25, and t = 100. The solution (3.14) describes the feature of the bright soliton, where the
parameters used are λ = 0.1, µ = −0.06, ω = −0.25, and t = 0.01. This solution is illustrated in Figure 3(3a–3c) by
the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10.
Next, Figure 3(3d–3f) illustrates the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain
−10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.01, µ = −0.0625, ω = −0.25, and t = 1. Then, Figure
3(3g–3i) illustrates the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10,
−10 ≤ y ≤ 10, using the parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 10. And Figure 3(3j–3l) illustrates
the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10,
using the parameters λ = −0.1, µ = −0.06, ω = −0.25, and t = 100. The anti-kink soliton, depicted in Figure 4, is
represented by the solution (3.15), where the parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 0.01 are employed.
This solution is illustrated in Figure 4(4a–4c) by the 3D, contour, and 2D (at different time levels) plots, respectively,
for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. Next, Figure 4(4d–4f) represents the 3D, contour, and 2D (at different
time levels) plots, respectively, for the same domain, using the parameters λ = 0.1, µ = −0.06, ω = −0.25, and t = 1.
Then, Figure 4(4g–4i) illustrates the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain
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−10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.01, µ = −0.0625, ω = −0.25, and t = 20. Furthermore,
Figure 4(4j–4l) presents the 3D, contour, and 2D (at different time levels) plots, respectively, for the same domain,
using the parameters λ = 0.01, µ = −0.0625, ω = −0.25, and t = 150. The anti-kink soliton, as depicted in Figure
5, is represented by the solution (3.32), where the parameters λ = 0.01, µ = 0.0313, ω = −0.25, and t = 0.01 are
employed. This solution is illustrated in Figure 5(5a–5c) by the 3D, contour, and 2D (at different time levels) plots,
respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. Next, Figure 5(5d–5f) showcases the 3D, contour, and
2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters
λ = 0.1, µ = 0.0338, ω = −0.25, and t = 1. Then, Figure 5(5g–5i) shows the 3D, contour, and 2D (at different time
levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.01, µ = 0.0313,
ω = −0.25, and t = 15. And Figure 5(5j–5l) illustrates the 3D, contour, and 2D (at different time levels) plots,
respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.01, µ = 0.0313, ω = −0.25,
and t = 150. The anti-kink soliton represented in Figure 6 is expressed by the solution (3.33), where the parameters
λ = 0.01, µ = 0.0313, ω = −0.25, and t = 0.01 are employed. This solution is illustrated in Figure 6(6a–6c) by the 3D,
contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. Next, Fig
6(6d–6f) explores the 3D, contour, and 2D (at different time levels) plots, respectively, for the same domain, using the
parameters λ = 0.1, µ = 0.0338, ω = −0.25, and t = 1. Then, Figure 6(6g–6i) illustrates the 3D, contour, and 2D (at
different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.1,
µ = 0.0338, ω = −0.25, and t = 15. Finally, Figure 6(6j–6l) manifests the 3D, contour, and 2D (at different time
levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.01, µ = 0.0313,
ω = −0.25, and t = 150. The anti-kink soliton, depicted in Figure 7, is expressed by the solution (3.47), where the
parameters λ = 0.01, µ = 0.0313, ω = −0.25, and t = 0.01 are employed. This solution is illustrated in Figure 7(7a–7c)
by the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10.
Next, Figure 7(7d–7f) is plotted as the 3D, contour, and 2D (at different time levels) plots, respectively, for the same
domain, using the parameters λ = 0.5, µ = 0.0938, ω = −0.25, and t = 0.1. Then, Figure 7(7g–7i) illustrates the 3D,
contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the
parameters λ = 0.05, µ = 0.0319, ω = −0.25, and t = 10. Finally, Figure 7(7j–7l) expresses the 3D, contour, and 2D
(at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters λ = 0.5,
µ = 0.0938, ω = −0.25, and t = 100. The anti-kink soliton, manifested in Figure 8, is expressed by the solution (3.48),
where the parameters λ = 0.05, µ = −0.06, ω = −0.25, and t = 0.001 are employed. This solution is illustrated in
Figure 8(8a–8c) by the 3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10,
−10 ≤ y ≤ 10. Figure 8(8d–8f) illustrates the 3D, contour, and 2D (at different time levels) plots, respectively, for
the same domain, using the parameters λ = 0.5, µ = −0.06, ω = −0.25, and t = 0.1. Figure 8(8g–8i) illustrates the
3D, contour, and 2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using
the parameters λ = 0.05, µ = −0.06, ω = −0.25, and t = 10. Finally, Figure 8(8j–8l) illustrates the 3D, contour, and
2D (at different time levels) plots, respectively, for the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, using the parameters
λ = 0.05, µ = −0.06, ω = −0.25, and t = 100.

5. Conclusion

In this study, we have effectively applied mG′/GE process to demonstrate its practical and efficient approach in
solving the JMH equation. We have successfully derived forty novel exact soliton solutions that capture a diverse
range of solitary wave phenomena. These include dark solitons, kink solitons, bright solitons, anti-kink solitons and
periodic solitons solutions. The JM hierarchy equation’s exact soliton solutions have significant physical implications.
These soliton solutions approximate the consistent structures found in genuine physical systems, such as optical fibres
or shallow water channels, where their presence is necessary for maintaining wave integrity over long distances. Our
findings establish a deeper physical understanding of nonlinear wave propagation by demonstrating how changes in
model parameters affect soliton behaviour. Future studies might expand these findings for experimental validations
or engineering system applications. Detailed graphical representations, including 3D, 2D, and contour plots, illustrate
the intricate behavior of these new soliton solutions. These visualizations highlight how various parameters influence
their traveling behavior, offering deeper understandings into the dynamics of the solutions. The mG′/GE process
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 1. Shapes for the equation (3.9).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 2. Shapes for the Equation (3.10).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 3. Shapes for the Equation (3.14).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 4. Shapes for the Equation (3.15).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 5. Shapes for the Equation (3.32).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 6. Shapes for the Equation (3.33).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 7. Shapes for the Equation (3.47).
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(a) 3D plot (b) Contour plot (c) 2D plot

(d) 3D plot (e) Contour plot (f) 2D plot

(g) 3D plot (h) Contour plot (i) 2D plot

(j) 3D plot (k) Contour plot (l) 2D plot

Figure 8. Shapes for the Equation (3.48).
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reveals distinct dynamic behaviors of the model, as depicted in Figures 1-8. These figures provide a comprehensive
understanding of well-defined regions within nonlinear partial differential equations (NLPDEs). One of the significant
advantages of this approach is its ability to generate solutions more rapidly compared to alternative methods, making
it a highly efficient tool in this field. The mG′/GE process is not only stable and efficient but also yields unique exact
solutions that contribute to the broader understanding of NLPDEs. These solutions are valuable for advancing the
study of NLPDEs, and our future work will explore further extensions of this technique to other related problems.
It’s important to recognise some limitations, even though the study effectively uses the mG′/GE expansion method
to find and analyse several correct soliton solutions of the nonlinear Jaulent–Miodek hierarchy equation. Based on
idealised assumptions and precise solutions, the study is entirely theoretical. Dissipative effects, external forces, and
perturbations that could occur in real-world physical systems are not considered by the model. Furthermore, the
stability and interaction dynamics of the derived solutions remain unexplored. To improve the relevance in real-world
scenarios, future studies may tackle these problems by experimental validation, perturbation analysis, or numerical
simulations.
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