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Abstract

The fundamental aim of the present article is to numerically solve the non-linear Equal-Width Wave (EW) equa-
tion. For this purpose, the nonlinear term appearing in the equation is firstly linearized by Rubin-Graves type

approach. After that, to reduce the equation into a solvable discretized linear algebraic equation system which is

the essential part of this study, the Crank-Nicolson type approximation and cubic Hermite collocation method are
respectively applied to obtain the integration in the temporal and spatial domain directions. To demonstrate how

good the offered method generates approximate numerical results, six experimental problems exhibiting different

wave profiles known as the motion of single, interacting two and three, the Maxwellian initial, undular bore and
colliding soliton waves given with different initial and boundary conditions of the EW equation will be taken into

consideration and solved. Since only the first model problem has an exact solution among these solitary waves,

to measure error magnitudes used widely mean squared and maximum norms between analytical and approxi-
mate solutions are calculated and also compared with those from other existing works available in the literature.

Furthermore, the three conservation constants known as mass, moment and energy quantities are also computed

and presented throughout the wave simulations with increasing time. In addition, a tabular comparison of the
newly computed norms and conservation constants show that the current scheme produces better and compatible

solutions than those of the most of the previous works with the same parameters. Apart from those, the stability
analysis for this present scheme has been illustrated using the von Neumann method.

Keywords. Equal width wave equation, Cubic hermite collocation method, Solitary waves, Stability analysis, Crank-Nicolson type approximation,

Rubin-Graves type linearization.
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1. Introduction

Most natural phenomena are generally stated by algebraic, integral or differential equations. Non-linear evolution
equations are such a commonly and widely utilized around us in order to explain various phenomena in several areas
of sciences, however they are taken for granted. When those types of phenomena are investigated in detail, it is seen
that most of the nonlinear phenomena which have a crucial role in mathematics and science are generally expressed by
partial differential equations which are non linear (PDEs). Most of the time, it is usually hard and also troublesome to
deal with and find exact solutions of initial and/or boundary value problems consisting of PDEs. Actually, scientists
agree that there is no such a method, scheme or technique yet, it is necessary to deal with almost every type of those
equations in itself and solve it. Because of this reason, numerical solutions are usually preferred instead of their exact
ones. Due to this fact, most of the scientists turned their attention to the numerical techniques and methods for
finding out approximate solutions of those problems. One of such equations is widely known as EW equation. This
equation is usually seen as an another way of defining of Korteweg-de Vries (KdV) equation. The equal width wave
equation was firstly proposed by Morrison et al. [32] and is utilized as an alternative way of defining KdV equation
and presented as follows

Ut + UUx − µUxxt = 0, (1.1)
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in which µ > 0.
There have been several analytical and numerical manuscripts about Eq. (1.1) having solitary like solutions and

illustrates an equilibrium condition among nonlinear and dispersive effects arising inheritenly from the physical phe-
nomena. Some studies on analytical solutions of Eq. (1.1) can be found in [1, 6, 29, 34]. Since Eq. (1.1) has analytical
solutions for only a limited number of initial and boundary conditions, scientists are often focused on seeking approxi-
mate numerical solutions. Some of the studies carried out in this sense are as follows: Yağmurlu and Karakaş [44] have
found approximate solutions of the equation using cubic trigonometric collocation finite element method (FEM) by a
linearization of Rubin-Graves type. Among others, Haar wavelet method[19], collocation method [7], Petrov-Galerkin
method [17], least-squares method [46], radial base functions using pseudo-spectral method [43], linearized implicit
finite-difference technique [13], lumped Galerkin technique [12], explicit finite difference schemes [36], multi-quadric
quasi-interpolation technique [10] and fully implicit finite difference scheme [20] are used in order to get numerical
solutions of the equation. Lakestani [28] has presented a numerical technique based on the finite difference and col-
location methods for the solution of Korteweg–de Vries (KdV) equation. Lubo ve Duressa [30] have concerned with
the numerical treatment of delay reaction-diffusion with the Dirichlet boundary condition. Lakestani and Dehghan
[27] have presented a numerical technique based on the finite difference and collocation methods is presented for the
solution of generalized Kuramoto–Sivashinsky (GKS) equation. Nemati Saray et al. [42] have proposed a numerical
method based on the Crank–Nicolson scheme and the Tau method for solving nonlinear Klein–Gordon equation.

The current scheme to be used in this study is a mixture of the orthogonal collocation method and FEM, where
the cubic hermite polynomials have been used as a trial function. Since these polynomials satisfy the continuity
conditions for trial functions and their several order derivatives at nodes, they produce solutions with continuous
derivatives throughout the domain of the problem.

In the present method, the solution region is firstly split in a various number of elements, and next orthogonal
collocation is used in each one of these elements, setting the residue equal to zero at two inner mesh points. Nodal
points have a key act during the discretization of the equation with respect to x. For the present method, the
roots of orthogonal polynomials such as the second degree Legendre and Chebyshev polynomials are usually taken
as collocation points. Arora et al. [5] have used the roots of Legendre polynomials at interior collocation points and
illustrated that those polynomials present results having less error than Chebyshev polynomials. In addition, they
observed that while Chebyshev polynomials produce better results only at cups, Legendre polynomials produce better
solutions over the solution domain as well as at the cups. Recently, Kutluay et al. [26] have successfully applied
collocation finite element method with cubic Hermite basis functions to generate more precise approximate numerical
solutions of the heat conduction problem.

In this work, we will present simulations and approximate numerical solutions of Eq. (1.1) using cubic Hermite
B-spline based on collocation technique with the help of Crank-Nicolson type approximation. Truly, the basic idea
underlying the collocation technique with various B-splines is generally utilized to achieve approximate solutions of
non-linear PDEs. Several scientists have used the collocation method based on several bases like classical B-splines,
exponential and radial base functions and trigonometric B-splines. Regarding the article itself and its details, one can
refer to the articles [3, 4, 15, 16, 18, 21–25, 31, 33, 45] and the references in it.

The present paper has been divided into 7 sections. Section 1 is an introduction to the Cubic Hermite Collocation
Method (CHCM). A short explanation of the EW equation is presented in the second section. Sections 3 and 4 detail
the implementation of the proposed scheme. Section 5 is about examining the stability of the numerical scheme.
Section 6 is devoted to a tabular comparison of the approximate solutions and simulations found by solving six test
problems using the present method. The last section, which is section 7, is dedicated to a brief conclusion with a
future work.

2. Implementation of the method

In this article, the following EW equation is considered

Ut + UUx − µUxxt = 0, −∞ < x < ∞,

having the boundary conditions U → 0 when x → ±∞.
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2.1. Discretization in spatial variable direction. For approximate evaluation of any initial and boundary value
problem, as in general, consider that spatial domain is chosen a finite interval as [a, b] ⊂ Rand then is split into N
equal length elements at xj (j = 1(1)N + 1) so that a = x1 < x2 < · · · < xj−1 < xj < xj+1 < · · · < xN < xN+1 = b
where h = xj+1 − xj .

During the numerical computations of the problems, since the above mentioned pyhsical boundary conditions are
going to be sought in the finite interval x ∈ [a, b] in Numerical Examples Section, the suitable conditions at the
boundaries are going to be used as{

U(a, t) = U(b, t) = 0,

Ux(a, t) = Ux(b, t) = 0.
(2.1)

The cubic hermite base functions Hj (j = 1(1)N + 1) are taken as [18]

H2j−1 (x) =
1

h3


(x− xj−1)

2
[3h− 2 (x− xj−1)] , xj−1 ≤ x ≤ xj ,

[h− (x− xj)]
2
[h− 2 (x− xj)] , xj ≤ x ≤ xj+1,

0, otherwise,

(2.2)

H2j (x) =
1

h3


−h (x− xj−1)

2
[h− (x− xj−1)] , xj−1 ≤ x ≤ xj ,

h (x− xj) [h+ (x− xj)]
2
, xj ≤ x ≤ xj+1,

0, otherwise.

(2.3)

An approximation to the exact solution U(x, t) denoted by UN (x, t) is sought in terms of third degree Hermite basis
functions given by Equations (2.2)− (2.3)

U(x, t) ≈ UN (x, t) =
N∑
j=1

aj+2k−2 (t)Hji(x), (2.4)

in which a’s are time dependent coefficients to be determined which is essential part of this work, the i′s (i = 1 and
i = 2) are inner collocation points xi and k denotes the element number . If one uses the second order Legendre
quadrature points ηji for each subinterval [xj , xj+1] , under this condition the Legendre quadrature nodal points now
become

ηji =
xj−1 + xj

2
+ (−1)

i hj

2
√
3
, 1 ≤ i ≤ 2, 2 ≤ j ≤ N + 1. (2.5)

If the following roots of the shifted Legendre polynomial are used in Eq. (2.5)

ξ1 =
1

2

(
1 +

1√
3

)
, ξ2 =

1

2

(
1− 1√

3

)
,

one gets

ηj1 − xj

hj
= −ξ1,

ηj2 − xj

hj
= −ξ2.

However, when one uses Chebyshev polynomials, the following roots

ξ1 =
1

2

(
1 +

1√
2

)
, ξ2 =

1

2

(
1− 1√

2

)
,

are obtained. In this article, both Legendre and Chebyshev polynomial roots will be utilized for the approximate
calculations.

In this method, after discretization, a new coordinate variable ξ is defined in any typical element [xj , xj+1] such
that ξ = (x − xj)/h. Thus, the variable x changes in the range [xj , xj+1], while the new variable ξ changes in the
range of [0, 1]. Thus using the transformation x = hξ + xj , the following equations are obtained
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H1 (ξ) = (1− ξ)
2
(1 + 2ξ) , H2 (ξ) = (1− ξ)

2
ξh

H3 (ξ) = ξ2 (3− 2ξ) , H4 (ξ) = ξ2 (ξ − 1)h,

A1 (ξ) = 6ξ2 − 6ξ, A2 (ξ) =
(
1− 4ξ + 3ξ2

)
h

A3 (ξ) = 6ξ − 6ξ2, A4 (ξ) =
(
3ξ2 − 2ξ

)
h

B1 (ξ) = 6(2ξ − 1), B2 (ξ) = 2 (3ξ − 2)h

B3 (ξ) = 6(1− 2ξ), B4 (ξ) = 2 (3ξ − 1)h.

Therefore, the trial function over the kth element is obtained as

UN (x, t) =
N∑
j=1

aj+2k−2 (t)Hji(x).

The trial functions with their 1st and 2nd order derivatives at the collocation points in terms of local variable ξ are
defined as follows

UN (ξ, t) =

4∑
j=1

aj+2k−2 (t)Hj (ξ)

= a2k−1H1 (ξ) + a2kH2 (ξ) + a2k+1H3 (ξ) + a2k+2H4 (ξ)

U
′

N (ξ, t) =
1

h

4∑
j=1

aj+2k−2 (t)Aj (ξ)

=
1

h
[a2k−1A1 (ξ) + a2kA2 (ξ) + a2k+1A3 (ξ) + a2k+2A4 (ξ)]

U
′′

N (ξ, t) =
1

h2

4∑
j=1

aj+2k−2 (t)Bj (ξ)

=
1

h2
[a2k−1B1 (ξ) + a2kB2 (ξ) + a2k+1B3 (ξ) + a2k+2B4 (ξ)] .

Here Ai and Bi for i = 1(1)4 stand for the 1st and 2nd order derivatives of Hermite basis functions, respectively. If
Eqs. (2.2) and (2.3) are utilized at the nodes, one finds the following approximations

Ui = UN (ξi, t) = a2k−1H1i + a2kH2i + a2k+1H3i + a2k+2H4i,

hU ′
i = U

′

N (ξi, t) = a2k−1A1i + a2kA2i + a2k+1A3i + a2k+2A4i, (2.6)

h2U
′′

i = U
′′

N (ξi, t) = a2k−1B1i + a2kB2i + a2k+1B3i + a2k+2B4i,

where Hji = Hj (ξi), Aji = Aj (ξi) and Bji = Bj (ξi) for i = 1, 2.
Initially, forward finite difference approximation for temporal integration and then collocation FEM utilizing cubic

Hermite B-spline basis functions for spatial integration will be implemented. The implementation of the newly proposed
method using Hermite B-spline basis functions are more effective due to their several crucial properties like low storage
requirement and less manipulations in computer algorithms.

It is worth to note that both of non-linear and linear algebraic equations systems found utilizing any B-spline basis
functions have been usually well-conditioned and let the unknowns quantities be specified quite easily. Furthermore,
when obtaining the approximations by B-splines, one mostly doesn’t come across numerical instability. Apart from
these, the coefficient matrices of the algebraic equation system obtained from Hermite splines are comprised of zero
input and at the same time easier to be applied on digital computers.
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2.2. Discretization in time variable direction. Now we are ready to discretize Eq. (1.1) given by

Ut + UUx − µUxxt = 0.

To do so, first of all, Crank-Nicolson type approximation is applied to Eq. (1.1) in order to get the following discretized
scheme

Un+1 − Un

∆t
+

(UUx)
n + (UUx)

n+1

2
− µ

(Uxx)
n+1 − (Uxx)

n

∆t
= 0. (2.7)

Then, linearizing the nonlinear term (UUx)
n+1

given in Eq. (2.7) by virtue of the Rubin-Graves type approximation
[40]

(UUx)
n+1

= Un+1
x Un + Un+1Un

x − Un
xU

n, (2.8)

and substituting (2.8) into (2.7), one gets the following recursive formula to find next time level unknowns

Un+1(
1

∆t
+

1

2
Un
x ) +

1

2
Un+1
x Un − µ

∆t
U

n+1

xx =
1

∆t
Un − µ

∆t
Un
xx. (2.9)

When the cubic Hermite base functions and their derivatives given in Eq. (2.6) are used in Eq. (2.9), the following
iterative formula is obtained[

an+1
2k−1H1i + an+1

2k H2i + an+1
2k+1H3i + an+1

2k+2H4i

] [ 1

∆t
+

an
2k−1A1i + an

2kA2i + an
2k+1A3i + an

2k+2A4i

2h

]
+

[
an+1
2k−1A1i + an+1

2k A2i + an+1
2k+1A3i + an+1

2k+2A4i

h

] [
an
2k−1H1i + an

2kH2i + an
2k+1H3i + an

2k+2H4i

2

]

− µ

∆t

[
an+1
2k−1B1i + an+1

2k B2i + an+1
2k+1B3i + an+1

2k+2B4i

h2

]

=

[
an
2k−1H1i + an

2kH2i + an
2k+1H3i + an

2k+2H4i

∆t

]
− µ

∆t

[
an
2k−1B1i + an

2kB2i + an
2k+1B3i + an

2k+2B4i

h2

]
(2.10)

in which T is being the desired final time, ∆t = T/M and tn = n∆t (n = 1(1)M). From Eq. (2.10), a discretized
linear algebraic system of equations is obtained. The newly obtained equations are recursive relationships in nature
including element parameters vector an = (an1 , ..., a

n
2N+1, a

n
2N+2) in which tn = n∆t, n = 1(1)M till the desired time

T . When the boundary conditions given in Eq. (2.1) are used and the parameters an1 and an2N+1 in Eq. (2.10) are
eliminated as stated following: Using the left boundary condition U(x0, t) = an1H11 + an2H21 + an3H31 + an4H41 = 0,
since H11 ̸= 0 and H21 = H31 = H41 = 0, the condition an1 = 0 is found. In a similar way, using the right boundary
condition U(xN , t) = an2N−1H12 + an2NH22 + an2N+1H32 + an2N+2H42 = 0, since H32 ̸= 0 and H12 = H22 = H42 = 0,
the condition an2N+1 = 0 is found.

Finally, one gets a new uniquely solvable algebraic equation system as

Lan+1= Ran, (2.11)

where L and R represent diagonal band matrices of order 2N × 2N , an and an+1 are known and unknown column
matrices of order 2N × 1, respectively.

The unknown values ai (i = 1(1)2N) in Eq. (2.11) are found and the numerical results of EW equation at the next
time level are calculated. This iterative procedure is made again and again for tn = n∆t (n = 1(1)M) till the desired
time T . To be able to initiate the iteration procedure, the initial vector a0 having the elements ai0 (i = 1(1)2N) needs
to be calculated. This initial vector has been computed with the help of the initial condition.

2.3. The initial state. The vector a0 given at the initial time is found using the initial and also boundary conditions.
Thus, the approximate solution UN (x, t) given by Eq. (2.4) at t = 0 is written as

U(x, t) ≈ UN (x, t) =
N∑
j=1

a0j+2k−2 (t)Hji(x),
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in which the a0m’s are coefficients to be calculated. It is required that the initial numerical approximation UN (x, 0)
satisfies the conditions

UN (xi, 0) = U(xi, 0), i = 0, 1, ..., N,

(UN )x(a, 0) = (UN )x(b, 0) = 0.

Therefore, the following initial matrix system is obtained

Wa0 = b, (2.12)

where

W =



H21 H31 H41

H22 H32 H42

H11 H21 H31 H41

H12 H22 H32 H42

. . .
. . .

. . .
. . .

H11 H21 H31 H41

H12 H22 H32 H42

H11 H21 H41

H12 H22 H42


,

a0 = [a2 a3 a4 . . . , a2N−1 a2N a2N+2]
T ,

and

b = (U(x11, 0), U(x12, 0), U(x21, 0), . . . , U(xN1, 0), U(xN2, 0))
T .

Therefore, the initial solution needed to initialize the iterative scheme (2.11) is found from Eq. (2.12). Then, the
iterative procedure is continued for consecutive time step until the desired finish time T .

3. Stability analysis

This part of the article is devoted to the stability analysis of the linear numerical scheme (2.10) proposed for EW
equation using the von Neumann method. With this purpose in mind, replacing the Fourier mode

anj = ξneijφ, i =
√
−1

into Eq. (2.10), one obtains

ξn+1ei(2j−1)φα1 + ξn+1ei(2j)φα2 + ξn+1ei(2j+1)φα3 + ξn+1ei(2j+2)φα4

= ξnei(2j−1)φβ1 + ξnei(2j)φβ2 + ξnei(2j+1)φβ3 + ξnei(2j+2)φβ4 (3.1)

in which φ = βh, ξ is the amplification multiplication h and β are respectively spatial step size and mode number,
and α′s and β′s are as follows
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α1 = H1i(
1

∆t
+

an2k−1A1i + an2kA2i + an2k+1A3i + an2k+2A4i

2h
)

+A1i(
an2k−1H1i + an2kH2i + an2k+1H3i + an2k+2H4i

2h
)− µ

∆t

B1i

h2
,

α2 = H2i(
1

∆t
+

an2k−1A1i + an2kA2i + an2k+1A3i + an2k+2A4i

2h
)

+A2i(
an2k−1H1i + an2kH2i + an2k+1H3i + an2k+2H4i

2h
)− µ

∆t

B2i

h2
,

α3 = H3i(
1

∆t
+

an2k−1A1i + an2kA2i + an2k+1A3i + an2k+2A4i

2h
)

+A3i(
an2k−1H1i + an2kH2i + an2k+1H3i + an2k+2H4i

2h
)− µ

∆t

B3i

h2
,

α4 = H4i(
1

∆t
+

an2k−1A1i + an2kA2i + an2k+1A3i + an2k+2A4i

2h
)

+A4i(
an2k−1H1i + an2kH2i + an2k+1H3i + an2k+2H4i

2h
)− µ

∆t

B4i

h2
,

β1 =
H1i

∆t
− µ

∆t

B1i

h2
, β2 =

H2i

∆t
− µ

∆t

B2i

h2
, β3 =

H3i

∆t
− µ

∆t

B3i

h2
, β4 =

H4i

∆t
− µ

∆t

B4i

h2
.

Making the required algebraic manipulations in Eq.(3.1), one obtains

ξ =
P − iQ

R+ iS
, (3.2)

where

P = β4 cos 2φ+ (β1 + β3) cosφ+ β2, Q = −i(−β4 sin 2φ+ (β1 − β3) sinφ),

R = α4 cos 2φ+ (α3 + α1) cosφ+ α2, S = i(α4 sin 2φ+ (α3 − α1) sinφ).

When one takes the modulus of Eq. (3.2), the inequality |ξ| ≤ 1 is found, and this is the expected requirement for the
numerical scheme to be unconditionally stable.

4. Numerical experiments and results

In this section, six widely used experimental problems for the EW equation will be solved for controlling the
numerical simulations and the newly found solutions will be compared to those of existing in the literature. All
computations are carried out by MATLAB-R2011a on Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99 GHz machine
having 4 GB memory. Since only single solitary wave has an exact solution among the problems considered in the
study, the following L2 and L∞ quantities called respectively the mean and maximum norm will be calculated to
measure the accuracy and reliability of the current numerical scheme

L2 =

h

N+1∑
j=1

|U(xj , T )− UN (xj , T )|2
1/2

, L∞ = max
1≤j≤N+1

|U(xj , T )− UN (xj , T )| .

In addition to these error norms, three invariants in the discrete points, of which formulae are given as below [35],
are computed

I1 =

∫ ∞

−∞
Udx, I2 =

∫ ∞

−∞

(
U2 + µU2

x

)
dx, I3 =

∫ ∞

−∞
U3dx.
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Table 1. Comparison of the calculated invariants and error norms of Problem 1 for h = 0.03 and
k = 0.05 (µ = 1, 3c = 0.3, x0 = 10, 0 ≤ x ≤ 30, 0 ≤ t ≤ 80).

Method t I1 I2 I3 L2 × 103 L∞ × 103

CHCM-L 0 1.1999445724 0.2880000252 0.0576000000 0.000679 0.003911
10 1.2000134450 0.2880000287 0.0576000016 0.023823 0.032148
20 1.2000387691 0.2880000300 0.0576000018 0.032656 0.044079
30 1.2000480346 0.2880000307 0.0576000018 0.035919 0.048468
40 1.2000512988 0.2880000310 0.0576000018 0.037137 0.050083
50 1.2000521015 0.2880000310 0.0576000018 0.037608 0.050678
60 1.2000513090 0.2880000310 0.0576000018 0.037814 0.050897
70 1.2000480555 0.2880000310 0.0576000018 0.037960 0.050978
80 1.2000388017 0.2880000310 0.0576000018 0.038334 0.051008

CHCM-C 80 1.2000388189 0.2880000287 0.0576000011 0.040416 0.051117
[44] 80 1.1999851019 0.2879999949 0.0575999982 0.024562 0.009604
[46] 80 1.1964 0.2858 0.0569 7.444 4.373
[17] 80 1.1910 0.28550 0.05582 3.849 2.646
[13] 80 1.20004 0.28799 0.0576 0.125 0.073
[12] 80 1.19995 0.28798 0.05759 0.029 0.021
[8] 80 1.19998 0.28798 0.05759 0.056 0.053
[11] 80 1.23387 0.29915 0.06097 24.697 16.425
[39] 80 1.20004 0.2880 0.0576 0.03882 0.05151
[14] 80 1.20004 0.2880 0.0576 0.03962 0.05446

Analytical 1.2 0.288 0.0576

All numerical computations are made by using both Cubic Hermite Collocation Method with Chebyshev roots (CHCM-
C) and Cubic Hermite Collocation Method with Legendre roots (CHCM-L).

4.1. Single solitary wave. The initial experimental problem is widely known as single solitary wave and it has got
an exact solution as [32]

U(x, t) = 3c sec h2 [k (x− x0 − vt)] , (4.1)

in which k = 1/
√
4µ is the the solitary wave width, v = c, µ = 1, stands for the wave velocity and 3c is taken as the

wave amplitude.
Using the solution domain of the problem as (x, t) ∈ [a, b] × [0, T ], the initial condition is taken from Eq. (4.1) at

time t = 0 of the following form

U(x, 0) = 3c sec h2 [k (x− x0)] ,

and the boundary conditions are given by Eq. (2.1).
The exact solutions of the those invariants are found as follows [17]

I1 = 6
c

k
, I2 = 12

c2

k
+

48

5
kc2µ, I3 =

144

5

c3

k
.

The graphics of the simulations of single solitary wave for different values of velocity and amplitudes are plotted in
Figure 1. One can easily see from Figure 1 that the amplitudes, velocities and also the shapes of the wave are precisely
conserved throughout the simulation. Furthermore, in Table 1, one can see the comparison of our results with some
of those existing in the literature. From the table, it is easily seen that the obtained results are better than the other
ones except those in Ref. [12]. Table 2 illustrates a comparison of the 3 conservation constants and the error norms
of Problem 1 for h = k = 0.05 (µ = 1, 3c = 0.03, x0 = 10, 0 ≤ x ≤ 30, 0 ≤ t ≤ 80) with their analytical values and
those in Refs. [12] and [11]. Again Table 3 puts forward a brief comparison of the 3 conservation constants and the
error norms of Problem 1 for values of h = 0.03 and k = 0.2 (3c = 0.3, µ = 1, x0 = 10, 0 ≤ x ≤ 30, 0 ≤ t ≤ 40) with
their analytical values and those in Refs. [46], [38].

Table 4 shows a comparison of the 3 invariants and also the error norms of Problem 1 for several values of N and t
at k = 40 (µ = 1, 3c = 0.9, x0 = 40, 0 ≤ x ≤ 100). One can clearly see from Table 4 that those results found by taking
the shifted roots of the Legendre polynomial as interior collocation points required in the proposed method are much
better than those obtained by taking the shifted roots of the Chebyshev polynomial. Since it is known that Legendre
polynomials minimize the error and give appropriate results, such results were expected beforehand. Finally, Table 5
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Table 2. Comparison of the calculated invariants and error norms of Problem 1 for h = k = 0.05
(µ = 1, 3c = 0.03, x0 = 10, 0 ≤ x ≤ 30, 0 ≤ t ≤ 80).

Method t I1 I2 I3 L2 × 103 L∞ × 103

CHCM-L 0 0.1199943936 0.0028800002 0.0000576000 0.000088 0.000391
10 0.1199954305 0.0028800002 0.0000576000 0.000339 0.000444
20 0.1199963688 0.0028800002 0.0000576000 0.000657 0.000865
30 0.1199972178 0.0028800002 0.0000576000 0.000948 0.001249
40 0.1199979861 0.0028800002 0.0000576000 0.001212 0.001597
50 0.1199986812 0.0028800002 0.0000576000 0.001451 0.001911
60 0.1199993102 0.0028800002 0.0000576000 0.001668 0.002196
70 0.1199998793 0.0028800002 0.0000576000 0.001864 0.002453
80 0.1200003943 0.0028800002 0.0000576000 0.002041 0.002686

CHCM-C 80 0.1200003983 0.0028800002 0.0000576000 0.002130 0.002697
[12] 80 0.12000 0.00288 0.000058 0.003 0.002
[11] 80 0.12088 0.00291 0.000059 0.330 0.206

Analytical 0.1200 0.00288 0.00006

Table 3. Comparison of the calculated invariants and error norms of Problem 1 for h = 0.03 and
k = 0.2 (µ = 1, 3c = 0.3, x0 = 10, 0 ≤ x ≤ 30, 0 ≤ t ≤ 40).

Method t I1 I2 I3 L2 × 103 L∞ × 103

CHCM-L 0 1.1999445724 0.2880000252 0.0576000000 0.000679 0.003911
5 1.1999874409 0.2880000274 0.0576000012 0.000679 0.019904
10 1.2000134431 0.2880000287 0.0576000016 0.025071 0.032148
20 1.2000387673 0.2880000301 0.0576000018 0.036187 0.044079
40 1.2000512978 0.2880000311 0.0576000019 0.048631 0.050084

CHCM-C 40 1.2000513180 0.2880000297 0.0576000015 0.052210 0.050194
[46] 40 1.1967 0.2860 0.0570 3.475 2.136
[38] 40 1.199992 0.2921585 0.05759999 0.07954512 −

Analytical 1.2 0.288 0.0576

Table 4. Comparison of the calculated invariants and error norms of Problem 1 for various values
of N and k at t = 40 (µ = 1, 3c = 0.9, x0 = 40, 0 ≤ x ≤ 100).

Method (N, k) I1 I2 I3 L2 L∞
CHCM-L

(400, 0.2) 3.5999999590 2.5920297204 1.5552059235 0.002671 0.001425
(400, 0.1) 3.5999999590 2.5920296695 1.5552058615 0.000696 0.000370
(400, 0.05) 3.5999999590 2.5920296718 1.5552058581 0.000202 0.000107
(400, 0.025) 3.5999999589 2.5920296733 1.5552058580 0.000079 0.000043
(200, 0.1) 3.5999974428 2.5924441834 1.5552857179 0.001251 0.000675
(800, 0.1) 3.5999999994 2.5920018908 1.5552003783 0.000661 0.000354
(1600, 0.1) 3.6000000000 2.5920001237 1.5552000278 0.000659 0.000353

CHCM-C
(400, 0.2) 3.5998868279 2.5918782898 1.5550774465 0.004919 0.002894
(400, 0.1) 3.5998866685 2.5918790458 1.5550779337 0.003078 0.001896
(400, 0.05) 3.5998866286 2.5918792500 1.5550780676 0.002647 0.001646
(400, 0.025) 3.5998866187 2.5918793020 1.5550781018 0.002542 0.001584
(200, 0.1) 3.5982884438 2.5901738078 1.553355029 0.011636 0.007023
(800, 0.1) 3.5999928133 2.5919922760 1.5551922231 0.001212 0.000717
(1600, 0.1) 3.5999995492 2.5919995049 1.5551995049 0.000788 0.000433

[36]
(400, 0.2) EXE 3.600000 2.882298 1.828214 0.0133293 −
(400, 0.1) EXE 3.599999 2.724104 1.681432 0.00490421 −
(400, 0.05) EXE 3.600000 2.652641 1.616028 0.00247959 −
(400, 0.025) E 3.600000 2.652160 1.615533 0.00310718 −
(200, 0.1) EXE 3.600000 2.837960 1.807345 0.0105221 −
(800, 0.1) E 3.600000 2.893544 1.833380 0.0163510 −
(1600, 0.1) E 3.600000 2.896941 1.835213 0.0173992 −

shows a comparison of the 3 invariants and also the error norms of Problem 1 for various values of N and k at t = 40
(µ = 1, 3c = 0.9, x0 = 40, 0 ≤ x ≤ 100). One can also obviously see from both Tables 4 and 5 as h and k decrease so
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Table 5. Comparison of the calculated invariants and error norms of Problem 1 for various values
of N and k at t = 40 (µ = 1, 3c = 0.9, x0 = 40, 0 ≤ x ≤ 100).

Method (N, k) I1 I2 I3 L2 × 103 L∞ × 103

CHCM-L
(400, 0.01) 3.5999999589 2.5920296738 1.5552058580 0.045036 0.025156
(400, 0.005) 3.5999999590 2.5920296739 1.5552058580 0.040248 0.022653
(400, 0.0025) 3.5999999590 2.5920296739 1.5552058580 0.039056 0.022027
(400, 0.00125) 3.5999999590 2.5920296739 1.5552058580 0.038759 0.021871
(800, 0.000625) 3.5999999994 2.5920018861 1.5552003741 0.002455 0.001389
(1600, 0.0003125) 3.6000000000 2.5920001184 1.5552000235 0.000158 0.000089

CHCM-C
(400, 0.01) 3.5998866159 2.5918793166 1.5550781115 2.513429 1.566399
(400, 0.005) 3.5998866155 2.5918793187 1.5550781128 2.509307 1.563904
(400, 0.0025) 3.5998866154 2.5918793193 1.5550781132 2.507277 1.563280
(400, 0.00125) 3.5998866154 2.5918793194 1.5550781133 2.508020 1.563124
(800, 0.000625) 3.5999928099 2.5919923510 1.5551922755 0.610566 0.384542
(1600, 0.0003125) 3.5999995490 2.5919995203 1.5551995156 0.151612 0.095748

[36]CE
(400, 0.01) 3.599999 2.612544 1.579549 1.61169 −
(400, 0.005) 3.600000 2.599007 1.567285 0.795278 −
(400, 0.0025) 3.600000 2.592304 1.561220 0.389948 −
(400, 0.00125) 3.600001 2.588970 1.558205 0.188069 −
(800, 0.000625) 3.599999 2.592064 1.556701 0.0999448 −
(1600, 0.0003125) 3.600000 2.592432 1.555950 0.0503415 −

0 5 10 15 20 25 30
0.00

0.03

0.06

0.09

U

X

 t=0
 t=20
 t=40
 t=60
 t=80

c=0.03

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

U

X

 t=0
 t=20
 t=40
 t=60
 t=80

c=0.1

Figure 1. Simulations of single solitary wave for velocity values c = 0.03, 0.1 at t = 0(20)80.

the values of the error norms L2 and L∞ decrease. In other words, the obtained numerical solution approaches to the
analytical solution. This shows that numerical solutions satisfy the expected accuracy.

4.2. Two solitary waves. The second test experimental problem has been taken as the interaction of 2 solitary
waves. We are going to take into consideration Eq. (1.1) with the solution domain (x, t) ∈ [a, b] × [0, T ], the usual
initial condition [12] and the boundary conditions presented as in Eq. (2.1), respectively

U(x, 0) =
2∑

j=1

3cj sech
2 [0.5 (x− xj − cj)] ,

where the parameters c1 = 1.5, c2 = 0.75,µ = 1, x1 = 10, x2 = 25 with ∆t = 0.01 are taken in the region
0 ≤ x ≤ 80. The exact values of the invariants are found as I1 = 12 (c1 + c2) = 27, I2 = 28.8

(
c21 + c22

)
= 81 and

I3 = 57.6
(
c31 + c32

)
= 218.7.
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Table 6. Comparison of the calculated invariants of Problem 2 for h = k = 0.1 (µ = 1, c1 = 1.5,
c2 = 0.75, x1 = 10, x2 = 25, 0 ≤ x ≤ 80, 0 ≤ t ≤ 30 ).

Method t I1 I2 I3
CHCM-L 1 27.000090 81.000450 218.702919

5 27.000171 81.000368 218.702149
10 27.000171 80.994156 218.662061
15 27.000171 80.940889 218.323702
20 27.000171 80.992358 218.653188
25 27.000171 81.000154 218.701589
30 27.000171 81.000478 218.703143

CHCM-C 30 27.000066 80.999907 218.700877
[44] 30 26.999994 81.000511 218.703446
[13] 30 27.00017 80.96848 218.70210
[12] 30 27.00003 81.01719 218.70650
[14] 30 27.00019 81.00045 218.70312
[37] 30 27.12702 80.98988 218.6996
[2] (h = 0.4) 30 27.00000 80.999703 218.69966
[41] 30 27.00017 81.00044 218.70304
[9] (h = 0.4) 30 27.000582 81.001095 218.726082
[43] (h = 0.2, k = 0.05) 30 26.93310 80.80028 218.16659

Analytical 27 81 218.7

Table 7. Comparison of the calculated invariants of Problem 3 for h = k = 0.1 (µ = 1, c1 = 4.5,
c2 = 1.5, c3 = 0.5, x1 = 10, x2 = 25, x3 = 35, 0 ≤ x ≤ 100, 0 ≤ t ≤ 15 ).

Method t I1 I2 I3
CHCM-L 0 77.999971 655.277034 5451.148721

3 78.000025 651.326045 5384.366499
6 78.000025 655.118139 5449.115647
9 78.000025 655.286252 5451.661801
12 78.000025 655.329978 5451.907342
15 78.000020 655.337316 5451.947083

CHCM-C 15 77.999656 655.329657 5451.857640
[44] 15 77.999994 655.344625 5452.024410
[37] 15 78.00490 652.3474 5412.232
[2] (h = 0.4) 15 77.999984 652.411538 5412.23185
[9] (h = 0.5) 15 78.000222 655.341909 5452.481409
[43] (h = 0.1833, k = 0.05) 15 77.86967 654.09104 5440.78956
[38] 15 77.995390 652.810400 5411.6390

Analytical 78 655.2 5450.4

The collision of 2 solitary waves till time t = 30 is presented in Figure 2. One can easily see from this figure that
the interaction process started approximately at t = 10 , and the separation process started approximately at t = 20.
In the end, 2 waves changed their positions at the initial time. In Table 6, the calculated results have been compared
to those existing in the literature. One can obviously see from this table that the newly obtained results are in good
harmony with their exact values and also all of the compared ones.

4.3. Three solitary waves. The third experimental problem is the collision of 3 solitary waves. Eq. (1.1) will be
considered over solution domain (x, t) ∈ [a, b]× [0, T ], and the boundary conditions (2.1) and the initial condition [43]

U(x, 0) =
3∑

j=1

3cj sech
2 [0.5 (x− xj − cj)] ,

in which the parameters µ = 1, c1 = 4.5, c2 = 1.5, c3 = 0.5, x1 = 10, x2 = 25, x3 = 35 with ∆t = 0.1 are taken
over the region [0, 100] . Therefore, the analytical values of the invariants can be found as I1 = 12 (c1 + c2 + c3) = 78,
I2 = 28.8

(
c21 + c22 + c23

)
= 655.2 and I3 = 57.6

(
c31 + c32 + c33

)
= 5450.4.

The simulation for the interaction of 3 solitary waves till time t = 15 is presented in Figure 3. Furthermore, in Table
7, a comparison of our results with those in the literature is given. One can see from the table that present results
are compatibly in good harmony with their exact values and all of the compared ones.
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12 S. KUTLUAY, N. M. YAĞMURLU, AND A. S. KARAKAŞ
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Figure 2. The simulation of two solitary waves at times t = 0, 10, 20, 30.

4.4. The Maxwellian initial condition. The fourth experimental problem dwells on the Maxwellian initial condi-
tion of the following form [39]

U(x, 0) = e(−(x−20)2).

The simulations of the Maxwellian pulse are found for constant ∆t = 0.01 and different values of the µ = 0.2, 0.04, 0.01
and 0.001, respectively. Simulation of the waves for the values µ = 0.2, 0.04, 0.01 and 0.001 at t = 25 is presented
in Figure 4. Moreover, in Table 8, one can see a comparison of the present results with some of those given in the
literature. It can be easily seen from the table that the newly obtained results are also in good harmony with the
exact values and all of the compared ones.

4.5. Undular Bore. In the fifth experimental problem, the EW Equation (1.1) is taken into consideration in the
finite range a ≤ x ≤ b with the boundary conditions

U(a, t) = U0,

U(b, t) = 0,

and the initial condition

U(x, 0) = 0.5U0

[
1− tanh(

x− x0

d
)

]
,
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to examine undular bore formation. In this equation U(x, 0) stands for the height of the water on the stagnant water
at the beginning of simulation, d stands for the slope difference between the deep and stagnant water. The water level
change U(x, 0) occurs at the point x = x0. The stagnant water can be observed to the right hand of the zone and at
the additional elevation U0 from the surface U = 0 the flow of water moves from the left towards the stagnant water.

In this experimental problem, the conservation constants of I1, I2 and I3 do not remain constant however linearly
increase in the following ratios M1,M2 and M3, respectively [17].

M1 =
d

dt
I1 =

d

dt

∫ b

a

Udx =
1

2
(U0)

2,

M2 =
d

dt
I2 =

d

dt

∫ b

a

[U2 + µ(Ux)
2]dx =

2

3
(U0)

3,

M3 =
d

dt
I3 =

d

dt

∫ b

a

U3dx =
3

4
(U0)

4.

During numerical computations the values U0 = 0.1, µ = 0.16666667 and x0 = 0 are utilized. Therefore, the linearly
increasing ratios of the conservation constants for those parameters are found as

M1 = 5e− 3, M2 = 6.66667e− 4, M3 = 7.5e− 5.
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Figure 3. The simulation of three solitary waves at times t = 0, 5, 10, 15.
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Table 8. The computed invariants of Problem 4 and a comparion with those in Refs. [10] and [39]
for values of h = 0.05 and k = 0.025.

I1 I2 I3
µ t CHCM-L [10] [39] CHCM-L [10] [39] CHCM-L [10] [39]

0 1.77245 1.77245 1.77245 1.37864 1.37864 1.37864 1.02332 1.02333 1.02333
3 1.77245 1.77245 1.77245 1.37867 1.37867 1.37923 1.02335 1.02336 1.02355

0.1 6 1.77245 1.77245 1.77245 1.37868 1.37868 1.37880 1.02337 1.02337 1.02338
9 1.77245 1.77245 1.77245 1.37868 1.37869 1.37877 1.02337 1.02338 1.02336
12 1.77245 1.77245 1.77245 1.37868 1.37869 1.37885 1.02337 1.02338 1.02339

0 1.77245 1.77245 1.77245 1.31597 1.31598 1.31598 1.02332 1.02333 1.02333
3 1.77245 1.77245 1.77245 1.31606 1.31606 1.31648 1.02345 1.02345 1.02356

0.05 6 1.77245 1.77245 1.77245 1.31611 1.31611 1.31619 1.02352 1.02352 1.02340
9 1.77245 1.77245 1.77245 1.31612 1.31611 1.31617 1.02353 1.02353 1.02339
12 1.77245 1.77245 1.77245 1.31612 1.31611 1.31612 1.02353 1.02353 1.02339

0 1.77245 1.77245 1.77245 1.28464 1.28464 1.28464 1.02332 1.02333 1.02333
3 1.77245 1.77238 1.77245 1.28488 1.28487 1.28520 1.02373 1.02372 1.02357

0.025 6 1.77245 1.77254 1.77245 1.28500 1.28499 1.28492 1.02390 1.02392 1.02340
9 1.77245 1.77233 1.77245 1.28501 1.28496 1.28418 1.02391 1.02386 1.02337
12 1.77245 1.77253 1.77245 1.28501 1.28497 1.28474 1.02391 1.02390 1.02337

0 1.77245 1.77245 1.77245 1.26584 1.26585 1.26585 1.02332 1.02333 1.02333
3 1.77245 1.77247 1.77245 1.26666 1.26572 1.26632 1.02481 1.02293 1.02330

0.01 6 1.77245 1.77253 1.77245 1.26695 1.26579 1.26599 1.02520 1.02297 1.02294
9 1.77245 1.77252 1.77245 1.26700 1.26562 1.26639 1.02523 1.02295 1.02295
12 1.77245 1.77253 1.77245 1.26702 1.26566 1.26567 1.02523 1.02292 1.02293

Table 9. Comparison of the computed invariants of Problem 5 for k = 0.05 and h = 0.07 (µ =
0.16666667, d = 2, x0 = 0, U0 = 0.1, 0 ≤ t ≤ 800, −20 ≤ x ≤ 50).

Method t I1 I2 I3 x U
CHCM-L 0 1.996500 0.189927 0.018465 −20.00 0.10000

100 2.496499 0.256594 0.025965 3.73 0.15730
200 2.996499 0.323261 0.033465 9.40 0.17606
300 3.496499 0.389928 0.040965 15.35 0.18010
400 3.996499 0.456595 0.048465 21.37 0.18214
500 4.496499 0.523262 0.055965 27.46 0.18321
600 4.996499 0.589929 0.063465 33.55 0.18378
700 5.496499 0.656596 0.070965 39.71 0.18440
800 5.996475 0.723263 0.078465 45.87 0.18474

CHCM-C 800 5.995270 0.722959 0.078422 45.87 0.18467
[44] 800 6.003322 0.723860 0.078533 45.87 0.18451
[17] 800 5.994366 0.712677 0.076876 45.70 0.183918
[13] 800 5.996473 0.722126 0.078465 45.87 0.184431
[12] 800 6.003478 0.723605 0.078426 45.87 0.184518
[8] 800 6.003194 0.723867 0.078534 45.85 0.18460
[11] 800 5.669824 0.660997 0.070677 46.73 0.197568
[41] 800 6.002474 0.723860 0.078525 45.85 0.18471

The simulation process for the undular bore at different times t and d = 2 is presented in Figure 5. Furthermore,
in Table 9, the present results have been compared to some of those available in the literature. One can easily see in
this table that the presented method produces good results and they are also are in very good harmony with both
their exact values and all of the compared ones.

4.6. Soliton collision. As the last example, the interaction of two solitary waves with the initial condition [43]

U(x, 0) =
2∑

j=1

3cj sech
2

[
1

2
(x− xj − cj)

]
.

will be considered.
These solitary waves are also presented like in the phenomena of interaction of 2 solitary waves except the fact that

their signs are different and move toward to one another. At collision time, a singularity happens and leaves smaller



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 15

0 10 20 30 40 50 60
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U

X

=0.2 t=25

0 10 20 30 40 50 60
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

U

X

=0.04 t=25

0 10 20 30 40 50 60
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

U

X

=0.01 t=25

0 10 20 30 40 50 60
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

U

X

=0.001 t=25

Figure 4. The simulations for Maxwellian initial condition for ∆t = 0.01.

waves behind However, when time elapses, these small singularities die out. For the sake of computational aims, the
following parameters c1 = −1.2, c2 = 1.2, µ = 1, x1 = −20, x2 = 20 with ∆t = 0.1 are used over the solution domain
[−40, 40] . The simulation process for the collision of solitons for different values of t = 0, 15, 50, 100 is illustrated in
Figure 6. One can see from this figure that the waves display the expected physical behavior of the problem.

5. Conclusion

The numerical solutions of the EW equation, which is an alternative to the well-known KdV equation are found
using cubic Hermite B-spline collocation FEM. To be able to establish the efficiency and accuracy of the presented
method with the help of the Crank-Nicolson type approximation its validity, six test problems are considered and the
obtained results are tested by comparing with the previously published ones especially using the error norms L2 and
L∞. It can be seen from all the computed results that the presented numerical scheme produces reasonable accurate
results which are also in good agreement with exact ones and at the same time those of other researchers for the same
parameters. About possible future studies, the currently presented method may also easily and successfully be used
to find the numerical solutions of other frequently used non-linear PDEs seen in various branches of mathematics and
science that have a crucial role in modelling natural phenomena.
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Figure 5. The profiles and undulation profiles for d = 2 at different times.
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Figure 6. Clash of two solitary waves.
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