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Abstract

Smoking poses a significant threat to global public health and remains one of the leading causes of health problems.
To examine these smoking-related issues, this paper aims to study the modified smoking model which represents

a system of five-compartment such as potential smokers, snuffing class, irregular smokers, regular smokers, and

quitters. A computational analysis was used to evaluate the model using the spectral collocation method. The
core idea of the spectral collocation technique is to approximate the solution as a truncated series of basis functions

using Chebyshev polynomials. By incorporating collocation points, the truncated series is transformed into an

operational matrix form, which in turn converts the governing differential equations into a system of non-linear
algebraic equations. Furthermore, the residual and absolute error for different collocation points is established.

Additionally, the effects of various parameters such as transmission rate, recovery rate, quit rate, and death rate

on the smoking model has been analyzed. All these computational investigations on the model are displayed in
the form of figures. Finally, the effect of different combinations of parameters on the smoking dynamics and its

impact is represented using contour plots.
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1. Introduction

Tobacco smoking is the foremost cause of preventable mortality. According to the WHO’s report on the smoking
epidemic [30], smoking claims the lives of many people during their most productive years. More than 5 million
deaths worldwide are caused by the effects of smoking on various organs of the human body, and this number could
increase up to 8 million annually by 2030 [16, 31]. Smokers have a 70 % higher risk of heart attack compared to
non-smokers, and the incidence of lung cancer is 10 % higher among smokers. On average, smokers have 10 to 13 years
shorter lifespans than non-smokers. Extensive medical records reveal that smoking tobacco is a primary contributor
to a wide array of diseases, including lung cancer, heart attacks, strokes, respiratory illnesses, birth defects, and
various other types of cancers and chronic conditions [23]. Additionally, tobacco kills an estimated 1.3 million non-
smokers who are exposed to second-hand smoke annually [8]. The impact of smoking is profound, posing significant
challenges both personally and socially. Therefore, understanding the dynamics of smoking is crucial to mitigate its
associated risks. Mathematical modeling plays a pivotal role in understanding the spread of diseases and devising
effective control strategies [1–3]. By leveraging mathematical models, researchers can analyze the intricate patterns
of smoking behavior and its impact on health. To effectively illustrate the phenomenon of cigarette smoking, various
researchers have explored numerous smoking models. These models help in identifying key factors that influence
smoking initiation, continuation, and cessation.

Notably, in the year 1997, a simple mathematical model was introduced by Castillo-Garsow et al. [15] to study the
dynamics of smoking. This initial study considered a smoking model with three compartments: potential smokers,
regular smokers, and permanently quit smokers. In 2007, Ham [17] conducted a survey to collect data on various stages
and methods of smoking among students in Korean schools. The following year, Sharomi and Gumel [22] developed
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a mathematical model that introduced mild and chain smoker classes to analyse the progression of smoking-related
illnesses. Building on the work of [15], Zaman [32] formulated an integer-order giving-up smoking model that included
a light smoker class and demonstrated its qualitative behavior. This model was later extended to account for the
possibility that once a smoker quits, they might become a potential smoker again [33].

In 2011, Choi et al. [10] developed a mathematical model to analyse adolescent nicotine dependence and smoking
cessation dynamics. In 2013, Zaman [34] further advanced the field by introducing a novel smoking cessation square
root model, which examines the finite-time extinction of smoking behavior using a non-standard finite difference
(NSFD) scheme. In 2014, Alkhudhari et al. [4] expanded upon the system presented in [15, 22] and investigated the
impact of smoking on quitters. In 2016, Din et al. [13] explored the qualitative behavior of a more complex smoking
model with five compartments: non-smokers, smokers, temporary quitters, permanent quitters, and individuals with
smoking-related illnesses. Mojeeb and Adu [21] examined the smoking epidemic through the counseling of smokers as
an intervention. In 2018, Shah et al. [24] examined the tuberculosis caused by smoking. Later, in 2020 Ebraheem
Alzahrani and Anwar Zeb [5] introduced a snuffing class to analyse tobacco smoking dynamics and develop control
strategies using the NSFD scheme. In 2021, they proposed a smoking model with a reversion class and analysed it
using NSFD method [36]. The square-root dynamics of the smoking model with cravings to smoke presented by Awan
et al. [7] in 2021. Recently, various researchers have developed several smoking models to understand the dynamics
of smoking in a better way. These efforts have expanded the field significantly, providing deeper insights into smoking
behavior and potential intervention strategies [6, 11, 18–20, 29, 35].

In this study, we explore a non-linear smoking model with a unique snuffing class, inspired by the model presented
in [5]. To achieve more accurate system dynamics, we include certain terms in the model that are not present in any
other smoking models in the literature. That is, the quit rate and recovery rate for irregular smokers, and death due to
smoking to the smoker classes such as irregular and regular smokers. These factors are critical for understanding the
comprehensive impact of smoking and the potential for recovery and cessation. By incorporating these parameters, our
model offers a deeper insight into the progression of smoking behaviors and the effectiveness of intervention strategies,
ultimately contributing to a more precise analysis of the smoking epidemic.

In literature, researchers have typically relied on standard numerical techniques to solve smoking dynamic models.
Spectral collocation [14, 25–28] is one of the such emerging numerical techniques to solve mathematical models. In
this method, the approximate solution are represented as truncated series of global basis functions. In this research
paper, we employ the prevailing spectral collocation method using Chebyshev polynomial [9, 12] as a basis function.
This approach offers distinct advantages over traditional methods due to the global nature of its basis functions.
The spectral collocation method provides higher accuracy and efficiency, allowing for precise modeling of complex
interactions within the smoking population. Additionally, its exponential convergence and reduced computational
time make it a more powerful numerical technique. To efficiently solve the system of equations, we employ the
spectral collocation method, a technique that has not been attempted in the literature.

The rest of the paper is structured as follows: In section 2, we present the details of smoking model. In section 3 the
author describes the key higlights and the mathematical procedure of the spectral approach of solution and presents
the numerical results of the model in section 4. This section also includes a detailed representation of the effects of
various parameters with figures that support our discussions. Finally, the overall conclusions are provided in section
5.

2. Model formulation

In this section, a modified smoking model is formulated by considering various influencing parameters to frame the
new model. The whole population (M) is split up into five compartments, which are as follows:

(i) Potential smokers (P) are current non-smokers and they are vulnerable and may smoke in the future.
(ii) Snuffing class (I) refers to individuals who inhale tobacco through their nostrils.
(iii) Irregular smokers (SI) are those who exhibit inconsistent smoking habits.
(iv) Regular smokers (SR) are those who smoke consistently.
(v) Quit smokers (Q) are individuals who have stopped smoking.
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Let the population have a constant birth rate b. Initially, individuals in the potential smokers class can be transmitted
to the snuffing class at a transmission rate l1 due to inhaling tobacco through the nostrils. In the snuffing class,
individuals may die due to snuffing at a rate σ1. The transmission of individuals from the snuffing class to the
irregular smokers occurs at a rate of l2, while others move to regular smokers at a rate l3. Regular smokers can recover
and revert to the potential smokers class at a recovery rate γ2 or they may quit smoking and join the quitters at a
quit rate α2. The population experiences natural death at a rate β.

In view of above said idea, the author has introduced the parameters such as the recovery rate (γ1) and quit rate
(α1) for irregular smokers, and the death rate due to smoking (σ2, σ3 ) for both irregular and regular smokers. That
is, irregular smokers can recover and revert to the potential smokers class at a recovery rate, or they may quit smoking
and join the quitters at a quit rate. Individuals in the irregular and regular smokers classes may also die due to
smoking respectively. Considering all the parameters, governing the smoking model are formulated into a system of
first-order differential equations with five compartments as follows:

dP

dt
= b− l1PI − βP + γ1SI + γ2SR, (2.1)

dI

dt
= l1PI − l2ISI − (σ1 + β)I, (2.2)

dSI

dt
= l2ISI − (l3 + σ2 + β + γ1 + α1)SI , (2.3)

dSR

dt
= l3SI − (α2 + β + γ2 + σ3)SR, (2.4)

dQ

dt
= α1SI − βQ+ α2SR. (2.5)

with the initial conditions P (0) ≥ 0, I(0) ≥ 0, SI(0) ≥ 0, SR(0) ≥ 0, Q(0) ≥ 0, where the list of parameters used are
tabulated in Table 1.

Table 1. Model parameters and values with their descriptions.

Parameters Description Parameter values Source
b Birth rate 0.1 [22]
l1 Transmission rate between susceptible and snuffing 0.003 [22]
l2 Transmission rate between snuffing and irregular 0.002 [22]
l3 Transmission rate between irregular and regular 0.05 [29]
α1 Quit rate for irregular smokers 0.05 [22]
α2 Quit rate for regular smokers 0.05 [22]
β Natural death rate 0.002 [22]
γ1 Recovery rate for irregular smoking 0.001 [22]
γ2 Recovery rate for regular smoking 0.001 [22]
σ1 Death due to snuffing 0.003 [22]
σ2 Death due to irregular smoking 0.003 [22]
σ3 Death due to regular smoking 0.003 [22]

3. Key highlights and methodology of the present study

In this paper, we consider a modified five-compartment smoking model, formulated as a system of nonlinear differ-
ential equations. This model incorporates three additional parameters: the recovery rate (γ1) and quit rate (α1) for
irregular smokers, as well as the death rates due to smoking (σ2, σ3) for irregular and regular smokers respectively.

To analyze this model numerically, we employ the spectral collocation method using Chebyshev polynomials as
the basis function. The spectral collocation method is one of the most widely used techniques for solving differential
equations. Its fundamental idea is to express the approximate solution of the differential equation by a truncated series
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of basis function. This method is computationally efficient, exhibit rapid convergence and provide high accuracy,
particularly as the number of collocation points increases. One of the primary advantages of spectral methods is
their exponential convergence rate for infinitely differentiable basis functions, making them highly effective for solving
complex differential equations. The computational procedure is represented in Figure 1.

Figure 1. Graphical illustration of the spectral collocation method.

3.1. Present analysis. In this section, the solutions of the governing Equations (2.1) - (2.5) which is a system of first
order differential equations is evaluated using Chebyshev spectral Collocation method over the time interval [0, L].

Let us consider the spectral solution for [0, L] is of the form

P(t) ≈ PN(t) =
N∑
i=0

piψi

(
2t− L

L

)
(3.1)

I(t) ≈ IN(t) =
N∑
i=0

eiψi

(
2t− L

L

)
(3.2)

SI(t) ≈ SIN(t) =
N∑
i=0

ciψi

(
2t− L

L

)
(3.3)

SR(t) ≈ SRN(t) =
N∑
i=0

diψi

(
2t− L

L

)
(3.4)

Q(t) ≈ QN(t) =
N∑
i=0

qiψi

(
2t− L

L

)
(3.5)
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where ψi

(
2t−L
L

)
denotes the set of shifted Chebyshev polynomial, N represents the number of collocation points

and p′is, e
′
is, c

′
is, d

′
is, q

′
is are the spectral coefficients. On substituting the spectral solutions (3.1) - (3.5) in (2.1) - (2.5),

yields the residual functions given by

RE1,N(t) := b− l1PN(t)IN(t)− βPN(t) + γ1SIN(t) + γ2SRN
(t)− dPN(t)

dt
, (3.6)

RE2,N(t) := l1PN(t)IN(t)− l2IN(t)SIN(t)− (σ1 + β)IN(t)− dIN(t)

dt
, (3.7)

RE3,N(t) := l2IN(t)SIN(t)− (l3 + σ2 + β + γ1 + α1)SIN(t)−
dSIN(t)

dt
, (3.8)

RE4,N(t) := l3SIN(t)− (α2 + β + γ2 + σ3)SRN
(t)− dSRN

(t)

dt
, (3.9)

RE5,N(t) := α1SIN(t)− βQN(t) + α2SRN
(t)− dQN(t)

dt
. (3.10)

The core idea of the proposed method is to enforce the residual function to be zero at a set of collocation points tj ,
where j ranges from 1 to N − 1. Thus, the residual function (3.6) – (3.10) becomes

RE1,N(tj) := b− l1PN(tj)IN(tj)− βPN(tj) + γ1SIN(tj) + γ2SRN
(tj)−

dPN(tj)

dt
= 0, (3.11)

RE2,N(tj) := l1PN(tj)IN(tj)− l2IN(tj)SIN(tj)− (σ1 + β)IN(tj)−
dIN(tj)

dt
= 0, (3.12)

RE3,N(tj) := l2IN(tj)SIN(tj)− (l3 + σ2 + β + γ1 + α1)SIN(tj)−
dSIN(tj)

dt
= 0, (3.13)

RE4,N(tj) := l3SIN(tj)− (α2 + β + γ2 + σ3)SRN
(tj)−

dSRN
(tj)

dt
= 0, (3.14)

RE5,N(tj) := α1SIN(tj)− βQN(tj) + α2SRN
(tj)−

dQN(tj)

dt
= 0. (3.15)

The collocation points will differ depending on the choice of basis function. In this study, we use Chebyshev polyno-
mials, for which the collocation points are defined as follows:

tj =
L

2

(
1− cos

jπ

N

)
.

When using Legendre and Jacobi polynomials as basis functions, the collocation points are determined by the zeros
of their first derivatives.

On substituting the selected basis functions and collocation points in (3.1) - (3.5), we get

P(tj) ≈ PN(tj) = DjP, (3.16)

I(tj) ≈ IN(tj) = DjI, (3.17)

SI(tj) ≈ SIN(tj) = DjSI, (3.18)

SR(tj) ≈ SRN
(tj) = DjSR, (3.19)

Q(tj) ≈ QN(tj) = DjQ, (3.20)

where

Dj =
[
ψ0(tj) ψ1(tj) . . . ψN (tj)

]
1×N+1

, (3.21)

P =


p0
p1
...
pN


N+1×1

, I =


e0
e1
...
eN


N+1×1

, SI =


c0
c1
...
cN


N+1×1

, SR =


d0
d1
...
dN


N+1×1

, Q =


q0
q1
...
qN


N+1×1

, (3.22)
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where P, I, SI,SR and Q are the coefficient matrix of the system (3.1)–(3.5). In order to rewrite the above residual
functions (3.11)–(3.15) in a more simplified form. Let us introduce the matrices as follows:

D =


D1

D2

...
DN


N×1

=


ψ0(t1) ψ1(t1) . . . ψN (t1)
ψ0(t2) ψ1(t2) . . . ψN (t2)

...
... . . .

...
ψ0(tN ) ψ1(tN ) . . . ψN (tN )


N×N+1

, (3.23)

D(1) =


D

(1)
1

D
(1)
2

...

D
(1)
N


N×1

=


ψ

(1)
0 (t1) ψ

(1)
1 (t1) . . . ψ

(1)
N (t1)

ψ
(1)
0 (t2) ψ

(1)
1 (t2) . . . ϕ

(1)
N (t2)

...
... . . .

...

ψ
(1)
0 (tN ) ψ

(1)
1 (tN ) . . . ψ

(1)
N (tN )


N×N+1

, (3.24)

where D denotes the basis matrix and D(1) denotes the basis matrix for the first order differentiation. The residual
function is rewritten as follows:

RE1 =


RE1,N(t1)
RE1,N(t2)

...
RE1,N(tN))


N×1

, RE2 =


RE2,N(t1)
RE2,N(t2)

...
RE2,N(tN))


N×1

, RE3 =


RE3,N(t1)
RE3,N(t2)

...
RE3,N(tN))


N×1

, (3.25)

RE4 =


RE4,N(t1)
RE4,N(t2)

...
RE4,N(tN))


N×1

, RE5 =


RE5,N(t1)
RE5,N(t2)

...
RE5,N(tN))


N×1

, (3.26)

where RE1,RE2,RE3, RE4 and RE5 are the residual matrices for the system (2.1)–(2.5). On substituting the above
matrices (3.21)–(3.26) into (3.11)–(3.15) the residual function reduces to

RE1 := bE− l1DPDI− βDP+ γ1DSI + γ2DSR −D(1)P = [0], (3.27)

RE2 := l1DPDI− l2DIDSI − (σ1 + β)DI−D(1)I = [0], (3.28)

RE3 := l2DIDSI − (l3 + σ2 + β + γ1 + α1)DSI(t)−D(1)SI = [0], (3.29)

RE4 := l3DSI − (α2 + β + γ2 + σ3)DSR −D(1)SR = [0], (3.30)

RE5 := α1DSI − βDQ+ α2DSR −D(1)Q = [0]. (3.31)

where E is a column matrix of order N × 1 with unit entries. Introducing the matrices Y1 and Y2 of the form,

Y1 =


(DP)1 0 . . . 0

0 (DP)2 . . . 0
...

... . . .
...

0 0 . . . (DP)N


N×N

, Y2 =


(DSI)1 0 . . . 0

0 (DSI)2 . . . 0
...

... . . .
...

0 0 . . . (DSI)N


N×N

, (3.32)

where (DP)i is the ith row vector of the matrix DP. Similarly, (DSI)i is the ith row vector of the matrix DSI.
Substituting (3.32) into the system (3.27)–(3.31), we obtain:

RE1 := bE− l1Y1DI− βDP+ γ1DSI + γ2DSR −D(1)P = [0], (3.33)

RE2 := l1Y1DI− l2DIY2 − (σ1 + β)DI−D(1)I = [0], (3.34)

RE3 := l2DIY2 − (l3 + σ2 + β + γ1 + α1)DSI(t)−D(1)SI = [0], (3.35)

RE4 := l3DSI − (α2 + β + γ2 + σ3)DSR −D(1)SR = [0], (3.36)
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RE5 := α1DSI − βDQ+ α2DSR −D(1)Q = [0]. (3.37)

The residual matrices in (3.33)–(3.37) result in 5N nonlinear algebraic equations with 5(N + 1) unknowns. By
incorporating the spectral solution into the five initial conditions, we obtain a simplified matrix form of the initial
condition as follows:

D0P = u1,D0I = u2,D0SI = u3,D0SR = u4,D0Q = u5, (3.38)

where

D0 =
[
ψ0(0) ψ1(0) . . . ψN (0)

]
1×N+1

. (3.39)

On incorporating the initial matrices (3.38) with the residual matrices (3.33)–(3.37), we have a system of 5(N + 1)
nonlinear algebraic equations with 5(N +1) unknowns, which is represented by the following reduced matrix system:

RE1,N

RE2,N

RE3,N

RE4,N

RE5,N

D0P
D0I
D0SI

D0SR

D0Q


=



0
0
0
0
0
u1

u2

u3

u4

u5


. (3.40)

The spectral coefficients p′i, e
′
i, c

′
i, d

′
i, and q

′
i are obtained by solving the system of nonlinear algebraic equations

(3.40) using the Newton-Raphson method. By substituting the spectral coefficients into Equation (3.1)–(3.5), we
derive the spectral solutions P (t), I(t), SI(t), SR(t) and Q(t).

In addition,

• Spectral solutions obtained are compared with fourth order Runge Kutta method (RK4) to analyse and
present the absolute errors for different values of N to show the good accuracy of the present method and also
to examine the residual error for different values of N which helps to assess the accuracy and convergence of
the proposed computational method.

• The effect of distinct parameters such as transmission rates, death rates by smoking/snuffing, recovery rate,
natural death rate, and quit rate on the five different compartments of the smoking model is investigated.

• The combined effect of three transmission rates, transmission and recovery rate, as well as the transmission
and quit rate, transmission and death rate on the system dynamics is analyzed, in order to understand the
combined effects of different parameters simultaneously.

In the next section, we implement this approach to the model using Chebyshev polynomials as the basis function and
provide the computational implementation along with the results obtained from this method.

4. Numerical results

In this section, we present the computations and results obtained for the smoking model (2.1)–(2.5) using spectral
collocation method with Chebyshev polynomials as basis function. The set of parameter values considered for the
study are b = 0.1, l1 = 0.003, l2 = 0.002, l3 = 0.05, β = 0.002, γ1 = γ2 = 0.001, σ1 = σ2 = σ3 = 0.003, α1 = α2 =
0.05 with initial conditions S(0) = 40, I(0) = 30, SI(0) = 20, SR(0) = 10, Q(0) = 5 [29].

As an illustration, we have applied the spectral collocation method for the governing model (2.1)–(2.5) by considering
the Chebyshev polynomial (Ti) as a basis function for N = 7 in [0,50]. The spectral solution for the smoking model is
presented as follows:

P(t) ≈ P7(t) =
7∑

i=0

piψi

(
2t− 50

50

)
=

7∑
i=0

piTi

(
t− 25

25

)
, (4.1)
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I(t) ≈ I7(t) =
7∑

i=0

eiψi

(
2t− 50

50

)
=

7∑
i=0

eiTi

(
t− 25

25

)
, (4.2)

SI(t) ≈ SI7(t) =
7∑

i=0

ciψi

(
2t− 50

50

)
=

7∑
i=0

ciTi

(
t− 25

25

)
, (4.3)

SR(t) ≈ SR7(t) =
7∑

i=0

diψi

(
2t− 50

50

)
=

7∑
i=0

diTi

(
t− 25

25

)
, (4.4)

Q(t) ≈ Q7(t) =
7∑

i=0

qiψi

(
2t− 50

50

)
=

7∑
i=0

qiTi

(
t− 25

25

)
. (4.5)

The residual functions which takes the form (3.6)–(3.10) are considered to be zero at a set of seven collocation
points as N = 7. The collocation points for shifted Chebyshev polynomial basis functions are calculated using

tj = 25

(
1− cos

πj

7

)
as t0 = 0, t1 = 2.4758, t2 = 9.4128, t3 = 19.4370, t4 = 30.5630, t5 = 40.5872, t6 = 47.5242,

t7 = 50.0000.
Substituting the above collocation points in Chebyshev polynomials gives the basis matrix D and first order differen-
tiation matrix D(1) as follows:

D =



1.00000 −1.00000 1.00000 −1.00000 1.00000 −1.00000 1.00000 −1.00000
1.00000 −0.90097 0.62349 −0.22252 −0.22253 0.62350 −0.90097 1.00000
1.00000 −0.62349 −0.22253 0.90097 −0.90096 0.22251 0.62350 −1.00000
1.00000 −0.22252 −0.90097 0.62349 0.62349 −0.90097 −0.22253 1.00000
1.00000 0.22252 −0.90097 −0.62349 0.62349 0.90097 −0.22253 −1.00000
1.00000 0.62349 −0.22253 −0.90097 −0.90096 −0.22251 0.62350 1.00000
1.00000 0.90097 0.62349 0.22252 −0.22253 −0.62350 −0.90097 −1.00000
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000


8×8

(4.6)

D(1) =



0.00000 0.04000 −0.16000 0.36000 −0.64000 1.00000 −1.44000 1.96000
0.00000 0.04000 −0.14415 0.26964 −0.35951 0.36038 −0.23999 −0.00001
0.00000 0.04000 −0.09976 0.06659 0.08879 −0.24940 0.24000 0.00001
0.00000 0.04000 −0.03560 −0.09623 0.12831 0.08901 −0.24000 −0.00000
0.00000 0.04000 0.03560 −0.09623 −0.12831 0.08901 0.24000 −0.00000
0.00000 0.04000 0.09976 0.06659 −0.08879 −0.24940 −0.24000 0.00001
0.00000 0.04000 0.14415 0.26964 0.35951 0.36038 0.23999 −0.00001
0.00000 0.04000 0.16000 0.36000 0.64000 1.00000 1.44000 1.96000


8×8

(4.7)

The coefficient matrices are given by:

P =


p0
p1
p2
...
p7


8×1

, I =


e0
e1
e2
...
e7


8×1

,SI =


c0
c1
c2
...
c7


8×1

,SR =


d0
d1
d2
...
d7


8×1

, Q =


q0
q1
q2
...
q7


8×1

. (4.8)

Y1 =


(DP)1 0 . . . 0

0 (DP)2 . . . 0
...

... . . .
...

0 0 . . . (DP)7


7×7

, Y2 =


(DSI)1 0 . . . 0

0 (DSI)2 . . . 0
...

... . . .
...

0 0 . . . (DSI)7


7×7

, (4.9)



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-22 9

On incorporating all these matrices, the residual functions reduces to

RE1,7(t) := 0.1E− 0.003Y1DI− 0.002DP+ 0.001DSI + 0.001DSR −D(1)P = [0], (4.10)

RE2,7(t) := 0.003Y1DI− 0.002DIY2 − (0.003 + 0.002)DI−D(1)I = [0], (4.11)

RE3,7(t) := 0.002DIY2 − (0.05 + 0.003 + 0.002 + 0.001 + 0.05)DSI −D(1)SI = [0], (4.12)

RE4,7(t) := 0.05DSI − (0.05 + 0.002 + 0.001 + 0.003)DSR −D(1)SR = [0], (4.13)

RE5,7(t) := 0.05DSR − 0.002DQ+ 0.05DSI −D(1)Q = [0]. (4.14)

Thus, the residual matrices (4.10)–(4.14) have a set of 35 non-linear algebraic equations with 40 unknowns. On adding
the initial condition matrices such as

D0P = 40,D0I = 30,D0SI = 20,D0SR = 10,D0Q = 5, (4.15)

where

D0 =
[
1 −1 1 −1 1 −1 1 −1

]
, (4.16)

into the system (4.10)–(4.14), we obtain a system of 40 non-linear algebraic equations with 40 unknowns. On solving
these equations using Newtons method yields the spectral coefficients which on substituting to governing equations
gives the spectral solution as follows:

P7(t) = −3.550000001t+ 1.849668996× 10−9t7 − 3.352585862× 10−7t6 + 0.00002400863571t5

− 0.0008389319585t4 + 0.01298069004t3 + 0.02021003456t2 + 40.00000000,

I7(t) = 2.250000000t+ 30.00000000− 2.044452954× 10−9t7 + 3.671125036× 10−7t6

− 0.00002581972505t5 + 0.0008677869265t4 − 0.01207075497t3 − 0.04042766470t2,

SI7(t) = −0.9200000001t+ 20.00000000 + 9.187892770× 10−11t7 − 8.745394337× 10−9t6

− 2.85196134× 10−7t5 + 0.00006705089836t4 − 0.003219790880t3 + 0.06670334130t2,

SR7(t) = 0.4400000001t+ 9.999999999 + 7.520085458× 10−11t7 − 1.618341182× 10−8t6

+ 1.420569002× 10−6t5 − 0.00006536795853t4 + 0.001773304480t3 − 0.03532510961t2,

Q7(t) = 1.490000001t+ 4.999999999 + 1.634965754× 10−12t7 − 2.638623177× 10−9t6

+ 4.181869371× 10−7t5 − 0.00002479296381t4 + 0.0005796093071t3 − 0.01360149555t2.

(4.17)

Residual error for various values of N in [0, 20] is represented in Figure 2. It is observed from the figure that, as
N increases, the residual error decreases. It can be noticed that as N increases from 5 to 20, the maximum residual
error for P (t), I(t) decreases from O(10−1) to O(10−5) and SI(t) decreases from O(10−1) to O(10−6). Similarly, the
residual error for SR(t) and Q(t) decreases from O(10−1) to O(10−7), as shown in Figure 2(d)–2(e). Thus, Figure 2
demonstrates that the residual error converges as N increases.

Figure 3 illustrates the absolute error between the present method and RK4 for different values of N . The figure
demonstrates that as N increases, the error decreases, suggesting that larger values of N lead to more accurate
solution. As N increases from 7 to 15, the absolute error decreases from O(10−2) to O(10−5) for P (t), from O(10−1)
to O(10−5) for I(t), from O(10−3) to O(10−6) for SI(t), and from O(10−3) to O(10−7) for both SR(t) and Q(t). It is
observed from the figure that as N increases, the absolute error decreases. Figure 4–10 depicts the potential effects
of various parameters influencing the current smoking model. Figure 4 illustrates the dynamics of the system with the
snuffing/smoking-related death rates (σ) over the snuffing, irregular, and regular smoker categories. When snuffing
/ smoking-related death occurs, the population size of smokers decreases as shown in Figure 4. This illustration
clearly shows that higher values of σ substantially decrease the prevalence of snuffing, irregular, and regular smoking
behaviors, highlighting the significant effect of smoking-related mortality on these categories.

In a system, the increase in natural death rate will decrease the population size. This is evidently captured in
Figure 5. (i.e.) As natural death rate (β) increases, there is decreases in the overall population.
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(a) Potential smokers. (b) Snuffing class. (c) Irregular smokers.

(d) Regular smokers. (e) Quitters.

Figure 2. Residual error for different values of N.

Figure 6 illustrates the influence of transmission rate (l1) from potential smokers to snuffing class on five compart-
ments. In a system, when the transmission rate increases, it increases the initiation of smoking among individuals
thereby reducing the number of potential smokers. Thus, the potential smokers decrease when the transmission rate
(l1) increases. Consequently, this leads to an increase in the snuffing, irregular, regular smokers and quitters, as more
individuals move into these categories.

The influence of the transmission rate (l2) from the snuffing class to irregular smokers over the snuffing class,
irregular and regular smokers are exhibited in Figure 7. It is observed from the figure that, as l2 increases, the
population of irregular and regular smokers increases whereas the population in the snuffing class decreases. This
occurs because a higher transmission rate (l2) encourages more people to start smoking, resulting in an increase in
the number of individuals in the irregular and regular smokers and consequently decrease in the snuffing class.

Figure 8 highlights the impact of the transmission rate (l3) from irregular to regular smokers over the smoker class.
As the transmission rate (l3) increases, the population of irregular smokers diminishes due to increased transmission
of individuals into regular smokers from irregular smokers. This shift leads to a significant increase in the number of
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(a) Potential smokers. (b) Snuffing class. (c) Irregular smokers.

(d) Regular smokers. (e) Quitters.

Figure 3. Absolute error for different values of N.

regular smokers. The figure effectively illustrates the significant influence of l3 on smoking behavior from irregular to
regular smoking.

Figure 9 demonstrates the influence of the quit rate (α) over irregular, regular smokers, and quitters. This figure
shows that as the quit rate (α) increases, the number of quitters rises which causes the population of both irregular
and regular smokers to decrease. In a system, when both irregular and regular smokers stop smoking, the smoking
population decreases, leaving an increase in the quitter population which is captured in Figure 9.

Figure 10 illustrates the effect of the recovery rate (γ) over P (t), SI(t), SR(t) and Q(t). As γ increases, individuals
from the regular and irregular smokers revert to the potential smoker category. As a result, the number of potential
smokers rises, while the number of irregular and regular smokers, and quitters decreases. This pattern indicates that
a higher recovery rate promotes smoking cessation and reintegration into the susceptible population. The figure also
highlights the significant impact of recovery rate variations on the overall dynamics of smoking behavior in the general
population.
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(a) Snuffing class. (b) Irregular smokers. (c) Regular smokers.

Figure 4. Influence of smoking related death rate (σ).

Figure 11–16 represents the contour plots for different combination of parameters at t = 10. The contour graph
in Figure 11 illustrates the relationship between the death rate due to snuffing/smoking (σ) and transmission rate
(l1) on the snuffing, irregular, and regular smokers. It is inferred from the graph that the combined effect of high
death and transmission rate decreases the population in both snuffing and smoker classes. This is because smokers
are more likely to exit the system due to death, which leads to a decrease in the smoking class. Conversely, a high
transmission rate coupled with a low death rate suggests an increased number of smokers across all three categories.
This demonstrates that the interplay between transmission and death rates critically impacts the dynamics of smoking
prevalence. Targeting these rates in public health interventions can effectively reduce smoking across different smoker
categories.

Figure 12 examines the combined impact of two transmission rates, l1 (from the potential smokers to snuffing class)
and l3 (from irregular smokers to regular smokers), on the populations of irregular and regular smokers. When both
transmission rates l1 and l3 are high, the number of irregular smokers decreases and the number of regular smokers
increases. This is because as l3 increases, the rate at which irregular smokers develop a regular smoking habit, resulting
in a notable rise in regular smoking and a decrease in irregular smoking. It can be noted that both irregular and
regular smokers are influenced by l3 compared to l1 which is captured in contour plot Figure 12.

Figure 13 illustrates the combined effect of transmission rates l2 (from the snuffing class to irregular smokers) and
l3 (from irregular smokers to regular smokers) over the irregular and regular smokers. When both transmission rates l2
and l3 are high, more individuals transmits from snuffing to irregular smoking and then to regular smoking, resulting
in an increased number of regular smokers. Conversely, when both rates are low, fewer individuals move to regular
smoking, leading to a reduced population of regular smokers. If the transmission rate l2 is low and l3 is high then the
number of individuals move rapidly to regular smokers which leads to a decrease in irregular smokers which is captured
in 13(a). Figure 13(b) demonstrates that an increase in SR(t) is associated with higher l3 values. To effectively reduce
the number of regular smokers, it is essential to lower l3. The graph shows that by keeping l3 below 0.04 and increasing
l2, we can raise the population of irregular smokers while reducing the conversion to regular smokers. This highlights
the importance of controlling l3 to mitigate the shift from irregular to regular smokers.

Figure 14 presents a contour graph depicting irregular and regular smokers based on the interaction between the
transmission rate (l1) and the recovery rate (γ). The figure reveals that a high transmission rate (l1) combined with
a low recovery rate (γ) leads to the highest number of irregular and regular smokers. Conversely, the combination
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(a) Potential smokers. (b) Snuffing class. (c) Irregular smokers.

(d) Regular smokers. (e) Quitters.

Figure 5. Influence of natural death rate (β).

of low transmission rate (l1) and high recovery rate (γ) lead to the lowest number of irregular and regular smokers.
This is due to the highest influence of the transmission rate, which accelerates the growth of the smoking population.
Conversely, as the recovery rate increases, individuals begin to recover from the smoking habit, leading to a decrease
in the smoking population. To effectively reduce the number of smokers, it is essential to focus on strategies that
reduce the transmission rate (l1) and increase the recovery rate (γ). This combined approach will lead to a significant
decrease in the proportions of smokers in the population over time.

Figure 15 presents a contour graph depicting the proportions of transmission rate (l2) and recovery rate (γ) over
irregular and regular smokers. The graph shows that a higher transmission rate (l2) and a lower recovery rate (γ) yield
an increased number of smokers as the higher transmission rate encourages more individuals to start smoking and a
lower recovery rate hinders their ability to quit. Conversely, a lower transmission rate (l2) and higher recovery rate
(γ) lower the smoker population. It can be also observed from the figure that both irregular and regular smokers are
influenced by the recovery rate than the transmission rate. That is, reducing l2 and increasing γ can effectively lower
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(a) Potential smokers. (b) Snuffing class. (c) Irregular smokers.

(d) Regular smokers. (e) Quitters.

Figure 6. Influence of transmission rate (l1).

both irregular and regular smoking population over time. Therefore, strategies aimed at reducing the transmission
rate and enhancing the recovery rate can significantly impact public health by decreasing the prevalence of smoking.

Figure 16 illustrates the influence of the combined parameters, such as the transmission rate (l3) and the quit rate
(α), on regular smokers. It can be noted that the population of regular smokers decreases to a greater extent for the
same proportion of transmission and quit rate. For example, when l3 and α are both increased from 0.1 to 0.3 in the
same proportion, the corresponding population of regular smokers decreases by 83%. (i.e) The population is decreased
from 9.56 to 1.58.

Precisely, Figure 11–16 suggests that boosting the recovery rate or quit rate and reducing the transmission rates
can significantly decrease the number of smokers in the population. This underscores the importance of targeted
interventions to improve these rates and effectively reduce smoking prevalence among individuals.
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(a) Snuffing class. (b) Irregular smokers. (c) Regular smokers.

Figure 7. Influence of transmission rate (l2).

(a) Irregular smokers. (b) Regular smokers.

Figure 8. Inf1uence of transmission rate (l3).

5. Conclusion

In this study, a five-compartment smoking model which is a system of non-linear differential equations is presented.
Firstly, we modified a smoking model by adding various parameters, such as quit rate and recovery rate for irregular
smokers and death rate for irregular and regular smokers. The key findings of the paper is discussed as follows:
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(a) Irregular smokers. (b) Regular smokers. (c) Quitters.

Figure 9. Influence of quit rate ( α).

• The proposed model has been studied using the spectral collocation method with Chebyshev polynomials as
basis function due to its low computational time and exponential convergence. This numerical approach has
not been previously explored in the literature for these governing equations. The spectral collocation method
is one of the best techniques for the smoking model.

• The residual error and the absolute error are depicted in the form of graphs. The residual error analysis
indicates that as N increases, the residual error decreases, that is, the solution begins to converge. In the case
of absolute error, the present method results were compared with those of the RK-4 method and found that
the accuracy increases to O(10−7) as N increases from 7 to 15.

• The influence of various model parameters such as transmission rate (l1, l2, l3), death rate (β, σ), recovery rate
(γ) and quit rate (α) of the proposed model has been captured as follows:

– As the natural death rate (β) increases, there is a decrease in the total population. This decrease suggests
a reduction in population size, which could potentially lead to a decrease in smoking incidence as there
would be fewer potential individuals who might start smoking.

– As σ (death rate due to snuffing/smoking) increases, the population in the snuffing class, irregular and
regular smokers decreases. It underscores the potential impact of mortality risks associated with smoking
on reducing smoking prevalence and encouraging individuals to quit or avoid smoking altogether.

– As the transmission rate l1 (potential smokers to snuffing class) increases, individuals from the potential
smokers start to smoke which leads to a decrease in P (t) and an increase in all other compartments.

– As the transmission rate l2 (from the snuffing class to irregular smokers) increases, individuals transmitted
from the snuffing to the irregular smoking class more rapidly. This results in a decrease in the number of
individuals in the snuffing class, while there is an increase in the number of irregular and regular smokers,
as well as quitters.

– As the transmission rate l3 (from the irregular smokers to regular smokers) increases, more individuals
transmitted from irregular to regular smoking class. Thus, there is a decrease in irregular smokers and
an increase in regular smokers.

– As the quit rate (α) increases, there is an increase in the number of quitters and a decrease in both
irregular and regular smokers. This suggests that the quit rate is a crucial determinant in reducing
smoking prevalence.
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– As the recovery rate (γ) increases, it leads to a decrease in both irregular and regular smokers, which
suggests that the recovery rate is a critical factor in reducing smoking prevalence.

• Contour plots were used to analyse the combined effects of various parameter interactions on the smoking
dynamics. Our results demonstrated that the interplay between these parameters has a substantial impact on
smoking behaviors. Specifically,

– A combination of high transmission rate and the death due to snuffing/smoking parameter decreases the
population in snuffing and other smoker compartments.

– A combination of high transmission rates l1 and l3 leads to a decrease in irregular smokers and an increase
in regular smokers, as l3 drives the transmission from irregular to regular smoking.

– A combination of high l2 and low l3 leads to a decrease in regular smokers and an increase in irregular
smokers. Increasing l2 while keeping l3 low will boost the irregular smokers and reduce their transition
to regular smoking. Controlling l3 is crucial for managing the regular smoker population.

(a) Potential smokers. (b) Irregular smokers. (c) Regular smokers.

(d) Quitters.

Figure 10. Influence of recovery rate (γ).
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(a) Snuffing class. (b) Irregular smokers.

(c) Regular smokers.

Figure 11. Effects of the transmission rate (l1) and the death due to smoking (σ).

– The combination of high transmission rates (l1) and low recovery rate (γ) results in an increase in the
smoker class, while low transmission rates and high recovery rate lead to a decrease in the smoker class.
This pattern is also observed with the interplay between l2 and γ.

– The combination of high transmission rate (l3) and low quit rate (α) increase the regular smokers. Con-
versely, the low transmission rate (l3) and high quit rate (α) reduce the regular smokers. That is, higher
quit rates contributing to a reduction in the number of smokers.

• Our analysis identifies several critical intervention points for controlling smoking behavior. High transmission
rates (l1 and l3) should be targeted to prevent the increase of regular smokers. Reducing l1 can help in
decreasing the transmission from potential smokers to smoking categories, while managing l3 is crucial for
controlling the shift from irregular to regular smoking. Enhancing the recovery rate (γ) can significantly
reduce the overall number of smokers, especially when transmission rates are high. Finally, promoting higher
quit rates (α) is also vital for decreasing regular smoker prevalence. Thus, this study help us to analysis the
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impact of the different parameters on susceptible, snuffing, irregular, regular and quitter individuals of the
smoking model. These interventions, focused on reducing transmission rates, increasing recovery rates, and
boosting quit rates, are essential for effective smoking cessation programs.

In conclusion, these findings offer practical guidance for designing targeted interventions to reduce smoking. The
figures and additional factors incorporated into the model enhance its ability to capture the complexities of smoking
behavior dynamics. This analysis supports the development of effective strategies to reduce smoking rates and improve
health outcomes.

(a) Irregular smokers. (b) Regular smokers.

Figure 12. Effects of the transmission rate (l1) and the transmission rate (l3).

(a) Irregular smokers. (b) Regular smokers.

Figure 13. Effects of the transmission rate (l2) and the transmission rate (l3).
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(a) Irregular smokers. (b) Regular smokers.

Figure 14. Effects of the transmission rate (l1) and recovery rate (γ).

(a) Irregular smokers. (b) Regular smokers.

Figure 15. Effects of the transmission rate (l2) and recovery rate (γ).
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(a) Regular smokers.

Figure 16. Effects of the transmission rate (l3) and quit rate (α).
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