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Abstract

This paper investigates an advanced method for solving partial differential equations (PDEs) by integrating the

Double Ramadan Group Transform (DRGT) with a faster version of the Adomian Decomposition Method (ADM).
Initially, the DRGT is applied to transform the PDEs, which simplifies the management of boundary conditions

and linear elements. The resulting transformed PDEs are subsequently solved using the enhanced ADM, which

is specially tailored to efficiently handle the nonlinear terms that typically make solutions more difficult. The
acceleration of the ADM is achieved by utilizing improved decomposition techniques and optimized series expansion

methods, leading to significant gains in both the speed of convergence and the accuracy in addressing nonlinearities.

The effectiveness of this combined approach is illustrated through several examples involving complex PDEs with
challenging nonlinear aspects. The findings demonstrate significant improvements in computational efficiency and

solution accuracy, underscoring the potential of this method for solving a wide variety of PDE problems in scientific
and engineering applications.
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1. Introduction

Partial differential equations (PDEs) are valuable tools for exploring various natural phenomena and are frequently
used to describe numerous physical laws [8, 14, 23]. In addition, PDEs are applied to model and investigate a broad
array of engineering and technical problems, such as wake turbulence, optical fiber communication, atmospheric pol-
lution dispersion, and others [7, 13, 32]. As a result, developments in partial differential equations are frequently
important in a variety of industries, including aerospace and numerical weather prediction [2, 5, 15, 21, 29]. Partial
differential equations, like many other disciplines, are becoming more interconnected and mutually supportive. There-
fore, the study of partial differential equations is very important. Recently, some papers investigated the solution of
different important types of partial differential equations. Interested readers are referred to [17–19, 22, 27] where in
[22] Nawzad et al. focused on the traveling wave solutions and the analytical analysis of the simplified MCH equation
and the combined KdV–mKdV equations. They examined rational solutions by using a polynomial expansion in terms
of x and t. While in [27], Seyyedeh et al. investigated the initial-boundary value problem for the one-dimensional wave
equation with a non-classical condition. They applied the reduced differential transform method to find the solution
to the problem. Also, Mehrdad et al. [18] derived exact solutions for the (1 + 1)-dimensional and (2 + 1)-dimensional
fifth-order integrable equations (FOIEs). These solutions were obtained using the enhanced tanh(ϕ(ξ)/2) expansion
method (IThEM) with the help of Maple software. In addition, Jalil et al. in [17] applied the generalized Hirota
bilinear method to identify the knot structure and their interaction patterns for a precise analysis of the generalized
fifth-order KdV-like equation. Additionally, Mehdi et al. in [19] applied the homotopy analysis method to solve
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nonlinear fractional partial differential equations. Using this approach, they created a method to approximate the
solutions for the fractional KdV,K(2, 2), Burgers, BBM-Burgers, cubic Boussinesq, coupled KdV , and Boussinesq-like
B(m,n) equations with specified initial conditions.

Therefore, various numerical methods for solving partial differential equations have been proposed by researchers,
including the finite difference method, which approximates derivatives using finite differences; the finite element
method, a robust technique for solving PDEs by discretizing the domain into finite elements; and the finite volume
method, among others [4, 24]. Numerical approaches have tremendously aided the investigation of partial differential
equations. They also suggested, analytical methods such as separation of variables is a technique that simplifies the
problem by reducing it to ordinary differential Equations (ODEs), method of characteristics is a technique particularly
useful for first-order PDEs, integral transform methods such as Fourier and Laplace transforms for converting PDEs
into algebraic Equations. Also, spectral methods that use global basis functions to achieve high accuracy. Currently,
these methods are extensively used and continuously improving. Simultaneously, researchers are striving to create new
techniques and tools for solving partial differential equations [31]. A range of integral transforms have been developed
and used to solve both partial and integral differential equations. These transforms enable the exact solutions of the
equations without the need for linearization or discretization. They can convert partial differential equations into
ordinary differential equations through a single transformation, or into algebraic equations through a double integral
transformation. Double integral transformations, in particular, have gained significant popularity for solving PDEs
that involve unknown functions of two variables, offering greater efficiency compared to other numerical methods in
addressing PDEs [1]. Additionally, variations of the double transform have been introduced in the literature, such as the
double Laplace Transform, which is frequently employed to solve ODEs and PDEs, especially for initial value problems.
It transforms differential equations into algebraic equations. The double Laplace transform [11] is one such example.
Another recent addition is the double Sumudu Transform, which provides an efficient method for solving differential
and integral equations, offering a viable alternative to traditional techniques [20]. The double Sumudu transform [12].
The connection between the double Sumudu transform and the double Laplace transform is established, showing that
they are theoretical counterparts. The practical use of this relatively new transform is illustrated through several
special functions, which appear in the solutions of evolution equations in population dynamics and partial differential
equations. In this paper, the main goal is to introduce a double Ramadan group transform is a lesser-known but
effective transform for certain types of PDEs, focusing on simplifying the equation structure to facilitate solution. This
study introduces a novel method that combines the Double Ramadan Group Transform with the accelerated Adomian
Decomposition Method to solve nonlinear PDEs. It addresses challenges like slow convergence and complex nonlinear
terms, improving solution accuracy and computational efficiency. The integration of these techniques provides a
new tool for tackling complex PDEs, with potential applications in various scientific and engineering fields, marking
a significant contribution to mathematical methods for PDEs. The Double Ramadan Group Accelerated Adomian
Decomposition Method offers several advantages for solving nonlinear partial differential equations in this study.
Compared to other existing methods, it provides improved accuracy and faster convergence. Its ability to handle
complex nonlinearities effectively makes it more reliable for solving intricate problems. Additionally, the method’s
flexibility and efficiency reduce computational costs, making it a more practical choice in comparison to traditional
approaches in the literature.

2. Preliminaries

In this section, we discuss key definitions, lemmas, results, and properties of double integral transforms, including the
Laplace, Sumudu, and Ramadan group integral transforms. These concepts will be crucial during the computational
phase of our main study. Moreover, we present the basic idea of accelerated Adomian polynomials which are to be
consisted modification of the regular Adomian polynomials.

2.1. Double Laplace Integral Transform (DLIT )2. The double Laplace Transform that widely used for solving
ODEs and PDEs, particularly for initial value problems. It converts differential Equations into algebraic Equations.
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Definition 2.1. [31] Let f(x, t) be a function of two independent variables ’x’ and ’t’. The (DLIT )2 of f(x, t) is
denoted by F (p, s) and defined as

LxLt{f(x, t)} = F (p, s) =

∫ ∞

0

∫ ∞

0

e−(px+st)f(x, t)dtdx, (2.1)

we can also express it in the form of

L2{f(x, t); (p, s)} = F (p, s) =

∫ ∞

0

∫ ∞

0

e−(px+st)f(x, t)dtdx. (2.2)

Remark 2.2. Equations (2.1) and (2.2) are equivalent; Equation (2.2) is written to clarify the order of variables
before and after the transformation. This notation explicitly shows the sequential application of the double Laplace
transform to both independent variables. Both forms lead to the same transformed function F (p, s).

2.2. Double Sumudu Integral Transform (DSIT )2 [28]. The Sumudu transform simplifies the introduction of
the double sumudu transforms (DSIT )2, assuming the function has a power series transformation with respect to its
variables.

Definition 2.3. Let f(x, t); t, x ∈ R+ For a function defined in the positive quadrant of the xt-plane and stated
as a convergent infinite series, the double Sumudu transform is as follows:

G(s, p) = S2[f(x, t); (s, p)]

= S[S{f(x, t);x → s}; t → p]

= S[{1
p

∫ ∞

0

e
−t
p f(x, t)dt}; x → s]

=
1

sp

∫ ∞

0

∫ ∞

0

e−(
x
s +

t
p )f(x, t)dxdt,

(2.3)

where p and s are the transform variables for t and x, respectively.

2.3. Double Ramadan Group Integral Transform (DRGT )2 [25]. A new integral RG transform has been defined
for exponential-order functions [26]. We consider functions in the set A that are defined as follows:

A =

{
f (x, t) such that ∃ M , τ1 , τ2 > 0 , |f (x, t)| ≤Me

x+t

τ2
i , i = 1, 2 if (x, t) ϵR2

+

}
.

Definition 2.4. The double Ramadan group integral transform of the function f (x, t) formed in the set A in the
positive quadrant of the xt- plane is denoted by(DRGT)2, and is defined as:

K (s, p,u, v) = (DRGT)2 [ f (x, t) ; (s, p, u, v)]

= RG [ RG [f (x, t) ; (s, p, u, v)] ; (p, v)]

= RG

[
1

u

∫ ∞

0

e
−sx
u f (x, t) dx ; (p, v)

]
=

1

v

∫ ∞

0

e
−pt
v

[
1

u

∫ ∞

0

e
−sx
u f (x, t) dx dt

]
=

1

uv

∫ ∞

0

∫ ∞

0

e−( sx
u + pt

v ) dxdt ,

(2.4)

where s, p, u and v are complex variables, with s and p being the transform variables for x and t, respectively and u, v
∈ (− τ1 , τ2) where τ1 , τ2 > 0 and Re(s), Re(p) >0.

By applying the duality between the double Laplace (DLIT )2 and double Sumudu (DSIT )2 transforms, presented
by Dhunde and Waghmare [9], and Tchunche and Mbare [28] respectively we can readily prove the following relation-
ships among double Ramadan group, double Laplace and double Sumudu integral transforms.

i) K (s , p , u , v) = 1
uv F (

s
u , pv )
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Proof. Since,

F (s, p) = L2 [f (x, t) ; (s, p)]

=

∫ ∞

0

∫ ∞

0

e−(sx+pt)f(x, t)dxdt.

Then, we have

F
( s
u
,
p

v

)
=

∫ ∞

0

∫ ∞

0

e−(
sx
u + pt

v ) dxdt

= uv
1

uv

∫ ∞

0

∫ ∞

0

e−(
sx
u + pt

v ) dxdt

= uv(DRGT)2 [ f (x, t) ; (s, p, u, v)]

= uv K (s , p , u, v) .

□

ii) K (1 , 1, u , v) = G (u , v)

Proof. For the double Ramadan group we have

K (s , p , u , v)=
1

uv

∫ ∞

0

∫ ∞

0

e−(
sx
u + py

v ) f (x, y) dxdt .

Setting s = p = 1 , we get

K (1, 1 , u , v)=
1

uv

∫ ∞

0

∫ ∞

0

e−(
x
u+ y

v ) f (x, y) dxdt.

Let x
u = r ; t

v = t , we get

x = ur , dx = udr , y = vt, dy = vdt .

Then

K (1, 1 , u , v) =
1

uv

∫ ∞

0

∫ ∞

0

e−(r+t) f (ur , vt)uv drdt =

∫ ∞

0

∫ ∞

0

e−(r+t) f (ur , vt) drdt.

Thus ,K (1 , 1, u , v) = G (u , v) . □

2.3.1. Properties of double Ramadan group integral transform (DRGT )2. The (DRGT)2 can be utilized to simplify
differential equations involving multiple variables. by transforming them into algebraic Equations. Specifically, when
applied to partial derivatives, the transform is particularly useful in solving partial differential Equations (PDEs):
The double transform can simplify the complexity of PDEs by turning them into easier-to-solve algebraic forms. For

instance, if you have a partial derivative, for example, of the form ∂f(x,t)
∂x or ∂2f(x,t)

∂x2 you can apply the (DRGT)2 and
use its properties to find a solution for the transformed function K (s , p , u , v). Once the solution is found in the
transform domain, inverse transforms can be used to obtain the solution in the original domain.

Let f (x, t) be a function defined in the x-plane’s positive quadrant. The (DRGT)2 transformation of the first and
second order partial derivatives of f (x, t)is given as

(DRGT)2

[
∂f (x, t)

∂x
; (s, p, u, v)

]
=

s

u
K (s, p, u, v)− 1

u
K (0, p, 0, v) , (2.5)

where s, p, u, and v are complex variables, with s and p being the transform variables for x and t, respectively and
u, v ∈ (− τ1 , τ2) where τ1 , τ2 > 0 and Re(s),Re(p) >0 , and K (0, p , 0 , v) is defined as K (0,p , 0 , v) =
1
v

∫∞
0
e−(

pt
v )f(0, t)dt.
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To prove (2.5), we use the definition of the (DRGT )2 transform defined in (2.4), which yields

(DRGT)2

[
∂f (x, t)

∂x
; (s, p,u, v)

]
= RG

[
RG

[
∂f (x, t)

∂x
; (s, u)

]
; (p, v)

]
= RG

[
1

u

∫ ∞

0

e
−sx
u
∂f (x, t)

∂x
dx ; (p, v)

]
= RG

[
1

u
[[e

−sx
u f (x, t)]∞x=0 +

s

u

∫ ∞

0

e
−sx
u f(x, t)dx] ; (p, v)

]
= RG

[
1

u
[−f(0, t); (p, v)] +RG[

s

u2

∫ ∞

0

e
−sx
u f(x, t)dx] ; (p, v)

]
= − 1

u

1

v

∫ ∞

0

e
−pt
v f (0, t) dt+

s

vu2

∫ ∞

0

∫ ∞

0

e
−pt
v e

−sx
u f (x, t) dx

= − 1

u
K (0, p, 0, v) +

s

u

[
1

uv

∫ ∞

0

∫ ∞

0

e−(
sx
u + py

v ) f (x, y) dxdt

]
= − 1

u
K (0, p, 0, v) +

s

u
K (s, p, u, v) .

Then,

(DRGT)2

[
∂f (x, t)

∂x
; (s, p, u, v)

]
=

s

u
K (s, p, u, v)− 1

u
K (0, p, 0, v) .

Similarly, we can demonstrate that

(DRGT)2

[
∂f (x, t)

∂t
; (s, p, u, v)

]
=
p

v
K (s, p, u, v)− 1

v
K (s, 0, u, 0) .

Now for the second partial derivatives ∂2f(x,t)
∂x2 one can prove easily that

(DRGT)2

[
∂2f (x, t)

∂x2
; (s, p,u, v)

]
=

s2

u2
K (s, p, u, v)− s

u2
K (0, p, 0, v)− s

u

∂K (0, p, 0, v)

∂x
.

Overall, we can conclude for the nth partial derivatives ∂nf(x,t)
∂xn , its (DRGT)2 is as:

(DRGT)2

[
∂nf (x, t)

∂xn
; (s, p,u, v)

]
=

sn

un
K (s, p, u, v)− sn−1

un
K (0, p, 0, v)− sn−2

un−1
K (0, p, 0, v)− · · · − 1

u

∂nK (0, p, 0, v)

∂xn
.

Table 1. Double Ramadan Group Transform of some function.

f(x, t) (DRGT)2= [ f(x, t ) ] = K(s,p,u,v)
1 uv

psuv

t uv2

p2suv

x u2v
ps2uv

tn n!uvn+1

pn+1suv

xmtn m!n! um+1vn+1

uv pn+1sm+1

eax+bt 1
uv(−a+ s

u )(−b+ p
v )

ut(x, t)
p
v K (s, p, u, v)− 1

v K (s, 0, u, 0)
ux(x, t)

s
u K (s, p, u, v)− 1

u K (0, p, 0, v)

uxx(x, t)
s2

u2 K (s, p, u, v)− s
u2 K (0, p, 0, v)− 1

u
∂K(0,p,0,v)

∂x
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2.3.2. The Convergence Theorem of (DRGT )2. In this subsection, we state the convergence of the double Ramadan
group integral transform; for the proof, refer to [25].

Theorem 2.5. Convergence of double Ramadan group integral transform (DRGT)2
Let g(x, t) be a two-variable function that is continuous in the first region of the x-plane. If the integral, defined

for(DRGT)2 of the form 1
uv

∫∞
0

∫∞
0
e−( sx

u + pt
v )g(x, t) dxdt converges at s = s0 , u = u0 , p = p0 , v = v0 , then the

integral converges for s > s0 , u > u0 , p > p0 and v > v0 , where we assume s
u − s0

u0
> 0 and p

p0
− v

v0
> 0.

3. Double Ramadan Group Transform combined with the Accelerated Adomian Method for
Nonlinear Partial Differential Equations

To explain the fundamental principle of this method, we consider a general partial differential equation with the
initial conditions given below

Lu (x, t) +Ru (x, t) +Nu (x, t) = g(x, t), (3.1)

u (x, 0) = h (x) , ut (x, 0) = f (x) . (3.2)

Where L is the second - order linear differential operator L = ∂2

∂t2
, where R is the differential operator of linear order

with lower orders than L, N is the general nonlinear differential operator, and g (x, t) is the source term. Applying
the double Ramadan group integral transform to both sides of Equations (3.1) and (3.2), we obtain:

(DRGT )2 [Lu (x, t)] + (DRGT )2 [Ru (x, t)] + (DRGT )2 [Nu (x, t)] = (DRGT )2 [g (x, t)] , (3.3)

RG [u (x, 0)] = RG [h (x)] = K (s, 0, u, 0) ,

RG [ ut (x, 0)] = RG [f (x)] =
∂

∂t
K (s, 0, u, 0) ,

(3.4)

where

(DRGT )2

[
∂2f

∂t2

]
=
p2

v2
K (s, p, u, v)− p

v2
K (s, 0, u, 0)− 1

v

∂K (s, 0, u, 0)

∂t
. (3.5)

To substitute Eq. (3.4) in (3.3), after using Eq. (3.5), we get:

(DRGT )2 [u (x, t)] =
1

p
RG [h (x)] +

p

v2
RG [f (x)]+

v2

p2
(DRGT )2 [g (x, t)]

− v2

p2
(DRGT )

2

[Ru (x, t)]− v2

p2
(DRGT )

2

[Nu (x, t)] .

(3.6)

Now, using the inverse double Ramadan group integral transform on both sides of Eq. (3.6) we get:

u (x, t) = G (x, t)− (DRGT )
−1
2

[
v2

p2
(DRGT )

2

[Ru (x, t)] +
v2

p2
(DRGT )

2

[Nu (x, t)]

]
, (3.7)

where G (x, t) reflects the terms resulting from the source term and the specified initial circumstances.
Subsequently, we express the solution as an infinite series, as demonstrated below.

u (x, t) =
∞∑

n=0

un(x, t) . (3.8)

The nonlinear term can be expressed as follows,

Nu (x, t) =
∞∑

n=0

An(u), (3.9)
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where, An(u) are Accelerated Adomian polynomials and they can be calculated by formula given below:

An = N (sn)−
n−1∑
i=0

Ai , n = 1, 2, . . ., (3.10)

where, the partial sum sn =
∑∞

n=0 un(x, t) and A0 = N (s0) = N (u0)
To substitute (3.8) and (3.9) in (3.7), we get:

∞∑
n=0

un(x, t) = G (x, t)− (DRGT )
−1
2

[
v2

p2
(DRGT )

2

[
R

∞∑
n=0

un(x, t)

]
+
v2

p2
(DRGT )

2

[ ∞∑
n=0

An

]]
. (3.11)

Then from Eq. (3.11) we get:

u0 (x, t) = G (x, t) , (3.12)

u1 (x, t) = −(DRGT )
−1
2

[
v2

p2
(DRGT )

2

[Ru0 (x, t)] +
v2

p2
(DRGT )

2

[ A0]

]
, (3.13)

u2 (x, t) = −(DRGT )
−1
2

[
v2

p2
(DRGT )

2

[Ru1 (x, t)] +
v2

p2
(DRGT )

2

[
A1

]]
. (3.14)

Typically, the recursive relation is defined as follows:

un (x, t) = −(DRGT )
−1
2

[
v2

p2
(DRGT )

2

[Run−1 (x, t)] +
v2

p2
(DRGT )

2

[
An−1

]]
, n ≥ 1. (3.15)

Ultimately, the solution u (x, t) is approximated by the series:

u (x, t) = lim
N→∞

N∑
n=0

un(x, t). (3.16)

4. General procedure for solution of Poisson Equation Via Double Ramadan Group Transform

In this section, the goal is to develop a general procedure to solve the Poisson equation using the (DRGT)2. This
approach is an advanced method that extends the traditional Ramadan transform technique to handle more complex
boundary conditions and source terms in a systematic way.

The Poisson partial differential equation (PDE) is a second-order linear differential equation commonly written as:

∇2ψ = −f (r) ,

where ∇2 is the Laplacian operator, ψ(r) is the potential function to be determent, and f(r) is the given source term.
Below is an outline for the development of this procedure.

Example 4.1. Consider the Poisson PDE, given by [3],

yxx (x, t) + ytt (x, t) = x2 + t2, (4.1)

subjected to the conditions

y (x, 0) = 0, yx (0, t) = 0,

y (0, t) = 0, yt (x, 0) = 0.

Solution: Applying (DRGT )2 on (4.1), we have

(DRGT )2 [yxx (x, t)] + (DRGT )2 [ytt (x, t)] = (DRGT )2
[
x2 + t2

]
.
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By using properties of(DRGT )2, we get

s2

u2
K (s, p, u, v)− s

u2
K (0, p, 0, v)− 1

u

∂K (0, p, 0, v)

∂x
+
p2

v2
K (s, p, u, v)− p

v2
K (s, 0, u, 0)

− 1

v

∂K (s, 0, u, 0)

∂t
= (DRGT )2

[
x2 + t2

]
,[

s2

u2
+
p2

v2

]
K (s, p, u, v) = (DRGT )2

[
x2 + t2

]
+

s

u2
K (0, p, 0, v) +

1

u

∂K (0, p, 0, v)

∂x

+
p

v2
K (s, 0, u, 0) +

1

v

∂K (s, 0, u, 0)

∂t
.

Using the original circumstances, we obtain:

K (0, p, 0, v) = (RG) [y (0, t) ; (0, p, 0, v)] = 0,

K (s, 0, u, 0) = (RG) [y (x, 0) ; (s, 0, u, 0)] = 0,

∂K (0, p, 0, v)

∂x
= (RG) [yx (0, t) ; (s, 0, u, 0)] = 0,

∂K (s, 0, u, 0)

∂t
= (RG) [yt (x, 0) ; (s, 0, u, 0)] = 0.

This yield,[
s2

u2
+
p2

v2

]
K (s, p, u, v) = (DRGT )2

[
x2 + t2

]
=

2u3v
ps3 + 2uv3

p3s

uv
,

K (s, p, u, v) =

2u4v2

ps3 + 2u2v4

p3s

p2u2 + s2v2
,

K (s, p, u, v) =

2u4v2p3s+2u2v4ps3

p4s4

p2u2 + s2v2
=

(2u2v2ps)(u2p2+v2s2)
p4s4

p2u2 + s2v2
,

K (s, p, u, v) =
2u2v2

p3u3
.

Take the inverse of double Ramadan group transform on both sides, we get:

y (x, t) =
t2x2

2
.

Example 4.2. Consider the following type of Poisson partial differential Eq. [3],

yxx (x, t) + ytt (x, t) = −xcost , (4.2)

subjected to the conditions

y (x, 0) = x , yx (0, t) = cost ,

y (0, t) = 0 , yt (x, 0) = 0.

Solution: Applying (DRGT )2 on (4.2), we have

(DRGT )2 [yxx (x, t)] + (DRGT )2 [ytt (x, t)] = (DRGT )2 [−xcost ] .
By using properties of (DRGT )2, we get

s2

u2
K (s, p, u, v)− s

u2
K (0, p, 0, v)− 1

u

∂K (0, p, 0, v)

∂x
+
p2

v2
K (s, p, u, v)− p

v2
K (s, 0, u, 0)

− 1

v

∂K (s, 0, u, 0)

∂t
= − pu

s2(p2 + v2)
,



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-17 9

[
s2

u2
+
p2

v2

]
K (s, p, u, v) =− pu

s2(p2 + v2)
+

s

u2
K (0, p, 0, v) +

1

u

∂K (0, p, 0, v)

∂x

+
p

v2
K (s, 0, u, 0) +

1

v

∂K (s, 0, u, 0)

∂t
,

Using the original circumstances, we obtain:

K (0, p, 0, v) = (RG) [y (0, t) ; (0, p, 0, v)] = 0,

K (s, 0, u, 0) = (RG) [y (x, 0) ; (s, 0, u, 0)] =
u

s2
,

∂K (0, p, 0, v)

∂x
= (RG) [yx (0, t) ; (0, p, 0, v)] =

p

p2 + v2
,

∂K (s, 0, u, 0)

∂t
= (RG) [yt (x, 0) ; (s, 0, u, 0)] = 0.

This yield,[
s2

u2
+
p2

v2

]
K (s, p, u, v) = − pu

s2 (p2 + v2)
+
s

u

[
p

p2 + v2

]
+

p

v2

[ u

s2

]
,[

s2

u2
+
p2

v2

]
K (s, p, u, v) = − pu

s2 (p2 + v2)
+

sp

up2 + uv2
+

pu

v2s2
,

K (s, p, u, v) =
u2v2

p2u2 + s2v2

[
− pu

s2 (p2 + v2)

]
+

u2v2

p2u2 + s2v2

[
sp

up2 + uv2

]
+

u2v2

p2u2 + s2v2

[
pu

v2s2

]
,

K (s, p, u, v) =
1

p2u2 + s2v2

[
− pu3v2

s2 (p2 + v2)
+
pu3

s2
+

upv2

p2 + v2

]
,

K (s, p, u, v) =
pu(p2u2 + s2v

2
)

s2 (p2 + v2) (p
2
u2 + s2v2)

,

K (s, p, u, v) =
pu

s2 (p2 + v2)
.

Take the inverse of double Ramadan group transform to both sides, we get:

y (x, t) = xcost.

5. Numerical Results

In this part, a few examples of nonlinear partial differential Equations are considered to demonstrate the effectiveness
of the double Ramadan group accelerated Adomian decomposition method (DRG-AADM) in comparison to the
standard double Ramadan group Adomian decomposition method (DRG-ADM), highlighting its advantages:

Example 5.1. Take the following nonlinear partial differential Eq. [25]

yt + yyx = 0, (5.1)

with the given initial conditions: y (x, 0) = −x, and exact solution: y (x, t) = x
t−1 .

Applying the double Ramadan group transform (DRGT )2 to both sides on (5.1), we obtain:

(DRGT )2 [yt] + (DRGT )2 [yyx] = 0,

p

v
K (s, p, u, v)− 1

v
K (s, 0, u, 0) = − (DRGT )2 [yyx] ,

where,

K (s, 0, u, 0) = (RG) [y (x, 0) ; (s, 0, u, 0)] =
−u
s2
.
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Then,

p

v
K (s, p, u, v) =

−u
v s2

− (DRGT )2 [yyx] ,

K (s, p, u, v) =
−u
p s2

− v

p
(DRGT )

2

[yyx] .

Using the inverse of the double Ramadan group transform on both sides, we obtain:

y (x, t) = (DRGT )
−1
2

[
−u
p s2

]
−(DRGT )

−1
2 [

v

p
(DRGT )

2

[yyx]].

This technique presents solutions as an infinite series given by

y (x, t) =
∞∑

n=0

yn(x, t).

The term yn should be computed recursively, and the nonlinear term yyx is decomposed as follows:

yyx =
∞∑

n=0

An,

∞∑
n=0

yn (x, t) = (DRGT )
−1
2

[
−u
p s2

]
−(DRGT )

−1
2 [

v

p
(DRGT )

2

[ ∞∑
n=0

An

]
],

By comparing both sides, we get:

y0 (x, t) = (DRGT )
−1
2

[
−u
p s2

]
= −x,

yn+1 (x, t) = −(DRGT )
−1
2

[
u2

4s2
(DRGT )2 [An]

]
.

Now, using the regular Adomian polynomials formula we have:

A0 = y0y0x,

A1 = y1y0x + y0y1x,

A2 = y2y0x + y1y1x + y0y2x.

Then,

y1 (x, t) = −t x,

y2 (x, t) = −t2 x,

y3 (x, t) = −t3 x,

y (x, t) (approximate) = y0 + y1 + y2 + y3 = −x− t x−t2 x−t3 x.

Using the accelerated Adomian polynomials formula we have

A0 = y0y0x,

A1 = y0y1x + y1y0x + y1y1x,

A2 = y0y2x + y1y2x + y2y0x + y2y1x + y2y2x.

Then

y1 (x, t) = −tx,

y2 (x, t) = −
(
1

3

)
t2 (3 + t) x,

y3 (x, t) =

(
1

63

)
t3

(
42 + 42t + 21t2+7t3+t4

)
x,
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y (x, t) (approximate) = y0 + y1 + y2 + y3

= − 1

63
(63 + 63t+ 63t2 + 63t3 + 42t4 + 21t5 + 7t6 + t7)x.

Table 2. Comparison between the approximate and absolute error for using (DRGT )2 combined with
Adomian decomposition method against (DRGT )2 with accelerated Adomian (using three iterations
at t = 0.1).

with regular (DRGT)2 with accelerated (DRGT)2
Adomian using four iterations Adomian using four iterations

t = 0.1 t = 0.1
x Exact Approximate A. Error Approximate A. Error
0 0 0 0 0 0
0.1 -0.111111 -0.1111 1.111× 10−5 -0.111107 4.1× 10−6

0.2 -0.222222 -0.2222 2.222× 10−5 -0.222214 8.2× 10−6

0.3 -0.333333 -0.3333 3.333× 10−5 -0.333321 1.23× 10−5

0.4 -0.444444 -0.4444 4.444× 10−5 -0.444428 1.64× 10−5

0.5 -0.555556 -0.5555 5.556× 10−5 -0.555535 2.05× 10−5

0.6 -0.666667 -0.6666 6.667× 10−5 -0.666642 2.46× 10−5

0.7 -0.777778 -0.7777 7.778× 10−5 -0.777749 2.87× 10−5

0.8 -0.888889 -0.8888 8.889× 10−5 -0.888856 3.28× 10−5

0.9 -1.00000 -0.9999 1.000× 10−4 -0.999963 3.69× 10−5

1.0 -1.11111 -1.111 1.111× 10−4 -1.11107 4.1× 10−5

According to Table 2, the (DRGT )2 method with Accelerated Adomain achieves greater accuracy than the
(DRGT )2 method with regular Adomain at the same time value of t = 0.1. Despite both methods employing the
same number of iterations, smaller time values consistently yield better accuracy for both (DRGT )2 with Accelerated
Adomain and (DRGT )2 with regular Adomian decomposition.

Example 5.2. Consider the following nonlinear partial differential Eq. [6]

yt + yyx − yxx = 0, (5.2)

with initial condition: yx (x, 0) = x , and exact solution: y (x, t) = x
1+t .

Using the double Ramadan group transform (DRGT )2 on both sides on (5.2), we obtain:

(DRGT )2 [yt] + (DRGT )2 [yyx]− (DRGT )2 [yxx] = 0,

p

v
K (s, p, u, v)− 1

v
K (s, 0, u, 0) = (DRGT )2 [yxx]− (DRGT )2 [yyx] ,

where,

K (s, 0, u, 0) = (RG) [y (x, 0) ; (s, 0, u, 0)] =
u

s2
.

Then,
p

v
K (s, p, u, v) =

u

v s2
+ (DRGT )2 [yxx] − (DRGT )2 [yyx] ,

K (s, p, u, v) =
u

p s2
+
v

p
(DRGT )

2

[yxx] − v

p
(DRGT )

2

[yyx] .

Using the inverse of the double Ramadan group transform on both sides, we obtain:

y (x, t) = (DRGT )
−1
2

[
u

p s2

]
+ (DRGT )

−1
2

[
v

p
(DRGT )

2

[yxx]

]
−(DRGT )

−1
2 [

v

p
(DRGT )

2

[yyx]].
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This technique presents solutions as an infinite series given by

y (x, t) =
∞∑

n=0

yn(x, t).

The term yn should be computed recursively, and the nonlinear term yyx is decomposed as follows:

yyx =
∞∑

n=0

An,

∞∑
n=0

yn (x, t) = (DRGT )
−1
2

[
u

p s2

]
+ (DRGT )

−1
2

[
v

p
(DRGT )

2

[ ∞∑
n=0

(yn )xx

] ]

−(DRGT )
−1
2 [

v

p
(DRGT )

2

[ ∞∑
n=0

An

]
].

By comparing both sides, we get:

y0 (x, t) = (DRGT )
−1
2

[
u

p s2

]
= x,

yn+1 (x, t) = (DRGT )
−1
2

[
v

p
(DRGT )

2

[
(yn )xx

] ]
−(DRGT )

−1
2 [

v

p
(DRGT )

2

[An]].

Using the regular Adomian polynomials formula

A0 = y0y0x,

A1 = y1y0x + y0y1x,

A2 = y0y2x + y1y1x + y2y0x,

A3 = y0y3x + y1y2x + y2y1x + y3y0x.

Then,

y1 (x, t) = −tx,

y2 (x, t) = t2x,

y3 (x, t) = −t3x,
y4 (x, t) = t4x.

y (x, t) (approximate) = y0 + y1 + y2 + y3 + y4 = x − tx + t2x − t3x + t4x.

Using the accelerated Adomian polynomials formula

A0 = y0y0x,

A1 = (y0 + y1) (y0x + y1x)−A0,

A2 = (y0 + y1 + y2) (y0x + y1x + y2x)−A0 −A1,

A3 = (y0 + y1 + y2 + y3) (y0x + y1x + y2x + y3x)−A0 −A1 −A2.

Then,

y1 (x, t) = −tx,

y2 (x, t) = −1

3
(−3 + t)t2x,

y3 (x, t) = − 1

63
t3(42− 42t+ 21t2 − 7t3 + t4)x,

y4 (x, t) = in a similar manner,
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y (x, t) (approximate) = y0 + y1 + y2 + y3 + y4

=

(
1− t+ t2 − t3 + t4 − 13t5

15
+

2t6

3
− 29t7

63
+

71t8

252
− 86t9

567
+

22t10

315

−5t11

189
+
t12

126
− t13

567
+

t14

3969
− t15

59535

)
x.

Table 3. Comparison between the approximate and absolute error for using (DRGT )2 combined with
Adomian decomposition method against (DRGT )2with accelerated Adomian (using four iterations at
t = 0.1).

with regular (DRGT)2 with accelerated (DRGT)2
Adomian using four iterations Adomian using four iterations

t = 0.1 t = 0.1
x Exact Approximate A. Error Approximate A. Error
0 0 0 0 0 0
0.1 0.0909091 0.09091 9.091× 10−7 0.0909092 1.048× 10−7

0.2 0.181818 0.18182 1.818× 10−6 0.181818 2.095× 10−7

0.3 0.272727 0.27273 2.727× 10−6 0.272728 3.143× 10−7

0.4 0.363636 0.36364 3.636× 10−6 0.363637 4.19× 10−7

0.5 0.454545 0.45455 4.545× 10−6 0.454546 5.238× 10−7

0.6 0.545455 0.54546 5.455× 10−6 0.545455 6.285× 10−7

0.7 0.636364 0.63637 6.364× 10−6 0.636364 7.333× 10−7

0.8 0.727273 0.72728 7.273× 10−6 0.727274 8.38× 10−7

0.9 0.818182 0.81819 8.182× 10−6 0.818183 9.428× 10−7

1.0 0.909091 0.9091 9.091× 10−6 0.909092 1.048× 10−6

From Table 3, (DRGT )2 coupled with accelerated Adomain gives better accuracy compared with (DRGT )2 com-
bined with the regular Adomian decomposition method. Using (DRGT )2 with accelerated Adomian, it is also obvious
that the speed at which we reach the exact solution increases with the number of terms included in the approximate
solution.

Example 5.3. Examine the given nonlinear partial differential Eq. [16]:

ytt −
2x2

t
yyx = 0, (5.3)

along with initial conditions:

y (x, 0) = 0, yt (x, 0) = x,

and exact solution:

y (x, t) = tan(xt) .

Using the double Ramadan group transform (DRGT )2 on both sides on (5.3), we obtain:

(DRGT )2[ytt]− (DRGT )2[
2x2

t
yyx] = 0,

(DRGT )2 [ytt] = (DRGT )2[
2x2

t
yyx],

p2

v2
K (s, p, u, v)− p

v2
K (s, 0, u, 0)− 1

v

∂K (s, 0, u, 0)

∂t
= (DRGT )2[

2x2

t
yyx],
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K (s, p, u, v) =
1

p
K (s, 0, u, 0) +

v

p2
∂K (s, 0, u, 0)

∂t
+
v2

p2
(DRGT )2[

2x2

t
yyx],

where,

K (s, 0, u, 0) = (RG) [y (x, 0) ; (s, 0, u, 0)] = 0,

∂K (s, 0, u, 0)

∂t
= (RG) [yt (x, 0) ; (s, 0, u, 0)] =

u

s2
,

K (s, p, u, v) =
uv

p2v2
+
v2

p2
(DRGT )2

[
2x2

t
yyx

]
,

using the inverse of the double Ramadan group transform on both sides, we obtain:

y (x, t) = (DRGT )
−1
2

[
uv

p2v2

]
+ (DRGT )

−1
2

[
v2

p2
(DRGT )2

[
2x2

t
yyx

]]
.

This technique presents solutions as an infinite series given by

y (x, t) =

∞∑
n=0

yn(x, t).

The term yn should be computed recursively, and the nonlinear term yyx is decomposed as follows:

yyx =
∞∑

n=0

An.

∞∑
n=0

yn (x, t) = tx+ (DRGT )
−1
2

[
v2

p2
(DRGT )2

[
2x2

t

∞∑
n=0

An

]]
.

By comparing both sides, we get:

y0 (x, t) = (DRGT )
−1
2

[
uv

p2v2

]
= tx,

yn+1 (x, t) = (DRGT )
−1
2

[
v2

p2
(DRGT )2

[
2x2

t
An

] ]
, n≥ 0.

Using the Accelerated Adomian polynomials formula

A0 = y0y0x,

A1 = y0y1x + y1y0x + y1y1x,

A2 = y0y2x + y1y2x + y2y0x + y2y1x + y2y2x.

Then,

y1 (x, t) =
t3x3

3
,

y2 (x, t) =
1

315
t5x5

(
42 + 5t2x2

)
,

y3 (x, t) =
t7x7(1621620 + 570570t2x2 + 109746t4x4 + 13860t6x6 + 715t8x8)

42567525
,
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y (x, t) (approximate) = y0 + y1 + y2 + y3

= tx+
t3x3

3
+

42t5ux5 + 5t7ux7

315u

+
1621620t7ux7 + 570570t9ux9 + 109746t11ux11 + 13860t13ux13 + 715t15ux15

42567525u
,

= tx+
t3x3

3
+

42t5x5 + 5t7x7

315

+
1621620t7x7 + 570570t9x9 + 109746t11x11 + 13860t13x13 + 715t15x15

42567525
.

y (x, t) (approximate) = y0 + y1 + y2 + y3

= tx+
t3x3

3
+

2t5x5

15
+

17t7x7

315
+

38t9x9

2835
+

134t11x11

51975
+

4t13x13

12285
+
t15x15

59535
.

And, the first four terms of the double Elzaki Transform decomposition [25], is provided by:

u (x, t) = tx+
t3x3

3
+

2t5x5

15
+

17t7x7

315
.

In closed form, the solution is as follows:

y (x, t) = tan(xt).

Clearly, my suggested approach, the double Ramadan Group Transform(DRGT)2, achieves faster acceleration using
the same number of terms (four terms) compared to the Double Elzaki Transform.

Table 4. Comparison between the approximate and absolute error for using (DRGT )2 combined
with Adomian decomposition method against Double Elzaki Transform with regular Adomian using
four iterations (using three iterations at t = 0.1).

Double Elzaki Transform (DRGT)2 with
with regular Adomian accelerated Adomian
using four iterations using four iterations

t = 0.1 t = 0.1
x Exact Approximate A. Error Approximate A. Error
0 0 0 0 0 0
0.1 0.010000333346667209 0.010000333346667207 1.735× 10−18 0.010000333346667207 1.735× 10−18

0.2 0.020002667093402426 0.02000266709340242 6.939× 10−18 0.020002667093402426 0.0
0.3 0.03000900324118072 0.03000900324118029 4.302× 10−16 0.030009003241180554 1.665× 10−16

0.4 0.04002134699551457 0.040021346995508834 5.738× 10−15 0.040021346995512345 2.227× 10−15

0.5 0.05004170837553879 0.050041708375496034 4.276× 10−14 0.05004170837552223 1.656× 10−14

0.6 0.0600721038312973 0.060072103831076584 2.207× 10−13 0.06007210383121176 8.554× 10−14

0.7 0.07011455787200271 0.07011455787111845 8.843× 10−13 0.07011455787165985 3.429× 10−13

0.8 0.08017110470807257 0.08017110470512967 2.943× 10−12 0.08017110470693092 1.142× 10−12

0.9 0.09024378990978546 0.09024378990128486 8.501× 10−12 0.09024378990648589 3.3× 10−12

1.0 0.10033467208545055 0.10033467206349207 2.196× 10−11 0.10033467207692177 8.529× 10−12

According to Table 4, the (DRGT )2 method with Accelerated Adomain achieves greater accuracy than the Double
Elzaki Transform method using Adomian decomposition at the same time value oft = 0.1. Despite both methods
employing the same number of iterations, smaller time values consistently yield better accuracy for both (DRGT )2
with Accelerated Adomain and Double Elzaki Transform with Adomian decomposition.
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6. Conclusion

Combining the accelerated Adomian decomposition method with the double Ramadan group transform method
(DRGT )2 results in a highly effective solution for solving nonlinear partial differential equations. As shown in the
tabulated results, the variant of the accelerated Adomian method provides greater accuracy compared to the standard
Adomian method when combined with the double Ramadan transform. This method can also be used for higher-
order nonlinear partial differential equations. This study combines the Double Ramadan Group Transform with
the accelerated Adomian Decomposition Method to solve nonlinear PDEs, improving accuracy and computational
efficiency. The method addresses challenges like slow convergence and complex nonlinear terms, offering a new approach
for solving complex PDEs with broad applications in science and engineering.
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