Research Paper C
Computational Methods for Differential Equations

http://cmde.tabrizu.ac.ir
Vol. *, No. *, * pp. 1-28

DOI:10.22034/cmde.2025.61994.2712

A novel high-order approximation method for higher-dimensional time-fractional reaction-
diffusion problems with weak initial singularity

Richa Singh!, Anshima Singh?2*, Sunil Kumar!, and Jesus Vigo-Aguiar?
!Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India.
2Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India.

3Department of Applied Mathematics, University of Salamanca, Salamanca, Spain.

Abstract - ~

The objective of this manuscript is to construct and analyze a fully discrete method to approximate one and two
dimensional time-fractional reaction-diffusion equations defined in Caputo sense. The current approach combines
Alikhanov’s L2-1¢ formula on a non-uniform graded mesh to discretize the time-fractional Caputo derivative and
the discretization of the space variables using a cubic spline difference scheme. The two-dimensional problem
is then separated into two one-dimensional problems using the alternating direction implicit (ADI) approach.
The theoretical analysis which consists of both stability and convergence has been provided for both one and
two-dimensional problems. Further, in order to illustrate the accuracy and efficiency of the proposed method,
numerical results for two test examples have been presented.
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1. INTRODUCTION

The use of fractional-order derivatives in physical and chemical equations has become increasingly popular in re-
cent years. Fractional differential equations are attracting a lot of interest because the special features of fractional
derivatives enhance the accuracy of models by incorporating memory and hereditary properties. Applications of these
equations extend across a wide range of fields, encompassing finance, control theory, biological systems, material
science, viscoelasticity, nuclear reactor dynamics, acoustics, electrical networks, physics, electromagnetics, fluid me-
chanics, and signal processing [4,716, 26, 38, 39]. In particular, the use of time-fractional reaction-diffusion equations,
where the first-order derivative is replaced with a fractional-order derivative, has become an important tool for model-
ing various phenomena, such as transport in porous media, anomalous diffusion, and non-Fickian behavior in chemical
reactions [1, 23, 45]. These equations have been instrumental in the extensive research conducted on the reaction and
diffusion processes of components in porous catalysts, as indicated in references [8, 11]. By employing such problems,
we can study the pollution caused by industrial waste material entering the atmosphere [15]. Additionally, reaction-
diffusion equations prove versatile in modeling real-world issues like chemical reactions [37], logistic population growth
[2], branching Brownian motion processes, and nuclear reactor theory.

The numerical solution of time-fractional reaction-diffusion equations is often necessary due to the difficulty in
finding analytic solutions. However, numerical methods for solving these equations can be computationally expensive,
particularly in higher dimensions, as the solution at each time level depends on the previous time levels. Therefore,
the development of stable and efficient numerical schemes for time-fractional reaction-diffusion equations, particularly
in two or higher dimensions, is an important and active area of research.
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Fractional models with variable coefficients are more flexible than fractional models with constant coefficients
in simulating some real-life phenomena. Therefore, In this paper, we consider the following two-dimensional time-
fractional variable coefficient reaction-diffusion equation (TFRDE) [35, 46]:

0w (s, y,t 0%w (s, y,t
opw(oe,,t) = pu () 2D () TS g,y t) + F, 1),
0 y
(32,9y,t) = Q x (0,T], @ C R?, (1.1)

with initial and boundary conditions

w(s¢,y,0) = ¢(x,y), (5,y) €=U, (12)
w(se,y,t) =0, (3,y) €0Q, 0<t <T, :
where 92 denotes the boundary of = (0,L) x (0,L) and
1 b ow(s,y, ) _
OXw (s, y,t) = / A e I ' 1.3
Fulnnd) = e | e o (1.3

defines the Caputo derivative of fractional order o € (0,1). Also, p1,p2 > 0, ¢ > 0, F and ¢ are sufficiently smooth
functions. Here, we employ the Caputo fractional derivative in place of others, as it naturally incorporates classical
initial conditions, making it more suitable for physical and engineering applications. Unlike the Riemann-Liouville (RL)
derivative, which requires fractional-order initial conditions with limited physical interpretation. Other derivatives,
such as Griinwald-Letnikov (GL), provide alternative formulations. While GL is useful for numerical computations, it
lacks smoothness for analytical approaches.

A typical solution to Egs. (1.1)-(1.2) is commonly known to display a singularity near the initial time ¢ = 0.
Moreover, its derivatives adhere to specified regularity conditions, as outlined in [43]

<e(1+t*7"), fori=0,1,2,3, (1.4)

7
i
where ¢ is a positive constant. The expression in Eq. (1.4) suggests that w(z,y,t) demonstrates a weak singularity
at t = 0, resulting in the unbounded behavior of the time derivative ‘%—ﬂ as t — 0T. The existence of a weak initial
singularity poses significant challenges, both practically and theoretically, for conventional numerical techniques. This
is due to their inherent limitations in accurately capturing the solution’s behavior in the proximity of singular points.
Consequently, the development of effective numerical methods that can adeptly handle the singularity at ¢ = 0 becomes
an intriguing and demanding task.

Several numerical approaches have been developed to handle the challenges associated with solving one and two-
dimensional time-fractional diffusion equations [3, 5, 7, 9, 12, 14, 20, 22, 24, 25, 30, 40, 42, 44, 47, 48]. Despite its
popularity, solutions to time-fractional differential equations often exhibit a lack of smoothness near the initial time
t = 0. This lack of smoothness poses challenges when employing a temporal standard uniform mesh, leading to a loss of
full accuracy. Achieving high accuracy typically requires a high regularity of the solution. In addressing this issue, non-
uniform meshes, such as those presented in [13, 18, 20, 21], have proven to be effective. These non-uniform meshes
concentrate more mesh points as time approaches zero. Consequently, these approaches have garnered significant
interest in the numerical analysis of time-fractional differential equations in recent years. For linear subdiffusion
equations involving Caputo derivatives of order « € (0, 1), a non-uniform mesh technique (also known as non-uniform
L1 formula) was developed by Stynes et al. [43] and Liao et al. [20]. They successfully established convergence of
O(K ’{2*”‘}), with an optimal grading parameter r = QTTQ based on reasonable regularities. Further improvements
were made in [13], where a fitted scheme with the same convergence order was constructed to enhance the grading
parameter to r = max{1, 2-2}. Alikhanov’s L2-1y formula [3], combined with a non-uniform mesh, has also been
explored in more recent works [6].

Previously various spline collocation methods have been used to approximate partial differential equations [10,
17, 34, 36, 38, 39]. In recent decades, the development of cubic spline difference schemes has greatly increased.
Papamichael et al. [31] solved a one-dimensional heat conduction equation using cubic spline technique having lower
order accuracy. Later, Raggett et al. [32] performed the same for a one-dimensional wave equation. Mohanty and Jain
an
BE
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[28] developed a solution with higher accuracy for one-dimensional quasi-linear parabolic equations. Various partial
differential equations of integer order and integral equations are solved using cubic splines in [27-29, 33]. However, it
has not yet been used much for fractional partial differential equations. Recently, Singh et al. [41] considered a cubic
spline difference scheme in space and the classical L1 scheme in time for approximating a one-dimensional fractional
reaction-diffusion equation. Note that the work in [41] is restricted to a one-dimensional problem and the lower order
L1 scheme is used to discretize the time-fractional derivative.

The motivation for this work is to construct and analyze a novel fully discrete method to approximate one and
two-dimensional time-fractional reaction-diffusion equations using Alikhanov’s L2-14 formula on non-uniform graded
mesh for temporal discretization and cubic spline difference scheme for spatial discretization. We have conducted a
comprehensive theoretical analysis encompassing both stability and convergence aspects for problems in both one and
two dimensions.

Further, to show the method’s accuracy and efficiency, numerical results are provided which agree with the theo-
retical results.

The paper is arranged as follows: In section 2, we first present some auxiliary lemmas and then develop numerical
methods for solving one and two-dimensional time-fractional reaction-diffusion equations. In section 3, we give a
comprehensive theoretical analysis encompassing both stability and convergence of the developed numerical methods.
In section 4, numerical illustrations are given to demonstrate the accuracy and effectiveness of the proposed methods.
In section 5, some conclusions are given about the paper.

2. FULLY DISCRETE NUMERICAL SCHEMES

This section provides the fully discrete numerical schemes for problem (1.1)-(1.2) and its one-dimensional analogue.

2.1. Temporal discretization. Denoting a positive integer as K and a grading parameter as r (where r is greater
than or equal to 1), we define a graded mesh for j = 0,1,2,--- , K as t; = T(j/K)". The corresponding time step
is given by 7; = t; —t;_; for j = 1,2,--- , K. Additionally, for j = 0,1,2,--- , K — 1, and for a parameter 6 where
0 =1— /2, we define time point ¢;4, = t; + 07,47 for j =0,1,2,--- , K — 1.

Defining the maximum time-step as 7 = 1g1aXK Tj; We 1ntroduce the time step ratio B;

) K —

1, and designate the maximum time step ratio as B = L ax 1B The L2-1y formula on non-uniform graded
<G<K-—

mesh approximation of Caputo time-fractional derivative of a function v(t) € C[0,T] N C3(0’T]’ at point tj g, j =

0,1,---,K — 1 is given following [19]

J

e} o i+0

0 U(tj+0) = J+1 Z _]l 1 (tl) _Tj,ov(to) —|—Ri+ ) (2.1)
=1

l1—a

where the coefficients are defined as r§q = 71 1b0a,0 having b ; = h i1 for j >0,

i1 (05 +aSo) i=0,
forj > 1, rj; = Ti+1(b tag, 1 — a;{i), 1<i<j—1,

Tit1 (bm ag; 1), i =7

with
1 tit1 J

o - ts > — —« , 0<i<i_ 1,
;i F(].—Oé) /tl (]+ C) C >1x)
. 1 2 bit1 J
P tive —C)7 (¢ —t; ,0<i<j—1,
2T — @) (Tig2 — 75) /t (o =O7HC ~tiaj2)dG, 0<i <y

and R{Jre is the local truncation error term, which is bounded by the following lemma.



4 R. SINGH, A. SINGH, S. KUMAR, AND J. V. AGUIAR

Lemma 2.1. [6] If v € C[0,T]N C3(0,T) and satisfies the conditions specified in (1.4). The local truncation error
Riw, of the approzimation (2.1) is bounded as follows

‘R{*a‘ <t KBl 0 <j< K -1, (2.2)
where 0 < 0 < 1.
Lemma 2.2. [6] Assuming 1 — 5 < 0 < 1 and that the local mesh ratio B; = T’T% for1 < j < K — 1 satisfies
3 < B; <62, then

1). r L tive 0, j>0.

“Ti-a)

(2). (20 =1y —0ry > 0.

(3). riy > 150, § = 1.

(

B; o
4). If B}, (Bi— 1+1)28i+1f0T2SZ§J with j > 2 then r$,_; <rf,.
1 B; (B; +1
(5). Ifl’a’j{1 (2 -3 + B; (B; +2)> > B, (B; +1)

B+ D) for2 < j <K, then (20 — 1)7“]% — 97“%,1 > 0.

At point ¢ = tj,¢, problem (1.1) becomes

932wj+6(%a y) j+0 Pwit(x,y)
032 e Oy?
(r,y) €Q, j=0,1,..., K — 1,

o w0 (se,y) = pl — ¢ OwI T (5e,y) + FI0 (52, y), (2.3)

j+6

where we denote wj+9(%7 y) = w(%7y7tj+9)a p{+9 = pl(tj+9)7 pg—i_a = pQ(tj+9)7 and Fj+9(%a y) = F(%vyvtj-‘re)'
Now using L2-1y approximation of Eq. (2.1) in Eq. (2.3) we get the following semi-discrete scheme

+0 82wj+9(% y)

r w7+1 (5¢,y) ZJ: —7"][ 1) l(%,y)—rﬁow (3,y) = 9522 + %’+9
I=1
PO o ) )+ REY, () €0, 0S5 <K 1. (2.4
Further,
P o)~ D ) — ) = 0 G =
=1
P 0393+ ) + R RS, () €0, 0TS K1

where w?? = §w/*! + (1 — §)w? and a bound for Rg’a can be obtained by using the following Lemma 2.3.

Lemma 2.3. For v(t) € C%[0,T), subsequent condition follows

|lov(tjpr) + (1 — 0)o(ty) — v(t4e)| <

2.2. Spatial discretization. In this subsection we give spatial discretization of both one and two-dimensional prob-
lems using cubic spline finite difference scheme.

(=)=
E)NE
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2.2.1. One-dimensional problem. The one-dimensional analogue of problem (1.1)-(1.2) can be written as

2
O w(oe,t) = p(t)% — q()w(se,1) + F(5,1), (5,1) € (0,L) x (0,7], (2.6)
with initial and boundary conditions
w(s,0) = ¢(32), » € [0,1], (2.7)

w(0,t) =w(k,t) =0, t € (0,7T].

Similarly, one-dimensional time-fractional analogue of Eq. (2.5) is given as

j 2,,7,0
‘ 92w (5 , ‘ , . _
et (o) = 3 (9 = 5w (30) — 5w () = p”eA — ¢ w? (30) + FIT0(30) + RIT + RYY,

J>J l 75l 932

=1
w' (%) = ¢(x), »€[0,L], (2.10)
w(0) =w/(L) =0, 1<j<K. (2.11)

To discretize problem (2.9), take a uniform mesh of (M + 1) points for spatial domain [0, L]. Defining sz, = mh,
0 <m < M, where h = % Let w(s¢,t) denote the exact solution of problem (2.6). For 0 < m < M and 0 < j < K,

we shall use the notation w(s¢y,t;) = wi,. Defining D), = {w|(wo, w1, -+, W), wo = wpr = 0}.
Suppose ,,S;,0(5) is the cubic spline interpolate defined on [s¢,, s¢m41], m =0,1,..., M — 1 and at time t;4¢, for
given approximation (Wﬂf)ﬂl\fzo of the function w’?(5) at the nodal points s, s, ..., 2. We have
; — )3 ; - 3 ; h? o\ (5 — %)
mS — P_],@ (%m+1 %) Pj,e (% %m) W],9 o _P],g m+1
]79(%) m 6h + m+1 6h + m 6 m h
; h? _. (3¢ — 5em)
,0 ,0 m
+ (szﬂ-l_GPrJn-&-l) — Vo € (s, myr], 0<m <M -1, (2.12)

where PJ;? = mS;’ o(5m), 0 <m < M — 1. Using Eq. (2.12), we can obtain the cubic spline identity relation given by

Wil —owil Wi 1 45, 1
+1 —1 ,0 ,0 ,0
which ensures the continuity of ,,.57 () at the interior points.

We rewrite the semi-discrete problem (2.9) at sc = sz, as follows

02w (52,,) 1 [

92 - pj+0

J
Tjo'jjwj+1(%m) - Z(T}X,l - Tgo‘fzf1)wl(%m) - T;‘X,owo(%m)

=1

+ 0w (56,) — FI40(50,) + RITO 4+ RE? | (2.14)

As the solution w(sr,t) of problem (2.6) at ¢t = t;1¢ is approximated by the cubic spline ,,S5;9(sr), it follows that

1 _ pjb . . 82w (5¢,,)
m j,e(%m) = P);% is an approximation to =——_»=>. Hence, from Eq. (2.14), we set
, 1 . J . , .
0 l 01174,0 0
Pl szg [rﬁjW,{fl — E (r3 =13 )Wh — TJO-fOan + @ TPWL — pit (2.15)
1=1
Thus, we have
. w0 (54,,)
0
Pyt = S R, (2.16)

where R} = R{w + Ré’e.
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Now substitution of Eq. (2.15) in Eq. (2.13) gives
J
PO HWIE =N " (r5y = v VHWY, = rS HWD, — p OS2 Wie 4+ ¢ P HW)Y = HFJY,
=1

1<m<M-10<j<K-1, (2.17)
W, = ¢(3am), 0<m < M, (2.18)
Wi =0, Wi, =0, 1<j<K, (2.19)

where H is one-dimensional cubic spline operator given as

1y7d v o lyyd
HW), = Winoa &+ §Win + gWinpr, 1sm= M1, (2.20)
W, m=0,M,
which can also be defined as
) h? .
HW = (1 + 663) Wi, (2.21)
where
W oW 4+ W
SEWI = L = o (2.22)
Lemma 2.4. Suppose R}, denotes the local truncation error of (2.17)-(2.19). Then
Ri =0 (h2, T2 0K mi“{3—avm}) for 0<j <K 1. (2.23)

Proof. Observe that Eq. (2.13) is equivalent to Eq. (2.17). So, the local truncation error of Eq. (2.13) is given by
Ry = 07 Gem1) = 207 ) + 0 G 1)) = HP3 (2.24)
m o p2 w Am+1 w HAm w Xm—1 m ’

which on using Eq. (2.16) yields

- 1. . : 0%wi? (5,
Ry, = ﬁ[wj’e(%M-H) - 2“’]70(%%1) -+ w]’o(%m—l)] -H 8%(2 ) + R%
Now by means of Taylor expansions, we can have the proof. O

2.2.2. Two-dimensional discretization. Take uniform meshes of (M; + 1) and (Ms + 1) points for spatial domain

(5,y) € @ = (0,L) x (0,L). We define s, = mh,.,, 0 < m < M, and y,, = nhy, 0 < n < M, where h,, = MLI and

hy = MLZ Let w(s¢,y,t) denote the exact solution of problem (1.1). For 0 <m < M, 0<n < My, and 0 < j < K,
we shall use the notation w(sm, yn,t;) = wﬁnn Further, we define

ol = wl A dwl o dwd L, 1<m <M -1, (2.25)
xWmn — - .
’ U)Jm)n, m = 07 M17
1,0 4 1,9

Hyuy, = 87t ¥ §0hn + s, 1SS My 2.26)

’ wgn,na n =0, Ma,

which can also be defined as

. h? .

Howl, = (1 + 6”51) w, s (2.27)

(=)=
E)NE
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Hngnn = ( hy 62) mn7

where
J _ J J
52 Y o wmfl,n me,n + wm+1,n
Wi o h2 ’
J _ 7 J
62 j _ wm,n—l zwm,n + wm,n-{-l
ywm n h2 .

Theorem 2.5. Consider f(s) € C*[5¢;,_1, »i11]. Then
]‘ 1 11 1 ]‘ f 4) (gl)
5 7 (sti1) + A" () + f7 (e-1)] — 75 [f(eit1) = 2f () + f(56-1)] = o &€

Proof. By Taylor expansions, we have

feigr) = f(a) + hoef ' (56) + ”f”( )+lf”’

/ f(4) (32 + shy.) (1 — 5)3ds,

3

h? h hL [ (
i 1) = f(3) — 1(3g:) 4 25 £ (30} — 225 F111 (5 4 % @ (30— g — )3ds.
J(m1) = F(55) = hocf () + 2" () = <1>+3!/0f (4= sho)(1 = 5)"d

Adding Eq. (2.32) and (2.33) we get

2 1
T U G80) = 200020 + o) = /G + 5 [ [0 #5h) 59— sh)] (1= )%

Similarly, by Taylor expansions we get

f"Geigr) = [ (54) + hae f (52) / FO s 4 sh,.) (1 — s)ds,

f(tim1) = [ (5a) = haef"" (56) + 2—’;/0 W (56 — sh,.) (1 — s)ds.

From the above two equations we obtain
2

é[f//(%i-i-l) +4f" () + [ (iea)] =

Subtracting Eq. (2.34) from Eq. (2.37) and using mean value theorem of integration we obtain

é[f“mm FAFGa) L )] — i) — 26 G) + S Gei)]
};' [f<4>(% Fh) 4 [ (e sh)] (1 - )1~ (1~ )%]ds

:34!( 7D Gei + 3hic) + F9 (s — )| /01(1—5)[1—(1—3)2]ds

,hi Wey 3 0.1 )
*ﬁf (El)a 56( ) )a fl S

This completes the proof.

(%i—la %¢+1)~

Eq. (2.31) can be viewed as
§(6I +B28%) " (i) — 8% (54) = (Ra)

m,n’

which is same as

(%1'717 %i+1)'

f”(%i)+’;/ [f< (%i+sh%)+f(4)(%i—sh,{)] (1 — s)ds.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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(155 £/(e) = 02£() + (Ra)y 0
Multiplying H_ ! on both side of above equation
[ (Ga) = H'62f(56) 4+ (Ra) - (2.38)
Utilizing result (2.38) for space derivatives in Eq. (2.5) at points (s¢y, yn) We get

J

a , j+1 2 : a a 1 0 G+0 rr—1¢2 G+0 rr—1¢2y, 4,0
T iWmmn — (rj7l - Tj,lfl)wmm - T] 0Wm,n = (pl H% 6;«( + Hy 6y)wm,n (239)
=1
j+0 j,0 j+6 j+0 j,0
— ¢ xwl? + FIT 4+ RIY 4+ R+ R,

(2.40)

forl1<m< M -1, 1<n<M—1 0<j<K-—1, where Fﬂ,:“,(f = FI0 (50, yn), w{n% = w? (54, yn), and
R = (Ra)mn + (Ry),, ,, such that
(Ra)inn = O(h%), (Ry),, ,, = O(hy).
This implies
R < c(hl + h3). (2.41)
Further, Eq. (2.39) reduces to
J
H.H, T“wjﬂ Z(rﬁl —r?’lfl)wﬁnyn _T]O'fow%,n = (p] +eH 52 +p +GH (52)w]9 (2.42)
1=1
~ H Hywhl? + H HFi} + R+ RY + R,
1<m<M-1,1<n<My—1,0<j<K—1.
By rewriting the above equation, we obtain

BH,. Hywh — 0 H,62 + pi P H 02wl = (1— 0)(p) " Hyo2 + py " H,.0% — H,.H,)
X wl,  + Z e ) H Hypwl, 4 78 Hyw', |+ H HyFLH + RIT 4+ Ry + R,

lgmng—l,1§n§M2—1,0§j§K—1, (2.43)

where 8 = (r;?fj + 9) >0
For constructing an ADI scheme, we add the following perturbation term

02 . . - 4 , A

S (wifh — ) = (RE),, (244)
in Eq. (2.43) to get

. , 62

BH%Hywﬁrlz . 9(p{+9Hy62 + p2+9H 62)w3+1 + 3 p]+9 ]+96i6§w¥n+71l

= (1—0)(p] " H,0% + p} ' H..62 — +Z — 78y ) H Hywl,

Syl + HocHy L + 2 O P 8200, + R 4 R + R + (RE)

1<m<M —1,0<n<My—1,0<j<K—1. (2.45)

(=)=
E)NE
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Multiplying both sides of Eq. (2.45) by % gives

; 0 o 0 02 o ito
H Hywlt} - E(pjl+ H,6% + py P H o 62)wifh + 7 ey S AR P A A

J
Z — ) H Hyw!,

1 o O 0 R Ry (R
ﬂ roo H o Hywd, +BH%Hng;f ﬁpj+0 ) 06202 mn+Rf6 +Rﬁ’ + g +( 6) -,
1<m<M-1,1<n<My—1,0<j<K—1.

:ﬂ’f)( +9H 52_|_ +9H 62

Q\H

Equivalently, we have

0 0 . 1-6
<H;¢ - Pi+€5;24> (Hy - BZ%HJ;) wlfl = %( A H, 02 + ]+9H,45§ - H. . Hy)w),,

1 J 1, 02 1o iio 1 4 ~
B Z re ) H Hywl,  + BrmH%Hyw?M + ﬁ2p{+ pyt0026%w], , + BH%Hng;f +RIFL(2.46)
1<m gM—1 1<n<My—1,0<j<K-1,
where
- RITY R RO (RIT)
Rifh = ——+ 22+ 2+ mn 2.47
’ B B B B (247)

Removing the truncation error term from Eq. (2.46), we obtain

(e Sttt (m, - Spae0) wigh = OOt o 15— s,

B
J
Z("ﬁz = T?flq)H%Hyern,n

IBJOHHWO +@” o 5252W,JM+5H LCHYFITY(2.48)
1<m<M—1,1<n<My—1,0<j<K—1,

where W71 is the numerical approximation of solution w?] +1

Suppose
0 . ‘
(Hy — ﬂp%JrG(Sj) Wi =Wy . 1<m<M —1,1<n<M—1. (2.49)
Now, we will first calculate Wy, ,, for fixed values of n € {1,2,..., M5 — 1} as follows
9 1-6) » L1 4
(#1 = G2 ) Wi = OS2 0 0% 4 H0% - 320 P He
1 . o 0% 10 4052 2000
+ BTJ%OH%H yWin, szl Py 0,.0,W5
1
+BH W H FIH, 1<m< M —1, (2.50)
with the boundary conditions
0 .
Wg, = (Hy - ﬂp%—w&i) wiitt, (2.51)

(&)
ENE
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0 ite 1
Wim = (H ~ 5P Pyt 52) Wit (2.52)
After obtaining Wy, ,,, we can calculate VVH‘1 using Eq. (2.49) for fixed values of m € {1, 2, ..., M; — 1} with boundary
conditions
Wity =witl =o. (2.53)

3. THEORETICAL ANALYSIS

Here, we will discuss stability and convergence analysis of the developed methods for both 1D and 2D problems. We

start by proving a lemma, which is valuable for examining the stability and convergence of the proposed schemes.

Lemma 3.1. Assuming 0 =1 — 5 and that the local mesh ratio B; = % for1 < j < K —1 satisfies % < Bj €62,
J

then

1 o _
W:(’)(Tjﬂ),forOS]SK—l. (3.1)
3,
Proof. Tt is trivial that for j = 0,
91—04 _
rg,() = 1—1(2 — O[) T Ot7 (32)
which simplifies to
1 re—o)
a 91—0& T (33)

for j > 1,

o 1 [e% (o4 1 017& baj 1
rig = —— (af; +05;m 1)27@ L“(2— o |
Tj+1

which gives

N 91—&
55 = L(2—a) ]-I—lj (3.4)
where
1 -1 1 2—a 1 1 11—«
=1 14+ — 14— —1l—= (14 = 1
7 +(+sj) W) s [0ea) ]}
where B; = Furthermore utilizing the established bounds of B; for 1 < j < K —1, where the values are confined

within the range 3 < B, < 62 as established in [6], we can derive the corresponding bounds of J as
1.6597542 < J < 13.215168. (3.5)

By employing the relation (3.3) and integrating the provided bounds of J from (3.5) into the expression (3.4), we
derive the following result:

1
<ctihg, (3.6)

o
TJ J

where ¢ > 0 is a generic constant. Hence this gives the Lemma. O

3.1. For one-dimensional problem.

(=)=
E)NE
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3.1.1. Stability analysis. Suppose W7 be the perturbed solution of the cubic spline difference scheme (2.17)-(2.19).
Letﬁ%:Wg;—W%, 1<m< M -1, 1<j<K-—1.Then
J

O HOLT =N (% — vy ) HOL, — rJO-fOHﬂ?n] =p 062930 — P HWIY 1<m<M-1,0<j<K-1. (3.7)
=1

The grid function 97 () is defined as

v, »E€ (%m7%7%m+%]7

9 (5) = (3.8)
0, %6[0,%}7%6(}_,—%,}4},
forl<j<Kandl1<m<M —1.
Now 97 (5) is expressed as a Fourier series
0 2rLig s
W)= Y lin)e L, 1<j<K, (3.9)
i1:—00
where
1 B — 2wy
= 7/ W(x)e L dse. (3.10)
L Jo
By the definition of Ly discrete norm and Parseval’s equality, we get
19715 = hlo.l> =1 > /()P (3.11)
m=1 11=—00
Suppose the solution of (3.7) has following form
9 = pletimh (3.12)

where 0 = 2’”1 . Substituting Eq. (3.12) in Eq. (3.7) we get

J
[r}l’jul + H(pﬁ'eug + qj'wz/l)] nﬁ'l = Z(T?J — rzl,l)nlul + r;’fonom —(1-06)(p J+o ]1/2 + q’+6nju1) 0<j<K-1, (3.13)
=1

which gives

, 1 J o ,
it = : Q=) ('’ i+o 3.14
where
1 5 (61h 4 . 5 (61h
n=g {2005 < 5 ) + 1} , V2 = ggsin® | —- ). (3.15)

It is easy to show that vy > % and 19 > 0.
Lemma 3.2. Let 1/ be the solution of (3.14). Then |n?| < |n°|, 1<j < K.

Proof. We will prove this using mathematical induction. Put 5 =0 in (3.14) to get
1
i ov1 + 0(pPve + ¢fr)

In'| = [ ] [r§ov1 + (1= 0)(p"va + ¢°v1)] In°). (3.16)

It is easy to observe that 1 — 6 < 6. Thus, using the fact r§, > 0, we get
' < [n°|. (3.17)

(&)
ENE
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Suppose |n¢| < |[n°], for all 1 < d < j. Putting d = j + 1 in Eq. (3.14) and using Lemma 2.2 with these assumptions
we get
|77j+1| < ! zj:(rq - )V1 +r&v + (1 —0)(p j+6V2 + q]+0V1) |770‘
- [Tﬁjyl + g(pj+0,/2 + qj+0u1)] i Jil Jit—=1 7,0
n(rfy —rfo) +irfy + 0 v + ¢ n°l = 1"l
- [re 1 + 0(pi+ 0, 4 g7 +011))] -

Thus, we have |n7] < [n°], 1 <j < K.
This completes the proof. O

Using Eq. (3.11) and Lemma 3.2, we get

19713 = L Z i) <L Y )P = 1903

11 =—00 11 =—00

Thus, [|97]]2 < [|9°]]2, 1 < j < K. Hence, the numerical scheme given by (2.17)-(2.19) is unconditionally stable.

3.1.2. Convergence analysis. In this section, we discuss convergence analysis of numerical scheme (2.17)-(2.19).
Recall that the exact solution of the considered problem (2.6)-(2.8) is w(>y, t;) at 3 = 3, and t = t; and W7, is
the approximate value of w (56, t;). Now we define &, = wj, — W, 1 <m < M; —1, 1 < j < K. Since w(sm,t;)
is the exact solution, from (2.17)- (2 19), we have
J
1o Bl = 308, — 18 Hul, — 18 HuS, — ORI ¢ Hul? — HEJ + R,

=1
l<m<M-1,0<j<K-1, (3.18)
wh, = G(56m), 0 <m < M, (3.19)
wh =0, wy =0, 1<j <K (3.20)

Using (2.17)-(2.19), it is evident that the error equation is given by

J
(r$; + 07T HEH = (8= v ) HE, — 0p7 002 = (1 - 0)p'06%8), — (1 - 0)¢’ P HE), + R,

=1
1<m<M-1,0<4<K-—1, (3.21)
€ =0,0<m<M, (3.22)
€=0,¢,=01<j<K. (3.23)

Eq. (3.21) can be restated as

g)qy+9

o : I (e, = 0 )it .
<1+9qa )Héfn“—z(r]’l L A YR U Ui I SR CEA)
T T

X @ @ Y
) =1 ) VY 753 ]a]

1<m<M-10<j<K-1,

where
. RI
R, = —*. (3.25)
T

Now, we prove a lemma which will provide the bound of 7A2Jm

(=)=
E)NE
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Lemma 3.3. Suppose that solution of (2.6)-(2.8) w(x,t) satisfies the conditions given in (1.4) then RJ, satisfies the
following bound

.

< c(h? 4 gmintarel)
Proof. In Eq. (3.25) using Lemmas 2.4, and and a result from [43, Eq. (5.1), p.1069], we have

[Ra,| < e1(h? + K72) + cary 0y B min(3=ered, (3.26)
Now, we will bound the last term of Eq. (3.26) as

j+1t]+9K min{3—a,ra} < 7 +1( . gTijl)*och min{3—a,ra}

< T]+1(07j+1)_aK_ min{3—a,ra}
<cK~ min{37o¢,ra}. (327)
Finally using Eq. (3.27) in Eq. (3.26) we get our desired theorem. O

Now, we proceed for the convergence analysis. The functions &7 () and R7 () are defined as

. 7 %€<%m,;,%m+;},m:1727...7M1—1,
() = B
0, xe [O,g}, xe (L— g,L],
and
i) — Ri . e ( %,%m%}, m=1,2,..., M =1,
0, xe [0 } xe (L—%,L},
for1 <j<K. X
Now &7(5) and R (3) can be expressed as a Fourier series
. > . 2meLig > . O . 2mLig >
Fi)= Y e L ,RiG)= Y §lie L ,
ilzfoo 1:1:700
where
—2meig
/“e s,
—2meLig >
§7(iy) = — Rj(%)e L ds
L 0

By definition of L, discrete norm and Parseval’s equality we get

M-—1 0o
€915 = D plgnl> =1 > @), (3.28)

m=1 i1=—00
M-1 e}
IR |5 = Z hREP =L Y (1§ () (3.29)
i1=—00
for1 <j<K.
Let &, and RJ, have following forms
=, Ry, = ettt (3.30)
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where 6, = 2”% Substituting (3.30) in (3.24) we get

, 1 L (r =Sy (1-0) ; .
J+1 j,l—1) 1 Jj+60, 7 Jj+1
_ - 0<j<K-1. (331
! [ (1+6q7+9)+6p7+9 } l:; T3 " TS @ 4 )+ 8 ]7 =7= (3:31)
757 7,7 B
As we know, the series on the right side of (3.29) is convergent; therefore, for some constant A > 0, we have
87] = [§7(i1)| < A7§'(ir)| = A7I8, 1 <j <K, (3.32)
where 7 = max 7.
1<G<K

Lemma 3.4. For some constant A > 0, it holds
| <3A(L+ 7)Y, 1<j<K. (3.33)
Proof. We will prove by mathematical induction on (3.31) and considering 7° = 0. For j = 0, we have
1
1 §

n= .
i (1 3) +

By Eq. (3.32) and using the fact vy > %, we get
In'| < 318*| < 3A(1+7)[§'] . (3.34)
Now, let us assume that
] < 3A(L+7)Y§, (3.35)
is true for 1 < d < j. Now putting d = j + 1 in Eq. (3.31) it follows that
i (e o
s [ (1+ 9q]+:> + 933;37 Vz] l; %m 1<k I+ (17%'0) e + )l + A

IN

T

KR O A e
|: (1+ qJ )+ Qp;A Z/2:| Tj,j

+ M( I 00 + 7)) (3A( +7)7181)) + AT|§

«
75

1 re 1-06), . . .
= [(( ) Al )<pf+%2+qf+%>> x (BA(L+7)715"]) + Arls!]|.
[ (1+ Ll'Ehad )+ P 1/2} 75,4 T4

Now, invoking Lemma, 2.2 and using the fact that 1 — 6 < 6, we get
[ < BA(L+ 1) |81 4+ 3A(1 + 7) (8
<3A(A+7) +7) 8
< BA(L 4778 (3.37)

Thus, we have the lemma. O

(3.36)

Theorem 3.5. Let w(s,t) be the solution of problem (2.6)-(2.8) satisfying the assumptions given in (1.4) and let
{W7,,0 <m < M,1 <n < K} be the solution of the discrete problem (2.17)-(2.19) on non-uniform graded mesh.
Then, the following result holds

ij B Wj||2 <ec (h2 + K min{2,ra}) . for1<j<K. (3.38)

(=)=
E)NE
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Proof. Combining Lemma 3.4 and Eq. (3.28), we have

lE7]13 < & ‘ Yo BAPA+T)YIS (i) = (B4)°(L+ 7)Y (RS (3.39)

Further, from Eq. (3.29) together with Lemma 3.3, we have

IRz < VMR ¢ (B2 + K~ mn(zrel)

<eVL (K* min{2,ra} | h2) L 1<j<K. (3.40)
Using (3.40) in (3.39) we get
4 , . 2

I1€7]12 < (34)2e77 2L (K— min{2,ra} | hz) . (3.41)
As jT < T, we get

||§J”2 <B (K— min{2,ra} + h2) 7 (342)

where B = 3Ac¢yv/Le™.
Hence, we have the theorem. O

3.2. For two-dimensional problem.

3.2.1. Truncation error. Now we will estimate the value of truncation error denoted R, ,, described in Eq. (2.48) as

s R LR Ry (R )m,n_ (3.43)
e B B B 5

Theorem 3.6. Suppose that solution of (1.1)-(1.2) w(x,y,t) satisfies the conditions given in (1.4) then 753,;“% satisfies
the following bound

‘ﬁij,{‘ <ec (K* min{ldaral 4 p2 4 hi) .

Proof. From equation (2.47) and the condition 7%, > 0 we deduce that

j+0 j,0 Jj+1
e <R+ [Rone | B | e
B e 5 B g
6 R0 Rt
"5 T34 "5 "5
Now we will bound each term individually in Eq. (3.44).
Using Lemma 3.1 in Eq. (3.44) it gives
Rj+9 —a — min{3—
rf?‘, < et K {3-ara}
3
= o7y (t + 07y 4q) K i {Bmered
< CTJ‘OiH (eTj+1>_aK_ min{3—a,ra}
<cK~ min{37a,roz}' (345)
Invoking Lemma 3.1 alongside Eq. (2.41) to get
Rm,n
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Afterwards combining Lemma 2.3, Lemma 3.1, and a result from [43, Eq. (5.1), p.1069], we get
7,0
< cK—(2+a)

Tid

Now, Lemma 3.1 with Eq. (2.44) give

(Ri*),, | < e+,
Finally by combining (3.45), (3.46), (3.47), and (3.48) into (3.44) we get our desired theorem.

(3.47)

(3.48)
U

3.2.2. Stability analysis. Suppose Wﬂnn be the perturbed solution of the cubic spline difference scheme (2.48). Let

0 =Wi = Wi, 1<m<M; —1,1<n<M;—1,1<j<K. Then

<H - %p 1+952) (Hy _% J+952> Do = O,fa)( YOH 0% 4 iU HL02 — HL H),
Ly ! 0> 1o j16.2 2 j
BZ | — T H HyY,, , + ﬂ 5o H H,9%, 521)1 Py 050,00,

l<m<M -1,1<n<My—1,0<j<K—1.
The function 97 (5,y) is defined as

ﬂgn,n’ ¥ € ( m—f m+1]a y e (yn—%ayn-t,-%}’
m=1,2.. M1, n=1,2,... My—1,

W (o, y) =
o0 =00, sefoty] xe (L—teLl,
yel oy ], ye(L-%1],
for1<j<K.
Now ¥/ (3, y) is expressed as a Fourier series
. i . 21 il%-‘ri?y
Yy = D>, (e (% L>,1s1§K,

11=—00 I9=—00

—2me
0 (i1, i9) = / / ¥ (52,y)e <L+L>d%dy.

By Lo discrete norm deﬁmtlon and Parseval’s equality we get

where

lel Mgfl o0 o0
19715 =">" > huhyl9h,, 7 =12 Y > (i)
m=1 n=1 11=—00 1g=—00

Suppose the solution of (3.49) has following form

19] =7 6(L91mh +102nhy )

where 91 = 21 y 92 = 27”2.

Substituting (3.54) in (3.49) we get

_ 0 iio. - : 1-0), 1o . 0
<V1 " ﬁp{ww)) <V2 + Pé% > = *g(lﬁww& + 93 i+ o)

J
2L 0% it jto-
+ lZ(Tﬁz — o on +rion’ | + ﬁQp{ JARZIU

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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which gives

. 1 1/1V2 J
it = ; St e 077
(oo 520%5) (o o) | 7\ 7T+
1-9 Y R ,
_ 3 )(p{+ev g + pb 0Dy + Do) + 52p§+9p§+9V3V477’], 0<j<K-1,

where

- 1 01h,. .1 o [ O2hy

= 3{2005 < 5 )—&-1} , V2—3|:2COS ( 5 + 11,
~ 4 2 91h;¢ ~ 4 2 92hy

V3 = @ S1n ( B ) , Vg = @Sln D) .

Note that vy, 05 > % and 3,04 > 0.

Lemma 3.7. Let 1/ be the solution of (3.56). Then,
Pl <In’l, 1<j< K.
Proof. We will prove this using mathematical induction. Put j = 0 in (3.56) to get
1 1 nin (1-0), 4. 62
=T 0,67 ~ 0,07 ﬁTO’O_T
<V1 + §P11/3> (1/2 + 5P2V4>

As 1§y >0and 0 < (1 —-0) <6, we have

~ ~ ~ ~ ~ ~ 2 ~ ~
| 1| - (V1V2 + %(p?V2V3 +ng1V4) + %P?pg%l@) |T]0| o)
/RIS =nl
(171 + %p?ﬁz’)) (92 + %pglh)

Now, let us assume that

In?] < |n°|, for all 1 <d < j.
Next, for d = j + 1, from Eq. (3.56) with Lemma 2.2 and assumptions (3.61), we get

[P <

: ne (EJ: )
)+
= N . \ h j l 1 7,0
(V1 + %p{“%) (Vg +Ep) 0 ) [ =

— . . 62 . ;
0~ ~ 0~ ~ _ 0 40~ ~
+ 3 (p]1+ Vo3 +p§+ g+ hig) + @p]ﬁ p§+ V3V4] |7IO|

_ i+6 - ~ 40~ - 9 _j+6~ ~
v + %(p{+ Dais + py i) + ﬁzP]lJr s | 0| =

- 9.7+0 ~ 0,3+0 = n’l.
(51 + 00") (52 + 594"

This completes the proof.
Using Eq. (3.53) and Lemma (3.7), we get

[97]|5 = 1.2 ZZ I’ (i1,42)|* < L? ZZ 1n°(ix,i0)|* = [19°[]3 -

11=—00 19=—00 11=—00 Ig=—00

(plirirs + PSpiing + i) + @p‘{pgﬁgm

)i

Thus, |[¥7]]2 < [[9°]|2, 1 < j < K. This shows the unconditional stability of the scheme given by (2.48).

17

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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3.2.3. Convergence analysis. The convergence analysis of (2.48) is covered in this section. We have

0 0 1-6) :
(H —ﬂW) (Hy—ﬁpwz) it - W<HHHH>

e S A o R -
Wherefm’n:wfn’ —Wmn, 1<m<M -1,1<n<M~—-1,1<j<K.
Now we define the functions R7 (s,y) and & (s, y), as

+%:|7 y e (ynféﬂyn+%i|a

Rﬁnn, %E(% m
,...,Ml—l, n:l,Q,...,M2—1
r

. =1,2 ,
RIey) = 0, €[0,2] ;e (L—2= L],
ye[O,%y},ye s A
and
& ., #E€ (%m_%,%m+%}, s (yn_%,yn_,_ﬂ,
(o y) = m=12,...,M;—1, n=1,2,..., My, — 1,
’ 0, we [0,2] e (L- 2L,
yelo ], ye (-1,
for1<j<K.

Further, & (5¢,y) and R7 (¢, y) can be stated as a Fourier series

So— 33 i (T,

i11=—00 19=—00
ﬁj(%vy) _ ii §j(i1,i2)ezm<il +if>’
11=—00 19=—00
where
1 (i, i) = / / (s, y)e _27”( L S )d%d%
§7(i1,10) = / / RJ (s¢,y)e 72“( L >d%dy

By definition of L, discrete norm and Parseval’s equality we get

Mi—1My—1 0o oo
€15 ="" > huhyl& P =12 D > (i, i)l (3.63)
m=1 n=1 1] =—00 t3=—00
M1 1M2 1 o0 o0 )
IR =" D huhy| Ry P =E D3 [§(i,d2)), (3.64)
m=1 n=1 i1=—00 fo=—00
for1<j<K. N
Suppose &/, .n and ’Rj », have following form
gn = n]e(Lelmh swF102nhy) 7’5’5]77, — §je(L91mh,{+L92nhy)’

(3.65)
[c )
(0] ¢
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where 0; = 274 9,

T 27”2 . Substituting (3.65) in (3.62) and using 7° = 0, we get

. 1 7y L (1—-0)
Wt = (i = ri—on’ — (3.66)
(V1+91+V)<V+01+9~)<ﬂ§] / B

x (p] ey + py i + i)y + Zzpﬁ@pé*%w + §j+1>, 0<j<K-1.
As we know, the series on the right side of (3.64) is convergent; therefore, for some constant A > 0, we have
|§7] = (87 (i1,42)| < ATI§ (i1,42)| = ATI§Y], 1< j < K. (3.67)
Lemma 3.8. For some constant A > 0, it holds
| <9A(L+ 7)Y, 1<j< K. (3.68)
Proof. We will prove by mathematical induction on (3.66). For j = 0 and taking 7° = 0, we have
= & :
<l71 + %p?f/:z) (172 + %pg%)

By Eq. (3.67) and using the fact vy, 75 > % we get

In'| < 9ATI§| < 9A(1 +7)[8] . (3.69)
Now, let us assume that
] < 9A(1 +7)Y|8"], (3.70)

is true for 1 <d < j.
Next, for d = j + 1, from Eq. (3.66) with Lemma 2.2, Eq. (3.67) and assumptions (3.70), we get

j+1 1 109 L &3 o o
I’ ™| < - ) Z(rj,l _Tj,lq) max |77 |

~ 0~ ~ 0~
(1/1 + %P{+ VS) <V2 + gpéJr B = 1sksj

1-6 s N . , 62 . ,
+ %(pﬁe Do + P 0 iy + o) |1 | + 62p{+6p§+91/31/4|77j| + A7‘|§1|>
1 N ¢ ) o
= o 4 0,005 N (5 1 0,0 ( B (155 = 750) B "7 +
(1/1 + 30 1/3> <V2 + 5P )

o . 927_204
X Dy + D1in) + PP iy + 9A(L + 7) |81 +AT|§1I>

32
: (ﬂlﬁz ((r§:; = 750) +07%) + Q(Pj Doty + ph
- [~ 40 ~ - JJ J,0 1
(1/1 + %p{+01/3) <V2 + gp%JrG ) g B
62
X D1g) + @ P baiy + 9A(1 + 7)7 |8 | + Ar|§! |> (3.71)

Again, invoking Lemma 2.2 will lead to
< 9AQL+ TV + 9475
<9A((1+7)7 +7) I8
< 9A(L+ 7)1 gL (3.72)

(&)
ENE
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Thus, we have the Lemma. O

Theorem 3.9. Assume that the problem (1.1)-(1.2) has a solution w(sz,y,t), which meets the assumptions provided
in (1.4) and let {W}, |0 <m < M;,0 <n < M, 1 <j < K} be the solution of cubic spline difference scheme (2.48).
Then, we have

lw! — Wil < ¢ (K‘ min{l+ara} | p2 | hi) L 1<j<K. (3.73)
Proof. Incorporating Lemma 3.8, Eq. (3.63), and Eq. (3.64), we get
1913 <E2 DN (942 +7)P (5 (i, i2)* = (94)*(1+ 1) [R5, (3.74)
7,‘1:700 i2:700

Now, utilizing Theorem (3.6) and Eq. (3.64), we have
IR?ll2 < v/Milier/ Moy (e (K mintretsed 4 p2 4 p2))
<L (K— min{re,1+a} | p2 h§) L 1<j<K. (3.75)
Using (3.75) in (3.74) we get
€715 < (04)26%7 (cL)? (K= mintroed 4 p2 4 p2)’
As jT < T, we obtain
€72 < By (K— min{ra,1+a} | p2 hj) 7

where B; = 9AcLe”.
Hence, we have the theorem. O

4. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate the accuracy and efficiency of the proposed method with
the help of two examples. We calculate the order of convergence for the given examples using Lo, and Lo errors. We
have compared the temporal order of convergence of the proposed method in one-dimension with the method described
in [41] using Lo, and Lo errors:

1

2

2
Ly(h,T) = ax. hz (5tm, t;) — w(sem,t5))"|

Loo(hﬂT) = 1%%XK1§E§A}§[—1 |W(%mvtj) - w(%mvtj” )

where W (s, t;) and w(s,,t;) are the approximate and exact solutions at the point (s¢,,t;) respectively.
The spatial order of convergence can be computed using the following formula

log(Li(2h, 7)) — log(Li(h,T))
log(2) ’

Coin ||, =
where | = 2, cc.
Similarly, the temporal order of convergence can be computed using the following formula
log(Ly(h, 27)) —log(Li(h, 7))
log(2) ’

Coin ||, =

where [ = 2, co.
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Further, the two-dimensional Ly and L, errors are defined as follows

Mi—1 Ms—1 2

2
Lg(h%,hy,T) = 1%2)(]( h%hy z_:l z_:l (W(%mvynatj) _w(%maynatj)) ,

Loo(hseyhy, ) = max max W (sm, Yn, tj) — w(em, Yn, t5)]

1<j<K 1<m<Mq-1
- = 1<n<Mg—1

where W (3¢, Yn, t;) and w(s4y, yn,t;) are the approximate and exact solutions respectively at the point (3¢, Yn, t;)-
Moreover, the spatial order of convergence can be computed using the following formula
 log(Li(2h, 2hy, 7)) — log(Li(hs, hy,T))
log(2)
Similarly, the temporal order of convergence can be computed using the following formula
log(L;(hse, by, 27)) — log(Li(hse, hy, T))
log(2) ’

Coin |,

Coin ||, =
where [ = 2, co.

TABLE 1. Ls-error and corresponding order of convergence at M; = My = 1000 for Example 4.1.

Uniform mesh Non-uniform mesh
a K  Ls-error Coin ||, CPU time(sec) Lo-error Coin ||, CPU time(sec)
0.3 80 7.2772e-03 2.12 5.6018e-05 2.13
160  8.1528e-03 6.14 1.4468e-05  1.9531 6.55
320 8.4037e-03 22.95 3.5102e-06  2.0432 22.95
640 8.1318e-03 84.58 7.6010e-07  2.2073 84.98
0.5 80 8.0002e-03 2.16 4.1073e-05 2.13
160 6.5787e-03  0.2822 6.45 1.0445e-05  1.9754 6.55
320 5.1537e-03  0.3522 22.86 2.6269e-06 1.9913 22.95
640 3.9108e-03  0.3981 83.63 6.5771e-07  1.9978 84.98
0.7 80 3.4938e-03 2.13 3.2372e-05 2.10
160 2.3109e-03  0.5963 6.18 8.3571e-06  1.9534 6.56
320 1.4859e-03  0.6371 22.76 2.1124e-06 1.9841 22.55
640 9.3939e-04.  0.6615 85.65 5.2987e-07  1.9952 84.14
0.9 80 6.4991e-04 2.15 1.6194e-05 2.11
160 3.5951e-04  0.8542 6.64 4.5043e-06  1.8461 6.25
320 1.9595e-04  0.8755 23.14 1.2150e-06  1.8903 22.20
640 1.0596e-04  0.8869 85.84 2.9056e-07  2.0641 84.58

Example 4.1. [3] Consider the following test problem

02 t
Ofw (s, t) = % — (1 —sin(2t))w(se,t) + F(5,1t), > € (0,7), t € (0,1],
P
with initial and boundary conditions
w(s,0) =0, s €[0,1],

w(0,t) =0, w(mt) =0, t € (0,1].
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The source term is F'(5,t) = [t*(2 — sin(2t)) + I'(1 + «)] sin(s) and the exact solution is w(se,t) = t< sin(s¢).

For a 1D problem, the convergence order in time is given by K~ ™27} If we set r = 1, the convergence order

simplifies to &«. When we set r = é, the convergence order becomes 1. Alternatively, if we decide on r > %, we attain

the optimal convergence order 2. Therefore, in solving Example 4.1, we used r = 2

o’

TABLE 2. L.-error and corresponding order of convergence at M; = My = 1000 for Example 4.1.

Uniform mesh Non-uniform mesh
a K Le-error Coin ||~ CPU time(sec) Lo-error Coin .| CPU time(sec)
0.3 80 5.8064e-03 2.12 4.4696e-05 2.13
160  6.5050e-03 6.14 1.1544e-05 1.9531 6.55
320 6.7052¢-03 22.95 2.8007e-06  2.0432 22.95
640 6.4882¢-03 84.58 6.0647¢-07  2.2073 84.98
0.5 80 6.3833e-03 2.16 3.2772e-05 2.13
160 5.2490e-03 0.2822 6.45 8.3335e-06 1.9754 6.41
320 4.1121e-03 0.3521 22.86 2.0959e-06 1.9913 22.52
640 3.1204e-03  0.3981 83.63 5.2477e-07 _ '1.9978 84.74
0.7 80 2.7876e-03 2.13 2.5829e-05 2.10
160 1.8438e-03 0.5963 6.18 6.6679e-06 1.9537 6.56
320 1.1856e-03 0.6371 22.76 1.6855e-06 1.9841 22.55
640 7.4952e-04  0.6616 85.65 4.2277¢-07  1.9952 84.14
0.9 80 6.4991e-04 2.15 1.2921e-05 2.11
160 3.5951e-04 0.8542 6.64 3.5939e-06 1.8461 6.25
320 1.9595e-04 0.8755 23.14 9.6945e-07 1.8903 22.20
640 1.0596e-04  0.8869 85.84 2.2816e-07  2.0871 84.58

Numerical results for 4.1 are presented-in Tables 1, 2, and 3. Table 1 represents Ls-error and the corresponding
temporal convergence order for different a values, comparing results on uniform and non-uniform graded meshes.
Non-uniform graded meshes validate the theoretical findings, showing convergence order K 2. Table 2 displays the
Lyo-error and the corresponding order of convergence for various fractional orders a. The table indicates that on a
non-uniform graded mesh, the temporal convergence order is numerically computed as K ~2, while on a uniform mesh,
it decreases due to the singularity in the derivative. Tables 3 demonstrates L., and Ls-error for K = 500, varying
spatial mesh spacing h with e =0.2,0.4,0.6, 0.8 respectively. Decreasing mesh spacing h results in decreased errors,
and the spatial convergence order is observed to be two, aligning with theoretical expectations. The cubic spline
difference scheme consistently produces more accurate results.

Figure 1 illustrates surface plots of absolute errors on both uniform and non-uniform graded meshes for Example
4.1 with M = N =70 and a = 0.5. The graph shows that the error increases towards the initial time on a uniform
mesh, whereas it reduces in the case of a non-uniform mesh due to mesh grading near ¢t = 0. Figure 2 compares the
exact and numerical solutions of Example 4.1 at different time levels when @ = 0.6 and M = N = 80, revealing a good
match between the two.

Example 4.2. Consider the following test problem

o OPw(se,y,t O%w(se,y,t
815 w(%a Y, t) = é%Q ) éyg )

(5¢,9) € (0,1) x (0,1), t € (0,1],

- ’U)(%,yﬂf) + F(%ayat)v

(=)=
E)NE
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with initial and boundary conditions
w(,y,0) =0, (3,y) € [0,1] x [0,1],
w(se,y,t) =t exp(r+y), (se,y) €00, t € (0,1].
The source term is F'(5¢,y,t) = [[(1 + ) — t%] exp(s¢ + y) and the exact solution is w(se,t) = t* exp(sc + y).

We have solved this example by selecting r = IJFTO‘ (optimal grading parameter). Tables 4 ,5 and 6 present the
numerical outcomes for Example 4.2. Table 4 represents Lo-error and the corresponding temporal convergence order for
different « values, comparing results on uniform and non-uniform graded meshes. Non-uniform graded meshes validate
the theoretical findings, showing convergence order K ~{1te} Table 5 displays the Loo-error and the corresponding

TABLE 3. Ls and L, errors and corresponding spatial order of convergence for Example 4.1 with K = 500.

a M, =M, Lo-error Coinl|.|, Lu-error Coin || CPU time(sec)

0.4 22 3.1181e-02 2.4878e-02 46.46
23 7.8276e-03  1.9940  6.2455e-03 1.9940 46.72
24 1.9574e-03  1.9997  1.5617e-03 1.9997 46.74
2° 4.8842e-04  2.0027  3.8970e-04 2.0027 46.25
0.6 22 2.9662e-02 2.3667e-02 46.83
23 7.4338e-03  1.9965  5.9313e-03 1.9965 46.63
24 1.8584e-03  2.0001  1.4848e-03 2.0001 49.26
2° 4.6407e-04  2.0017  3.7025e-04 2.0017 46.76
0.8 22 2.7015e-02 2.1555e-02 47.62
23 6.7535e-03  2.0009  5.3885e-03 2.0008 47.33
24 1.6876e-03  2.0006  1.3465e-03 2.0006 46.76
25 4.2168e-04  2.0007  3.3645¢-04 2.0007 46.60

%1073 x10°°
5. 3
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2 2.

o3 )

2 2
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_ 2 —
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0- 0-

-
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(a) On uniform mesh (a) On non-uniform graded mesh

FIGURE 1. Surface plots of absolute error of Example 4.1 with M = N =70 and a = 0.5.
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FIGURE 2. Surface plots of solutions of Example 4.1 with M = N = 80 and o = 0.6.

order of convergence for various fractional orders a. The table indicates that on a non-uniform graded mesh, the
temporal convergence order is numerically computed as K~ {1t} while on a uniform mesh, it decreases due to the
singularity in the derivative.

2
Tables 6 demonstrate Lo, and Lo errors for K = Mf*"—‘, varying spatial mesh spacing h with o = 0.4,0.6,0.8

respectively. Decreasing mesh spacing h results in decreased errors, and the spatial convergence order is observed to

be two, aligning with theoretical expectations. The cubic spline difference scheme consistently produces more accurate
results.

5. CONCLUSIONS

In this article, we have proposed numerical methods for solving one and two-dimensional time-fractional reaction-
diffusion equations defined in the Caputo sense, where the time-fractional derivative is discretized using L2-14 formula
on a non-uniform graded mesh and the spatial discretization is done with the cubic spline difference scheme on a
uniform mesh. Stability and convergence analysis are given for the numerical methods obtained for one and two
dimensional time-fractional reaction-diffusion equations. For both one and two-dimensional problems, the theoretical
analysis is demonstrated using the Fourier method. The proposed methods are shown to be convergent with an order
of convergence of O(K {2} p2) in 1D and O(K —mintiteral p2 p2) in 2D. Numerical outcomes indicate that
the obtained results agree with the schemes theoretical findings. It is important to highlight that the method pre-
sented not only tackled the issue of weak singularity but also showcased its effectiveness in solving the time-fractional
reaction-diffusion equation. However, for non-smooth solutions, the L2-1y approximation is fundamentally limited
to a maximum temporal accuracy of two. To address this limitation, we aim to develop higher-order temporal dis-
cretization techniques in future research. Additionally, in nonlinear, higher-dimensional time-fractional problems, the
computational expense remains significant due to the interplay of nonlinearity and dimensional complexity. Therefore,
we also seek to explore innovative strategies to enhance computational efficiency while preserving accuracy.

(=)=
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TABLE 4. Ls-error and corresponding order of convergence at My = My = 5 for Example 4.2.
Uniform mesh Non-uniform mesh
a K  Ly-error Coin ||, CPU time(sec) Lo-error Coin ||, CPU time(sec)
0.3 80 9.7986e-03 1.51 7.1228e-04 2.67
160 9.0177e-03  0.1980 15.36 3.0486e-04  1.2243 5.29
320 8.3885e-03  0.1043 20.82 1.2676e-04  1.2666 20.00
640 7.8524e-03  0.0952 82.08 5.2109e-05  1.2824 78.73
0.5 80 8.6188e-03 1.54 3.4309¢-04 3.42
160 7.5939¢-03  0.1826 5.25 1.2812e-04  1.4211 5.07
320 6.5166e-03  0.2207 19.92 4.7006e-05  1.4465 19.54
640 5.4242e-03  0.2647 78.77 1.6863e-05  1.4789 79.50
0.7 80 4.9519e-03 1.55 1.4162e-04 1.23
160 3.6373e-03  0.4450 5.45 4.7481e-05  1.5766 5.20
320 2.5492¢-03  0.5128 21.08 1.5143e-05  1.6486 19.54
640 1.7226e-03  0.5654 85.56 4.7292e-06  1.6790 78.54
0.9 80 1.1405e-03 1.56 3.6307e-05 1.49
160 6.7897e-04  0.7482 5.48 1.1411e-05 1.6698 5.43
320 3.8916e-04  0.8029 20.55 3.4209¢-06  1.7379 20.51
640 2.1730e-04  0.8406 83.13 9.4209¢-07  1.8604 84.14
TABLE 5. Lgo-error and corresponding order of convergence at My = My = 5 for Example 4.2.
Uniform mesh Non-uniform mesh
a K Le-error Coin || CPU time(sec) Log-error Coin .| CPU time(sec)
0.3 80 1.7887e-02 1.51 1.4907e-03 2.67
160 1.6442e-02 0.1215 5.29 6.7715e-04 1.1384 15.36
320 1.5277e-02 0.1065 20.00 2.8930e-04 1.2269 20.08
640 1.4266e-02  0.09837 78.73 1.2031-04 1.2657 82.08
0.5 80 1.5571e-02 3.42 7.6472¢-04 1.54
160 1.3604e-02 0.1948 5.07 2.8455¢e-04 1.4263 5.25
320 1.1526e-02 0.2391 19.54 1.0709e-04 1.4097 19.92
640 9.4185e-03 0.2913 79.50 3.8953e-05 1.4591 78.77
0.7 80 8.6079e-03 1.23 3.0737e-04 1.55
160 6.0967¢-03 0.4976 5.20 1.0524¢-04 1.6486 5.45
320 4.3586e-03 0.4841 19.54 3.4705e-05 1.6004 21.08
640 3.2151e-03 0.4390 78.54 1.0936e-05 1.6661 85.56
0.9 80 1.9822e-03 1.49 7.4266¢-05 1.56
160 1.3114e-03 0.5959 5.43 2.4327¢e-05 1.6101 5.48
320 8.1010e-04 0.6949 20.51 7.5037e-06 1.6969 20.55
640 4.7449e-04 0.7717 84.14 2.1038e-06 1.8343 83.13




26 R. SINGH, A. SINGH, S. KUMAR, AND J. V. AGUIAR

2
TABLE 6. Spatial Error and order of convergence for Example 4.2 at K = "MIH'“-‘ .

a M =M, Lserror Coinl|.|, Le-error Coin || CPU time(sec)

0.4 2° 2.6191e-04 5.1984e-04 6.23
26 7.0018e-05  1.9032  1.4741e-04 1.8182 55.47
27 1.8024e-05  1.9578  3.9334e-05 1.9061 596.67
28 4.3354e-06  2.0556  9.7765e-06 2.0082 2460

0.6 2° 2.5584e-04 4.9055e-04 4.75
26 7.2341e-05  1.8223  1.4693e-04 1.7392 27
27 1.9337e-05  1.9034  4.1264e-05 1.8322 247
28 4.9836e-06  1.9561  1.0987e-05 1.9090 2184

0.8 2° 1.8770e-04 3.6022e-04 1.09
26 5.7778e-05  1.6998  1.1415e-04 1.6579 4.679
27 1.6323e-05  1.8231  3.3479e-05 1.7696 39.23
28 4.3997e-06  1.8919  9.3492e-06 1.8403 368
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