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Abstract

This paper investigates the averaging principle for the solutions to stochastic fractional impulsive differential equa-

tions (SFIDEs) with nonlocal conditions. The main focus lies in deriving sufficient conditions for the convergence

of the averaged SFIDEs. According to certain proposals, solutions to SFIDEs can be approximated by averaged
stochastic systems using mean square. Furthermore, two illustrative examples are provided to demonstrate the

effectiveness of the proposed method in approximating the solutions to our model. The numerical simulations

highlight the applicability and accuracy of the proposed approach in practical scenarios. This work contributes
to the understanding and analysis of SFIDEs with complex conditions, paving the way for further research in the

field of finance and industry.
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1. Introduction

Fractional Differential Equations (FDEs) provide a powerful tool for modeling and understanding complex phenom-
ena in various fields of science and engineering. With the increasing interest in Fractional Calculus and its applications,
the study of FDEs continues to be an active area of research, paving the way for innovative solutions to problems that
cannot be addressed using classical calculus. Also, Stochastic Differential Equations (SDEs) contribute a significant
mathematical framework for modeling systems that involve both deterministic and random components [12, 15–18].
The importance of modeling and understanding systems with inherent uncertainties and fluctuations, the study of
SDEs continues to be an active and important area of research across various disciplines. Together, SFIDEs serve
as crucial mathematical models for describing dynamic systems to random fluctuations and delays in their evolution.
These equations find extensive applications across various fields, including physics, engineering, biology, and finance,
among others [10, 11, 20]. SFIDEs exhibit intricate behaviors due to the combined effects of fractional derivatives,
stochastic perturbations, and neutral delays, making their analysis and solution challenging tasks. Recently, there has
been growing interest in studying SFIDEs with impulse and nonlocal conditions, as these conditions capture real-world
phenomena more accurately.

In financial mathematics [1, 2, 5, 13], SFIDEs with impulse and nonlocal conditions can be used to model the
dynamics of asset prices and interest rates, leading to more accurate option pricing models that account for sudden
market shocks (impulses) and long-range dependencies (nonlocality). SFIDEs can be employed to develop risk man-
agement models that capture the impact of extreme market events (impulses) and systemic risks (nonlocal effects) on
portfolios and financial derivatives. Next, as can be seen in [7], Khasminskii refined this technique to address a cate-
gory of second-order parabolic partial differential equations. After that, the averaging principle for partial differential
equations caused a great deal of work concern. Khasminskii originally examined the averaging principle for stochastic
differential equations in [8, 9]. Since then, a lot of effort has gone into expanding this theory, the averaging principle
is a decisive mathematical technique widely used to analyze the long-term behavior of deterministic and stochastic
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differential equations, one can refer [3, 14, 19, 22, 23]. However, applying this principle to SFIDEs with impulse and
nonlocal conditions requires careful consideration and adaptation to account for the fractional nature of the derivatives
and the presence of stochastic perturbations. These applications demonstrate the versatility of stochastic fractional
neutral differential equations in capturing the intricate dynamics of systems across various scientific and engineering
disciplines.

In this paper, we aim to extend the classical averaging principle to the realm of SFIDEs with impulse and nonlocal
conditions. Our goal is to establish the existence and uniqueness of solutions to such equations and investigate
the convergence properties of the averaged SFIDEs. By developing novel mathematical techniques and deriving
suitable conditions, we seek to provide a rigorous framework for approximating the solutions to SFIDEs with complex
conditions.

Consider the following SFIDEs with impulse and nonlocal condition of the form:

CDq[X(t)− h3
(
t,X(t)

)
] = h1

(
t,X(t)

)
+ h2

(
t,X(t)

)dW (t)

dt
, t ∈ J = [0, α],

∆X(tk) = Ik
(
X(t−k )

)
, t = tk, k = 1, 2, 3, ..., l,

X(0) + h4(X) = X0,

(1.1)

where q ∈ ( 12 , 1), h1, h3,∈ C(J × Rn, Rn), h2 ∈ C(J × Rn, Rn×m), h4 is a continuous function on Rn, ∆X(tk) =

X(t+k ) −X(t−k ) for t = tk, X(t+k ) = lim
h→0+

X(tk + h), Ik : Rn → Rn (k = 1, 2, 3, ..., l) stands for impulsive disruption

of X(t) at time tk, tk fulfills 0 = t0 < t1 < · · · < tk < tk+1 = α. The left and right limits of Ik at time tk are
denoted by I(t−k ) and I(t+k ), respectively. The sudden change in state I at time tk is represented by ∆X(tk). And
W = {W (t), t ≥ 0} is an m-dimensional Brownian motion on a complete probability space (Ω,F ,P). The initial value
X0 is a random variable in Rn that is measurable with respect to F0 and it meets the condition E|X0|2 <∞.

The structure of this document is as follows: The fundamental notations, definitions, lemmas, and theorems are all
contained in section 2. In section 3, the averaging principle is discussed. An illustrated example is given in section 4 to
support the developed theory. Finally, section 5 concludes the paper and outlines potential future research directions.

2. Preliminaries

This section includes an introduction to certain fundamental terms, definitions, lemmas, and theorems.

Definition 2.1. [6] The Riemann-Liouville and Caputo derivative of order q for the function h : R+ → R with the
lower limit zero is expressed as

(1) LDqh(t) = 1
Γ(n−q)

dn

dtn

t∫
0

(t− ν)n−q−1h(ν)dν, t > 0, q ∈ (n− 1, n),

(2) CDqh(t) =L Dq
(
h(t)−

n−1∑
m=0

tm

m!h
m(0)

)
, t > 0, q ∈ (n− 1, n).

Definition 2.2. [22] Considering that W is a typical wiener process,

η

[ s∫
0

X(t)dW (t)

]
≤

√
αη

(
X(t)

)
, it is given that X ⊂ C

(
[0, α];Rn×m

)
,

where
s∫

0

X(t)dW (t) =

{ s∫
0

x(t)dW (t) : for all x ∈ X, s ∈ [0, α]

}
.

Lemma 2.3. [16] Let R(q) > 0 and let n =
[
R(q)

]
+ 1 for q /∈ N0; n = q for q ∈ N0. If h(x) ∈ ACn[a, b] or

h(x) ∈ Cn[a, b], then (
Iq
a+

CDq
a+h

)
(x) = h(x)−

n−1∑
k=0

h(k)(a)

k!
(x− a)k.
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Lemma 2.4. [4] Suppose ϑ ≥ 0, q > 0, and a function φ(t) ≥ 0 which is integrable locally on 0 ≤ t < α (α ≤ +∞),
and for instance h(t) ≥ 0 and integrable locally on 0 ≤ t < α with

h(t) ≤ φ(t) + ϑ

t∫
0

(t− s)q−1h(s)ds,

then

h(t) ≤ φ(t) +

t∫
0

∞∑
n=1

(
ϑΓ(q)

)n
Γ(nq)

(t− s)nq−1φ(s)ds, 0 ≤ t < α,

where Γ(·) is the Gamma function.

Theorem 2.5. (Cauchy-Schwarz inequality) If u1, u2, · · · , um and v1, v2, · · · , vm
are arbitrary real numbers, we have ( m∑

r=1

urvr

)2

≤
m∑
r=1

u2r ·
m∑
r=1

v2r .

Theorem 2.6 (Doob’s martingale inequality). If ht is a martingale such that t → ht(ω) is continuous a.s., then for
all m ≥ 1, q > 0, and all λ > 0,

P
[

sup
0≤t≤q

|ht| ≥ λ
]
≤ 1

λm
· E

[
|hq|m

]
.

For the existence of solution, we employed picard-lindelof successive approximation techniques in the broadest field
as a result from Equation (1.1).

X(t) = X0 − h4
(
X(t)

)
− h3

(
0, X0 − h4

(
X(t)

))
+ h3

(
t,X(t)

)
+

1

Γ(q)

t∫
0

(t− s)q−1h1
(
s,X(s)

)
ds

+
1

Γ(q)

t∫
0

(t− s)q−1h2
(
s,X(s)

)
dW (s) +

∑
0<tk<t

Ik
(
X(tk)

)
, (2.1)

X(t) is Ft adapted and E
( α∫
0

∣∣X(t)
∣∣2dt) <∞.

In order to examine the qualitative aspects of solving the Equation (1.1), we shall impose some restrictions on the
coefficient functions in this section as follows:

(H1): For all x1, x2 ∈ Rn and t ∈ [0, α], there arise two positive constants C1 and C2, so that

|h1(t, x1)|2 ∨ |h2(t, x1)|2 ≤ C1

(
1 + |x1|2

)
,

|h1(t, x1)− h1(t, x2)| ∨ |h2(t, x1)− h2(t, x2)| ≤ C2|x1 − x2|,

where | · | is the norm of Rn.
(H2): h3(t, 0) = 0 = h4(t, 0) and for all x1, x2 ∈ Rn, there exists some constants Ch3

, Ch4
∈ (0, 1) such that

|h3(t, x1)− h̄3(t, x2)| ≤ Ch3
|x1 − x2|,

|h4(x1)− h̄4(x2)| ≤ Ch4
|x1 − x2|.

3. An Averaging Principle

We begin this section with the investigation of averaging principle for SFIDEs with impulse and nonlocal conditions.
Let us analyze the Equation (1.1) in its standard form:

Xρ(t) = X0 −
√
ρh4

(
Xρ(t)

)
−√

ρh3
(
0, X0 −

√
ρh4

(
Xρ(t)

))
+ ρh3

(
t,Xρ(t)

)
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+
ρ

Γ(q)

t∫
0

(t− s)q−1h1
(
s,Xρ(s)

)
ds+

√
ρ

Γ(q)

t∫
0

(t− s)q−1h2
(
s,Xρ(s)

)
dW (s) + ρ

k∑
i=1

Ii
(
Xρ(ti)

)
, (3.1)

where initial value X0, the significance of the coefficients h1, h2, h3, and h4 are the same as that of Equation (1.1).
Additionally, we designate a fixed number by ρ0 and a positive small parameter by ρ ∈ [0, ρ0]. Prior to proceeding

with the notion of averaging, we apply a quantifiable coefficients h̄2 : J × Rn → Rn×m, h̄1, h̄3 : J × Rn → Rn, and
h̄4 : Rn → Rn fulfilling (H1) and (H2), therefore, the following inequalities:

(H3): For some α1 ∈ [0, α], x ∈ Rn, there are bounded functions ψi(α1), i = 1, 2, 3, 4 that are positive, so that

1

α1

α1∫
0

|h1(s, x)− h̄1(x)|2ds ≤ ψ1(α1)(1 + |x|2),

1

α1

α1∫
0

|h2(s, x)− h̄2(x)|2ds ≤ ψ2(α1)(1 + |x|2),

1

α1

α1∫
0

|h3(s, x)− h̄3(x)|2ds ≤ ψ3(α1)(1 + |x|2),

1

α1

α1∫
0

|h4(x)− h̄4(x)|2ds ≤ ψ4(α1)(1 + |x|2),

Ī(x) ≤ 1

α1

k∑
i=1

Ii(x),

where lim
α1→0

ψi(α1) = 0, and i = 1, 2, 3, 4.

(H4): For all Ii, there arise a constant l̄ which is positive such that for ∀x ∈ Rn,

|Ii(x)|2 ≤ l̄.

With the assistance provided above, we will demonstrate that the solution Xρ(t) converges, as ρ→ 0, leading to Zρ(t)
of the averaged system.

Zρ(t) = X0 −
√
ρh̄4

(
Zρ(t)

)
− ρh̄3

(
0, X0 −

√
ρh̄4

(
Zρ(t)

))
+

√
ρh̄3

(
t, Zρ(t)

)
+

ρ

Γ(q)

t∫
0

(t− s)q−1h̄1
(
s, Zρ(s)

)
ds+

√
ρ

Γ(q)

t∫
0

(t− s)q−1h̄2
(
s, Zρ(s)

)
dW (s) + ρ

t∫
0

Īi(Zρ(s))ds, (3.2)

We are here to present the primary finding from our study.

Theorem 3.1. Suggest that (H1) to (H4) are satisfied. For δ1 > 0 there exists L > 1, ρ1 ∈ (0, ρ0] and ξ ∈ (0, 1) is
such for ρ ∈ (0, ρ1],

E
(

sup
tρ[1,Lρ−ξ

]

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ δ1.

Proof. For any t ∈ [0, µ] ⊂ [0, α],

Xρ(t)− Zρ(t) =
√
ρ
[
h3
(
t,Xρ(t)

)
− h̄3

(
Zρ(t)

)]
− ρ

[
h4
(
Xρ(t)

)
− h̄4

(
Zρ(t)

)]
−√

ρ
[
h3
(
0, X0 − ρh4

(
Xρ(t)

))
− h̄3

(
0, X0 − ρh̄4

(
Zρ(t)

))]
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+
ρ

Γ(q)

t∫
0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h̄1

(
Zρ(s)

)]
ds+ ρ

k∑
i=1

(
Ii(ti)

)
− ρ

t∫
0

Īi(Zρ(s))ds

+

√
ρ

Γ(q)

t∫
0

(t− s)q−1
[
h2
(
s,Xρ(s)

)
− h̄2

(
Zρ(s)

)]
dW (s).

Using the elementary inequality, we have

E
(

sup
0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ 6ρE sup

0≤t≤µ

[∣∣h3(t,Xρ(t)
)
− h̄3

(
Zρ(t)

)∣∣2 + ∣∣h4(Xρ(t)
)
− h̄4

(
Zρ(t)

)∣∣2]
+ 6ρE sup

0≤t≤µ

∣∣h3(0, X0 − ρh4
(
Xρ(t)

))
− h̄3

(
0, X0 − ρh̄4

(
Zρ(t)

))∣∣2
+

6ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h̄1

(
Zρ(s)

)]
ds

∣∣∣∣2 (3.3)

+
6ρ

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h2
(
s,Xρ(s)

)
− h̄2

(
Zρ(s)

)]
dW (s)

∣∣∣∣2

+ 6ρ2E sup
0≤t≤µ

∣∣∣∣ k∑
i=1

Ii
(
Xρ(ti)

)
−

t∫
0

Īi(Zρ(s))ds

∣∣∣∣2,
= I1 + I2 + I3 + I4 + I5.

With the help of hypothesis (H2), one can get

I1 = 6ρE sup
0≤t≤µ

[∣∣h3(t,Xρ(t)
)
− h̄3

(
Zρ(t)

)∣∣2 + ∣∣h4(Xρ(t)
)
− h̄4

(
Zρ(t)

)∣∣2]
≤ 6ρ

[
Ch3E sup

0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2 + Ch4E sup

0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2]

= K1ρ,

(3.4)

I2 = 6ρ2E sup
0≤t≤µ

∣∣h3(0, X0 − ρh4
(
Xρ(t)

))
− h̄3

(
0, X0 − ρh̄4

(
Zρ(t)

))∣∣2
≤ 6ρCh3

[
Ch4ρ E sup

0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2]

= K2ρ
2,

(3.5)

where K1 = 6Ch3
E sup

0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2 and K2 = 6Ch3

Ch4
E sup

0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2.

I3 =
5ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h̄1

(
Zρ(s)

)]
ds

∣∣∣∣2, (3.6)

I4 =
5ρ

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h2
(
s,Xρ(s)

)
− h̄2

(
Zρ(s)

)]
dW (s)

∣∣∣∣2, (3.7)

I5 = 5ρ2E
(

sup
0≤t≤µ

∣∣∣∣ k∑
i=1

Ii
(
Xρ(ti)

)
−

t∫
0

Īi(Zρ(s))ds

∣∣∣∣2). (3.8)
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Recalling the elementary inequality, we obtain from (3.6):

I3 =
5ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h̄1

(
Zρ(s)

)]
ds

∣∣∣∣2,

I3 ≤ 10ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h1

(
s, Zρ(s)

)]
ds

∣∣∣∣2

+
10ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s, Zρ(s)

)
− h̄1

(
Zρ(s)

)]
ds

∣∣∣∣2
= I31 + I32.

Using Theorem (2.5) and condition (H1), we obtain

I31 ≤ 10ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h1
(
s,Xρ(s)

)
− h1

(
Zρ(s)

)]
ds

∣∣∣∣2,

I31 ≤ 10ρ2µ

(Γ(q))2

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)2C2

2ds

≤ 20C2
2µ

(Γ(q))2
ρ2

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds,

I31 ≤ K31µρ
2

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds, (3.9)

where K31 =
20C2

2

(Γ(q))2 . With the help of variable upper limit integration,

I32 ≤ 10ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1d

[ s∫
0

(
h1
(
τ, Zρ(τ)

)
− h̄1

(
Zρ(τ)

))
dτ

]∣∣∣∣2,
integration by parts is used,

I32 ≤ 10(q − 1)2ρ2

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

( s∫
0

(
h1
(
τ, Zρ(τ)

)
− h̄1

(
Zρ(τ)

))
dτ

)
(t− s)q−2ds

∣∣∣∣2.
Therefore in addition to the hypothesis (H3) and Theorem (2.5), we obtain

I32 ≤ 10(q − 1)2α2q−3ρ2

(2q − 3)(Γ(q))2
E

µ∫
0

∣∣∣∣
s∫

0

(
h1
(
τ, Zρ(τ)

)
− h̄1

(
Zρ(τ)

))
dτ

∣∣∣∣2ds ≤ K32ρ
2µ2q, (3.10)

in which K32 = 10(q−1)2

(2q−3)(Γ(q))2 sup
0≤t≤µ

ψ1(t)
2

[
1 + E

(
sup

0≤t≤µ

∣∣Zρ(t)
∣∣2)].
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We anticipate the second term using the same approach, hence from Equation (3.7),

I4 ≤ 10ρ

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h2
(
s,Xρ(s)

)
− h2

(
s, Zρ(s)

)]
dW (s)

∣∣∣∣2,
+

10ρ

(Γ(q))2
E sup

0≤t≤µ

∣∣∣∣
t∫

0

(t− s)q−1
[
h2
(
s, Zρ(s)

)
− h̄2

(
Zρ(s)

)]
dW (s)

∣∣∣∣2,
= I41 + I42.

By applying Theorem 2.6, Ito’s formula and hypothesis (H1),

I41 ≤ K41ρ

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds, (3.11)

where K41 =
20C2

2

(Γ(q))2 . Applying Theorem 2.6 and Ito’s formula again,

I42 ≤ 10ρ

(Γ(q))2
E sup

0≤t≤µ

t∫
0

(t− s)2q−2
∣∣h2(s, Zρ(s)

)
− h̄2

(
Zρ(s)

)∣∣2ds,
Integrating by parts, produces

I42 ≤ 10ρ

(Γ(q))2
E sup

0≤t≤µ

t∫
0

(t− s)2q−2d

[ s∫
0

∣∣h2(s, Zρ(s)
)
− h̄2

(
Zρ(s)

)∣∣2ds],
≤ 10(2q − 2)ρ

(Γ(q))2
E

µ∫
0

( s∫
0

∣∣h2(s, Zρ(s)
)
− h̄2

(
Zρ(s)

)∣∣2ds)(t− s)2q−3ds.

With the help of hypothesis (H3), we can draw this conclusion:

I42 ≤ 10ρ(2q − 2)

(Γ(q))2

µ∫
0

sup
0≤s1≤s

ψ2(s1)

[
1 + E

(
sup

0≤τ≤s

∣∣Zρ(τ)
∣∣2)](t− s)2q−3ds,

≤ 10ρ

(Γ(q))2
µ2q−1 sup

0≤τ≤s
ψ2(τ)

[
1 + E

(
sup

0≤τ≤s

∣∣Zρ(τ)
∣∣2)],

≤ K42µ
2q−1ρ,

(3.12)

where K42 = 10
(Γ(q))2 sup

0≤τ≤s
ψ2(τ)

[
1 + E

(
sup

0≤τ≤s

∣∣Zρ(τ)
∣∣2)].

With the help of hypothesis (H4), one can get

I5 = 10ρ2 · E
[
sup

0≤t≤µ

∣∣∣∣ k∑
i=1

Ii
(
Xρ(ti)

)
−

t∫
0

Īi
(
Zρ(s)

)
ds

∣∣∣∣2],
≤ 10ρ2 · E

[
sup

0≤t≤µ

∣∣∣∣ k∑
i=1

Ii
(
Xρ(ti)

)∣∣∣∣2]+ 10ρ2 · E
[
sup

0≤t≤µ

∣∣∣∣
t∫

0

Īi
(
Zρ(s)

)
ds

∣∣∣∣2],
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I5 ≤ 10ρ2k · E
[
sup

0≤t≤µ

k∑
i=1

∣∣Ii(Xρ(ti)
)∣∣2]+ 10ρ2

k

α2
1

µ · E
[
sup

0≤t≤µ

t∫
0

k∑
i=1

∣∣Īi(Zρ(s)
)
ds
∣∣2],

≤ 10k2
(
l̄ + µ2 l̄

1

α2
1

)
ρ2,

≤ K5ρ
2,

(3.13)

where K5 = 10k2
(
l̄ + µ2 l̄ 1

α2
1

)
. Now substituting the inequalities (3.4), (3.5), and from (3.9) to (3.13) into (3.3), for

any µ ∈ [0, α], we find

E
(

sup
0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ K1ρ+K2ρ

2 +K32ρ
2µ2q +K42µ

2q−1ρ+K5ρ
2

+K31ρ
2

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds

+K41ρ

µ∫
0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds,

E
(

sup
0≤t≤µ

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ K1ρ+K2ρ

2 +K32ρ
2µ2q +K42µ

2q−1ρ+K5ρ
2

+
(
K31ρ

2µ+K41ρ
) µ∫

0

(t− s)2q−2E
(

sup
0≤s1≤s

∣∣Xρ(s1)− Zρ(s1)
∣∣2)ds.

Depending on the Gronwall-Bellman inequality [21], we find

E
(

sup
0≤t≤s

∣∣Xρ(t)−Zρ(t)
∣∣2) ≤

(
K1ρ+K2ρ

2+K32ρ
2µ2q+K42µ

2q−2ρ+K5ρ
2
)
×

∞∑
j=0

(
(K31ρ

2µ+K41ρ)µ
2q−1Γ(2q − 1)

)j
Γ
(
j(2q − 1) + 1

) .

This implies that we can select ξ ∈ (0, 1) and L > 1, such that for every t ∈ [0, Lρ−ξ

] ⊆ [0, α] having

E
(

sup
0≤t≤Lρ−ξ

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ Cρ1−ξ,

where

C = K1ρ+K2ρ
2+K32ρ

1+ξ−2qξL2q+K42L
2q−2ρ2ξ(1−q)+K5ρ

2×
∞∑
j=0

(
(K31ρ

2(1−qξ)L+K41ρ
1+ξ−2qξ)L2q−1Γ(2q − 1)

)j
Γ
(
j(2q − 1) + 1

) ,

is a constant. Therefore, for every number δ1, there arise ρ1 ∈ (0, ρ0] such that for each ρ ∈ (0, ρ1] and t ∈ [0, Lρ−ξ

]
having

E
(

sup
0≤t≤Lρ−ξ

∣∣Xρ(t)− Zρ(t)
∣∣2) ≤ δ1,

completes the proof. □
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4. Example

Example 4.1. Our objective is to provide an example that highlights the resultant effects of the averaging principle.
Examine the following SFIDEs under impulse and nonlocal conditions:

CDq
t [Xρ(t)− cos2(t/2)Xρ(t)] =

(
sin(2t) + t2

)
Xρ(t) +

1

(t+ 1)2
Xρ(t)

dW (t)

dt
, t ∈ J ,

∆Xρ(t) = ρi2Xρ(t
−
i ), t = ti, i = 1, 2, · · · , l,

X(0) = e−tXρ(t) + 1.

(4.1)

The coefficients h1(s,Xρ(s)) =
(
sin(2s) + s2

)
Xρ(s), h2(s,Xρ(s)) = 1

(s+1)2Xρ(s), h3(s,Xρ(s)) = cos2(s/2)Xρ(s),

h4(Xρ(s)) = e−sXρ(s), Ii(s) = i2Xρ(s) satisfy the conditions (H1) - (H4). Let α1 = 1. Furthermore, we define

h̄1(Xρ(t)) =
1

α1

α1∫
0

h1(s,Xρ(s))ds =

1∫
0

(
sin(2s) + s2

)
Xρds =

2− 3cos(2)

6
Xρ,

h̄2(Xρ(t)) =
1

α1

α1∫
0

h2(s,Xρ(s))ds =

1∫
0

1

(s+ 1)2
Xρds =

1

2
Xρ,

h̄3(Xρ(t)) =
1

α1

α1∫
0

h3(s,Xρ(s))ds =

1∫
0

cos2(s/2)Xρds =
1 + sin1

2
Xρ,

h̄4(Xρ(t)) =
1

α1

α1∫
0

h4(Xρ(s))ds =

1∫
0

e−sXρ(s)ds =
e− 1

e
Xρ,

Ī(Xρ(t)) =
1

α1

k∑
i=0

Ii(t) =
k∑

i=0

i2Xρ =
k(k + 1)(2k + 1)

6
Xρ.

In light of the discussion above, (H3) is established. After that we simplify SFIDEs with impulse and nonlocal
conditions as follows:

Zρ(t) = X0 −
√
ρ

[
1 + sin1

2

]
Xρ +

√
ρ

[
e− 1

e

]
Xρ +

ρ

Γ(q)

t∫
0

(t− s)q−1

[
2− 3cos(2)

6

]
Xρds

+

√
ρ

Γ(q)

t∫
0

(t− s)q−1

[
1

2
Xρ

]
dW (s) + ρ

t∫
0

[
k(k + 1)(2k + 1)

6

]
Xρds.

Each curve on the below graph corresponds to a different values of q. The curve Xρ(t) represented in solid lines and
the curve Zρ(t) represented in dotted lines. Those are plotted at different t values. This graphical interpretation
clearly illustrates how the function X(t) evolves over time t for different values of q. As q increases, the rate of increase
of X(t) also increases, leading to steeper curves on the graph.

We are able to determine that the requirements of Theorem 3.1 are met through verification. Therefore, in terms
of mean square and probability, the averaging form for the Equation (4.1)’s solution Zρ(t) is equivalent to the existing
solution Xρ(t) as ρ→ 0.

Averaging at Financial Market: In financial markets, prices of assets may exhibit sudden changes due to time
lags in information dissemination or unprecedented reactions of traders to news. The SFIDEs can model the effect
of past information on current unusual prices. The averaging principle helps reduce the complexity of the system
by approximating the behavior of asset prices over a longer time horizon in stochastic uncommon asset pricing. As
a result, in general, asset prices fluctuate due to a combination of factors like news, economic data, and random
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Figure 1. Xρ(t) and Zρ(t) at different values of q.

market sentiment. Prices don’t always react immediately to new information, leading to atypical reactions. Trades
may adjust their positions based on past trends or information that takes time to propagate through the market.
The model incorporates randomness (volatility), which is essential to capture the inherent unpredictability of financial
markets. Short-term fluctuations, represented by random noise, create sharp ups and downs in asset prices.

By applying the averaging principle, we can smooth these fluctuations and uncover long-term price trends. This
helps to focus on the fundamental trajectory of asset prices rather than getting distracted by short-term noise, which is
crucial for long-term investment strategies. For example, this principle might suggest when an asset is fundamentally
undervalued or overvalued, helping investors make more informed decisions.

Stock Market Model for Asset Analysis: Here, we investigate the stock market approach to asset analysis for
Stochastic Dependent Impulse Analysis (SDIA). Let us consider the famous Black-Scholes asset price model with only
Gaussian process

CDqX(t) = A1h(t,X(t)) +A2h(t,X(t))
dW (t)

dt
,

where A1 and A2 are arbitrary non-negative values.
Suppose if there is a little perturbation in the asset model as a result of some embedded Technical analysis in the

resulting chart; to produce a sudden jump in the stock prices and other financial asset studies which leads to the
following model as an example of the asset analysis.

Example 4.2. Consider the following SDIA model:


CDq[X(t)−A3h3

(
t,X(t)

)
] = A1h1

(
t,X(t)

)
+A2h2

(
t,X(t)

)dW (t)
dt , t ∈ J = [0, α],

∆X(tk) = Ik
(
A5X(t−k )

)
, t = tk, k = 1, 2, 3, ..., l,

X(0) +A4h4(X) = X0,

(4.2)

where A1, A2, A3, A4, and A5 are arbitrary non-negative values.

• X(t) - Asset price depicts the stock price over time and the worth of a portfolio amid uncertain market
conditions.
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• CDq[X(t)−A3h3
(
t,X(t)

)
] - Fractional derivative (Memory effect) model simulates long-term memory effects

in financial markets and interprets effects such as market inertia, in which previous prices influence the present.
• A1h1

(
t,X(t)

)
- Drift term (Trend Component) represents the foretold return or growth rate, which can be

used to forecast interest rates, economic growth, or systemic market patterns.
• A2h2

(
t,X(t)

)
- Stochastic Volatility (Market Noise) represents the volatility co-efficient, which indicates how

much unpredictability affects the price.
• ∆X(tk) = Ik

(
A5X(t−k )

)
- Jump process (Market Shocks) models price fluctuations, such as crashes, news

shocks, or earnings releases, and manages the impact of jumps, which may represent major trades or economic
events. Ik simulates how external shocks, like as political events, interest rate changes, or financial crises,
affect prices.

• X(0) + A4h4(X) = X0 - Initial condition (Market Constraints) represents the value of the asset or initial
market state and the function A4h4(X) could be a market friction or transaction cost affecting the initial
setup.

According to Theorem 3.1, the solution of the Equation (4.2) is given as:

Xρ(t) =


X0 −

√
ρA4h4

(
Xρ(t)

)
−√

ρA3h3
(
0, X0 −

√
ρA4h4

(
Xρ(t)

))
+ ρA3h3

(
t,Xρ(t)

)
+ ρ

Γ(q)

t∫
0

(t− s)q−1A1h1
(
s,Xρ(s)

)
ds+

√
ρ

Γ(q)

t∫
0

(t− s)q−1A2h2
(
s,Xρ(s)

)
dW (s) + ρ

k∑
i=1

Ii
(
A5Xρ(ti)

)
.

(4.3)

Take q = 0.8, X0 = 1, A1 = 0.5, A2 = 1.0, A3 = 0.7, A4 = 0.8, and A5 = 0.2. It is clear that the system (4.2) satisfies
the hypotheses (H1) and (H2).

Furthermore, from the hypotheses (H3), (H4), and by Theorem 3.1, we obtain Zρ(t). The solutions Xρ(t) and Zρ(t)
clearly show the weiner process as well as the jump in the system and also show entry points for potential investors
in asset.

Figure 2. SDIA Model: Xρ(t) Figure 3. SDIA Model: Zρ(t)

The above graphs Figures 2 and 3 that simulate the graphical interpretation of the asset price model which clearly
describes how these investment functions Xρ(t) and Zρ(t) evolve over time t for different values of q which we can
understand the sensitivity of the system to these parameters.

5. Conclusion

We have extensively explored the averaging principle for the solutions to SFIDEs equipped with impulse and non-
local conditions. Our primary objective was to establish sufficient conditions under which the averaged SFIDEs. To
achieve this, we innovatively extended classical averaging techniques to the fractional domain, duly considering both
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TABLE 1. The table below has been constructed for the asset price and time interval t = 2−6.

t Xρ(t) Zρ(t) Error t Xρ(t) Zρ(t) Error

0.0 0.219069 0.219501 0.000432 0.6 0.539095 0.540446 0.001351

0.1 0.154460 0.155522 0.001062 0.7 0.157273 0.157804 0.000531

0.2 0.577279 0.578562 0.001283 0.8 0.977007 0.978253 0.001246

0.3 0.271409 0.272024 0.000615 0.9 0.941121 0.941856 0.000735

0.4 0.677542 0.678056 0.000514 1.0 0.648318 0.648903 0.000585

0.5 0.073082 0.073437 0.000355 - - - -

Table 1 displays the comparison between the original solution and the averaged solution. This example is confined to
theoretical and computational modeling within financial mathematics.

the neutral delay and the inherent stochasticity of the system. This research significantly contributes to the advance-
ment of the understanding and analysis of SFIDEs under intricate conditions. The derived results not only enhance
the theoretical framework but also hold promising implications for practical applications in the field of finance and
industry. This work serves as a foundational step, laying the groundwork for further exploration and research in this
challenging and important area of applied sciences and financial mathematics.
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