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Abstract

We show the Ambarzumyan theorem in this paper by taking into account the Sturm-Liouville problem with
separable boundary conditions by local derivative. We proved that if the spectrum consists of the first eigenvalue,

then the potential function can be found depending on the first eigenvalue. Also, we give some examples like

periodic and anti-periodic boundary conditions. In the case of α = 1, results in the classical case can be obtained.
Although the concept of conformable fractional is debatable, we think the results will be useful for Sturm-Liouville

theory.
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1. Introduction

The Sturm-Liouville equation is a fundamental concept in mathematical physics, particularly in the study of differ-
ential equations and boundary value problems. It has significant physical interpretations in various areas of physics,
including quantum mechanics, heat transfer, vibration analysis, and fluid dynamics. The physical meaning of the
Sturm-Liouville equation arises from its application to problems governed by second-order differential equations sub-
ject to certain boundary conditions. Here are a few examples:

Quantum Mechanics: In quantum mechanics, the wave function of a quantum system satisfies a time-independent
Schrödinger equation, which can be cast into a Sturm-Liouville form. The solutions to this equation correspond to
the allowed energy states of the quantum system, and the eigenvalues represent the possible energy levels.

Vibrations of a String: The equation can describe the transverse vibrations of a string fixed at both ends.
The eigenvalues correspond to the natural frequencies of vibration, and the eigenfunctions represent the shapes of
the vibrating modes. Heat Conduction: In heat transfer problems, the Sturm-Liouville equation can describe the
distribution of temperature in a medium. The eigenvalues represent the rates of heat transfer, and the eigenfunctions
represent the temperature profiles.

Fluid Dynamics: In certain fluid flow problems, such as the study of eigenmodes of oscillation in a fluid-filled
cavity or the stability analysis of fluid flows, the Sturm-Liouville equation can arise to characterize the behaviour of
the system.

On the other hand, the generalization of classical calculus is defined by fractional calculus. The Sturm-Liouville
problem with local derivative is then achieved by substituting the fractional derivative for the ordinary derivative.
Engineering, physics, and chemistry have produced a wide range of publications on this topic [2, 6–9, 11, 13–15, 18,
19, 22, 25, 27, 31, 32, 34]. The authors of [23] came up with a few generalizations that encompass the novel outcomes
that fractional operators are examining. Additionally, they provided two distinct methods that, with the presumption
of convexity, can be utilized to solve a few additional generalizations of rising functions. Authors enhanced a unique
framework in [24] to investigate two new types of convex functions in Hilbert spaces that rely on any arbitrary non-
negative function. Reverse Minkowski and reverse Holder inequalities via quantum Hahn, and various additional
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variations derived by quantum Hahn fractional integral operator affecting convex functions are presented in [26].
Furthermore, some results on local derivative Sturm-Liouville problems are presented. For example, [29] computed
the eigenvalues and eigenfunctions of the Sturm-Liouville problem with local derivatives numerically using the Caputo
fractional derivative. However there are many studies on this subject [3, 4, 17, 20, 28], it seems that these results
are not enough in inverse Sturm-Liouville problem. In this study, Ambarzumyan theorem which is the first step of
inverse Sturm-Liouville theory will be given for fractional Sturm-Liouville problem. Historically, the study of inverse
Sturm-Liouville problem started by Ambarzumyan [5]. It is not difficult to see that if in Sturm-Liouville problem with
Neumann conditions, then eigenvalues are then q(x) = 0. In addition, inverse Sturm-Liouville problem was solved in
various case [10, 12, 16, 21, 30, 33, 35–37].

We consider boundary value problem on a finite interval [0, π]

−Dα
xD

α
xy + q(x)y = λy, (1.1)

with separable boundary conditions

Dα
xy(0) + hy(0) = Dα

xy(π) +Hy(π) = 0. (1.2)

The Sturm-Liouville problem with local derivative is the name given to this issue, and it has been extensively
studied in the literature [1, 4, 17, 20]. Here, λ is spectral parameter, q(x) ∈ L2

α(0, π), h,H are real constants. Also,Dα
x

is the conformable derivative of order α, 0 < α ≤ 1.
Before giving the main part of the study, it is useful to give some basic conclusions about the fractional theory

[2, 6–8, 13, 15, 19].

Definition 1.1. Let α be a positive number with α ∈ (0, 1]. The conformable derivative of order α of f with regard
to x > 0 is defined as a function

Dαf(x) = lim
h→0

f(x+ hx1−α)− f(x)

h
. (1.3)

If f is differentiable, that is f
′
(x) = limh→0

f(x+h)−f(x)
h , then Dαf(x) = x1−αf

′
(x).

Definition 1.2. f : [0,∞) −→ R be a given function. Then, the conformable integral of f of order α is defined

Iαf(x) =

∫ x

0

f(t)dαt =

∫ x

0

tα−1f(t)dt, (1.4)

for all x > 0 and 0 < α ≤ 1.

Theorem 1.3. Let f and g be α-differential at x, x > 0. Then,
i) Dα

x (af + bg) = aDα
xf + bDα

x g, ∀a, b ∈ R
ii) Dα

x (c) = 0, (c is a constant)

iii) Dα
x (

f
g ) =

Dα
x (f.g)−f.Dα

x g
g2 .

2. Main Results

In this section, the Ambarzumyan theorem proved by some authors for the classical derivative Sturm-Liouville
problem will be given for the Sturm-Liouville Problem with local derivative. Especially, when different boundary
conditions are taken into account, the motion of the potential function will be examined according to state of the
eigenvalues . It is worth mentioning here that when we consider α = 1, the results were given in [33].

Theorem 2.1. For λo = α
π
α
{
H − h+

∫ π

0
qdαx)

}
, if the the spectrum (collection of eigenvalues) is consisted of λo

then the potential function is q(x) = λo almost everywhere on L2
α(0, π) for the problems (1.1) and (1.2).

Proof. Let yα(x) be an eigenfunction corresponding to λo then

Dα
x

(
Dα

xy

y

)
=

(Dα
xD

α
xy)y −Dα

xy.D
α
xy

y2
,
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Dα
xD

α
xy

y
= Dα

x

(
Dα

xy

y

)
+

(
Dα

xy

y

)2

,

and taking α integration on [0, π] and by (1.2)

∫ π

0

Dα
xD

α
xy

y
dαx =

Dα
xy

y

∣∣∣∣
x=π

− Dα
xy

y

∣∣∣∣
x=0

+

∫ π

0

(
Dα

xy

y

)2

dαx,

∫ π

0

(q − λo)dαx = h−H +

∫ π

0

(
Dα

xy

y

)2

dαx.

Inserting the λo in above we conclude that∫ π

0

(
Dα

xy

y

)2

dαx = 0.

and it gives us that y = c (c is a constant ). Let write the (1.1) equation for a constant solution then we complete the
proof. □

Let us define the problems (1.1) and (1.2) with Lα(q, h,H) and L̃α(q̃, h,H) and these problems refer to different
two problems for q and q̃, respectively.

Theorem 2.2. Let λo = λ̃o +
⟨q̃ỹ, ỹ⟩α
⟨ỹ,ỹ⟩α

. Then q − q̃ = λo − λ̃o. Where ỹ is an eigenfunction related to λ̃o in the

problems (1.1) and (1.2) and the inner product defined ⟨.⟩ =
∫ π

0
(.)dαx in L2

α(0, π).

Proof. Consider yo is an eigenfunction of Lα related with λo. Then

⟨Lαỹo, ỹo⟩
⟨ỹo, ỹo⟩

=
−
∫ π

0
Dα

xD
α
x ỹoỹodαx+

∫ π

0
qỹoỹodαx∫ π

0
ỹo.ỹodαx

=
−
∫ π

0
Dα

xD
α
x ỹoỹodαx+

∫ π

0
qỹoỹodαx∫ π

0
ỹo.ỹodαx

−
∫ π

0
Dα

xD
α
x ỹoỹodαx−

∫ π

0

∼
q ỹoỹodαx∫ π

0
ỹo.ỹodαx

+

∫ π

0
Dα

xD
α
x ỹoỹodαx−

∫ π

0

∼
q ỹoỹodαx∫ π

0
ỹo.ỹodαx

=

∫ π

0

(
−Dα

xD
α
x ỹo +

∼
q ỹo

)
ỹodαx+

∫ π

0

(
q−̃q

)
ỹoỹodαx∫ π

0
ỹo.ỹodαx

=
⟨λ̃oỹo, ỹo⟩
⟨ỹo, ỹo⟩

+
⟨
(
λo − λ̃o

)
ỹo, ỹo⟩

⟨ỹo, ỹo⟩
= λo.

The rest of proof is ommited. □

Now, we will give some Ambarzumyan type results in various cases.

Corollary 2.3. Consider the Sturm-Liouville Problem with local derivative −Dα
xD

α
xy+qy = λy, Dα

xy(0) = Dα
xy(π) =

0. Also let
∼
q(x) = 0. Then, λ̃o = 0 and ỹo = 1. By Theorem 2.2, q = λo that implies the Theorem 2.1.
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Corollary 2.4. Consider the Sturm-Liouville Problem with local derivative −Dα
xD

α
xy + qy = λy, y(0) = y(π) =

0 . Also let
∼
q(x) = 0. Then, λ̃o =

α

πα−1
and ỹo = sin(

xα

πα−1
). Then Theorem 2.2 gives that if λo = α

πα−1 +

2α

πα

∫ π

o
q(x) sin2

(
xα

πα−1

)
dαx, then q(x) = λo −

α

πα−1
.

Corollary 2.5. Consider the periodic problem −Dα
xD

α
xy+ qy = λy, y(0) = y(π), Dα

xy(0) = Dα
xy(π). let q̃ = 0. Then,

λ̃o = 0, ỹo = 1. Theorem 2.2 implies that λo =
α

πα

∫ π

0
q(x)dαx then q = λo a.e. on (0, π).

3. Examples

Example 3.1. Consider the boundary value problem (1.1) with Neumann conditions. Let, q̃ = 0. Then, λ̃o = 0 and
ỹo = 1. By Theorem 2.2,

λo = λ̃o +
⟨q̃ỹ0, ỹ0⟩α
⟨ỹ0,ỹ0⟩α

=
α

πα

∫ π

0

q(x)dαx.

If q(x) = x2, we have λo = α
α+2π

2. Then behaviour of the eigenvalue as in Figure 1.

Figure 1. Behaviour of eigenvalue
depending on α for q(x) = x2.

Figure 2. Behaviour of eigenvalue
depending on α for q(x) = sinx.

If q(x) = sinx, we have λo =
πα.PFQ[{ 1

2 ,
α
2 },{ 3

2 ,
3
2 ,

α
2 },−π2

4

α+1 . Then behaviour of the eigenvalues as in Figure 2. Where
PFQ indicate the generalized Hypergeometric function.

Example 3.2. Consider the boundary value problem (1.1) with the y(0) = Dα
xy(π) = 0 conditions. Let, q̃ = 0. Then,

λ̃o = 0 and ỹo = 1. By Theorem 2.2,

λo = −h+
α

πα

∫ π

0

q(x)dαx.

If q(x) = x2 and h = −2, we have λo = −2 + α
α+2π

2. Then behaviour of the eigenvalues as in Figure 3.

If q(x) = sinx and h = −2, we have λo = −2+
πα.PFQ[{ 1

2 ,
α
2 },{ 3

2 ,
3
2 ,

α
2 },−π2

4

α+1 . Then behaviour of the eigenvalues as in
Figure 4.

Example 3.3. Consider the anti-periodic problem −Dα
xD

α
xy + qy = λy, y(0) = −y(π), Dα

xy(0) = −Dα
xy(π). Let

q̃ = 0 and because of double eigenvalues λ̃o = λ̃1 =
α

πα−1
. Then eigenfunction ỹo(x) = c1 sin

(
xα

α

)
+c2 cos

(
xα

α

)
. Then,

Theorem 2.2 implies that If λo =
α

πα−1
+

α

πα(c21 + c22)

∫ π

0
q(x)(c1 sin

(
xα

α

)
+ c2 cos

(
xα

α

)
dαx for some constants c1, c2,

Then q = λo −
α

πα−1
a.e. on (0, π).



Unco
rre

cte
d Pro

of

REFERENCES 5

Figure 3. Behaviour of eigenvalue
depending on α for q(x) = x2.

Figure 4. Behaviour of eigenvalue
depending on α for q(x) = sinx.

Conclusion

In this paper, we proposed an effective and straightforward approach to determine the Sturm-Liouville Problem’s
potential function using local derivatives. For this purpose, we find the first eigenvalue of the problem and then gave
the the potential function depending on the eigenvalue and some constants in the boundary conditions. Then, results
will contribute to Fractional Sturm-Liouville theory. The outcomes acquired by the future plan are all cases of α. To
make the results more concrete, we gave some examples and geometric interpretations showing the change of the first
eigenvalue according to α in Figure 1–4. However it is possible to generalize Ambarzumyan theorem via product rule
and Leibnitz rule in local derivative case, it is difficult to have non-local fractional derivative. But, author plans to
study inverse problem in non-local case.
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