
Unco
rre

cte
d Pro

of

Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. *, No. *, *, pp. 1-16
DOI:10.22034/cmde.2025.65816.3048

Relational graph convolutional networks for sentiment analysis

Asal Khosravi, Zahed Rahmati∗, and Ali Vefghi

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.

Abstract

With the growth of textual data across online platforms, sentiment analysis is essential for deriving insights from

user-generated content. While traditional approaches and deep learning models have shown promise, they often
cannot capture complex relationships between entities. In this paper, we propose using Relational Graph Convolu-

tional Networks (RGCNs) for sentiment analysis, which provide better interpretability by modeling dependencies
between data points represented as interconnected nodes in a graph structure. We demonstrate our method’s effec-

tiveness through pre-trained language models such as BERT and RoBERTa with RGCN architecture on product

reviews from Amazon and Digikala datasets and analyze the resulting performance. Our experiments underscore
the strength of RGCNs in capturing relational information for sentiment analysis tasks.

Keywords. Heterogeneous Graphs, Sentiment Analysis, Graph Neural Networks, Relational Graph Convolutional Networks, Pretrained Language

Models.

2010 Mathematics Subject Classification. 65L05, 34K06, 34K28.

1. Introduction

Sentiment analysis, also known as opinion mining, is a fundamental task in natural language processing within
the broader domain of text classification which aims to extract valuable insights from various social platforms and
extensive online texts, enabling the analysis of people’s attitudes across various domains including business, advertising,
government, economics, and even political orientations. As the utilization of text in online conversations, emails, and
user-generated sentiments on the internet about various products, movies, and services continues to rise, there is an
increasing need for robust mechanisms capable of analyzing and interpreting textual data. Text classification refers
to the process of assigning categories to documents into predefined classes or categories based on their content. In the
case of sentiment analysis, the objective is to classify text documents into categories representing different sentiments
or emotions, such as positive, negative, or neutral. Researchers have made many efforts in this field, which mainly
refer to traditional approaches based on dictionaries, machine learning, and deep learning models. Despite achieving
impressive results in sentiment analysis, deep learning models often lack interpretability. This “black box” nature
arises from difficulties in interpreting the model’s internal workings, such as the weights assigned to features and the
high dimensionality of the feature space itself.

Graph Neural Networks (GNNs) have emerged as a powerful paradigm for analyzing structured data, providing
distinct advantages in modeling relationships and dependencies between data points represented as interconnected
nodes in a graph structure. GNNs excel at exploiting the rich relational information inherent in graph structures.

Heterogeneous graphs, where nodes and edges can have different types, offer a natural representation of real-world
systems with diverse relationships. While successful for text classification, traditional GCNs treat all relationships in
text graphs as homogeneous. By treating all relationships the same, traditional GCNs miss out on the rich information
encoded in the different types of edges within a text graph, meaning they overlook the inherent variety in how words
interact. Relational Graph Convolutional Networks (RGCNs) address this by using different types of edges to capture

Received: 08 February 2025 ; Accepted: 22 May 2025.
∗ Corresponding author. Email: zrahmati@aut.ac.ir.

1

Unco
rre

cte
d Pro

of

2 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

different relationships. However, this expressiveness comes at a computational cost. Nevertheless, heterogeneous
graphs provide a more powerful way to represent text, allowing GNNs to adapt their message-passing based on the
semantics of different relationships. Such a rich representation typically enhances performance in text classification
tasks.

In this paper, we propose using the ability of Relational Graph Convolutional Networks (RGCNs) to understand
relational information for sentiment analysis tasks. By incorporating pre-trained language models such as BERT and
RoBERTa into the RGCN framework, we aim to enhance the model’s ability to extract meaningful sentiment-related
features from documents. To validate our proposed approach, we conduct experiments on two diverse datasets: the
English-language Amazon reviews dataset and the Persian-language Digikala reviews dataset. Through comparison
with existing methods, we showcase the superior performance of our RGCN-based approach in capturing relational
information. The remainder of this paper is organized as follows. Section 2 provides a brief overview of related work in
sentiment analysis and GCNs. Section 3 details our proposed method, including the RGCN architecture and training
process. Section 4 presents the experimental setup and evaluation results. Finally, section 5 concludes the paper and
outlines potential future directions.

2. Related Works

In recent years, there has been significant research interest in leveraging graph-based models for text classification
tasks, aiming to capture the relational dependencies and semantic associations present in textual data. In some
applications, such as constituency 1 or dependency 2 parsing [16], knowledge graphs [11, 12], or social networks [3],
the graph structure is explicit and naturally available. In contrast, text-specific graphs do not come with an inherent
structure. Therefore, for tasks like sentiment analysis, we must construct a new graph by explicitly defining nodes
and edges — for example, through word–word or word–document co-occurrence patterns.

Two main approaches based on graph construction are corpus-level graphs and document-level graphs. Corpus-level
graph methods encompass the entire collection of text documents, uncovering patterns in word usage across the whole
dataset. On the other hand, in document-level graphs, the focus is on the internal structure of a single document,
capturing how concepts and ideas connect within that specific text.

One notable approach in this domain was Text-GCN [22], which built a corpus-level graph with training document
nodes, test document nodes, and word nodes to capture semantic relationships between words and documents. A
two-layer GCN was applied to the graph, and the dimension of the second layer output equals the number of classes
in the dataset. TextGCN was the first work that treated a text classification task as a node classification problem by
constructing a corpus-level graph and has inspired many following works.

Wu et al. (2019) [20] proposed Simple Graph Convolution (SGC) to address the computational complexity of
Graph Convolutional Networks (GCNs). They achieved this by removing the non-linear activation function within
GCN layers, resulting in a single linear transformation with comparable or even better performance on various tasks.
Zhu and Koniusz (2020) [24] proposed Simple Spectral Graph Convolution (S2GC) which included self-loops using
Markov Diffusion Kernel to solve the oversmoothing issues in GCN. Other than using the sum of each GCN layer in
S2GC, the NMGC model which was proposed by Lei et al. (2021) [7] applied min pooling using the Multi-hop neighbor
Information Fusion (MIF) operator to address over-smoothing problems. Zhang and Zhang (2020) [23] introduced
TG-Transformer (Text Graph Transformer) which adopted two sets of weights for document nodes and word nodes
respectively to introduce heterogeneity into the TextGCN graph. Lin et al. (2022) [8] proposed BertGCN, which
aimed to combine the strengths of BERT (Devlin et al., 2018) [4] and TextGCN. BertGCN replaced the document
node initialization with the BERT’s ”CLS” output obtained in each epoch and replaced the word input vector with
zeros. Instead of constructing a single corpus-level graph, TensorGCN which was proposed by Liu et al. [10] built
three independent graphs: Semantic-based graph, Syntactic-based graph, and Sequential-based graph to incorporate
semantic, syntactic, and sequential information respectively and combined them into a tensor graph. To fully utilize
the corpus information and analyze rich relational information of the graph, Wang et al. (2022) [17] proposed ME-GCN

1The constituency graph is a widely used static graph that can capture phrase-based syntactic relations in a sentence.
2A dependency graph is a directed graph representing dependencies of several objects towards each other.

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 3

(Multi-dimensional Edge-Embedded GCN) and built a graph with multi-dimensional word-word, word-document and
document-document edges.

Various works have been done to make TextGCN Inductive. Ragesh et al. (2021) [13] optimized TextGCN with
HeteGCN (Heterogeneous GCN) by decomposing the original undirected graph into several directed subgraphs. Wang
et al. (2022) [19] aimed to extend the transductive TextGCN into an inductive model with InducT-GCN (Inductive
Text GCN). Xie et al. (2021) [21] adopted a Variational Graph Auto-Encoder on the latent topic of each document
with T-VGAE (Topic Variational Graph Auto-Encoder) to enable inductive learning.

Schlichtkrull et al. (2017) [15] introduced a powerful approach called Relational Graph Convolutional Networks
(RGCNs) for modeling relational data. Their model effectively learns representations for nodes in a graph by consid-
ering not only the node features themselves but also the relationships between nodes. In this work, we leverage this
concept by employing RGCNs to use it on sentiment analysis.

3. Proposed Method

In this section, we propose our method for sentiment analysis which is to construct the heterogeneous graph,
calculate the feature vectors of the nodes using the pre-trained BERT and RoBERTa models, and then feed them into
the Relational graph neural network and predict the node labels. We initialize node embeddings using contextualized
BERT representations and utilize RGCNs for node classification. By using the BERT models, our model benefits
from capitalizing on pre-trained BERT, which leverages vast amounts of unlabeled data to capture rich semantic
information for text elements. Figure 1 shows the overview of our proposed method.

Figure 1. Overview of our proposed method.

3.1. Text Pre-processing. Our proposed method incorporates text pre-processing to prepare the textual data for
graph construction. This pre-processing includes text normalization (lower casing, removing punctuation and spell
checking), removing numbers and extraneous content (URLs, HTML tags), using chat word conversion, and simplifying
the text by removing emojis and low-frequency words. Additionally, we handle abbreviations and remove stop words
and rare words to focus on the core meaning. Finally, we tokenize the text and perform lemmatization to ensure
consistent word representation. Specifically, for the dataset in Persian, we employed normalization, punctuation
removal, unnecessary word removal, tokenization, number removal, and lemmatization.

3.2. Graph Construction.

3.2.1. Heterogeneous graph. A heterogeneous graph is a more flexible way to represent networks where data can come
in various forms [18]. Unlike a homogeneous graph, a heterogeneous graph allows for different types of nodes and
edges. Imagine a social media network where you can have users, posts, and comments. A standard graph would just
represent them as nodes and connections between them. But a heterogeneous graph can differentiate between a user
node and a post node, and also distinguish between a ”likes” edge and a ”comments on” edge. In our model, nodes
are documents and words, and relations between them are created as below:

Formally, a heterogeneous graph is denoted by G = (V,E, τ, φ), where V is the set of nodes, and the type of node for
node v is denoted as τ(v). The set of edges is E, and the type of edge for edge (u, v) is denoted by φ(u, v). Additionally,
we can also use an ordered triple r(u, v) = (τ(u), φ(u, v), τ(v)) to represent relationships in a heterogeneous graph.
Here, the aim is to construct a directed and weighted heterogeneous graph that contains a good representation of the
relationships between the nodes in the dataset.

Unco
rre

cte
d Pro

of

4 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

3.2.2. Creating edges. Edges are constructed based on the occurrence of a word in the document, the co-occurrence
of words in the entire corpus, and the similarity between two documents. Therefore, in our heterogeneous graph, we
have three types of edges: word-word edges, word-document edges, and document-document edges. For each of these
edge types, we need to define a weighting metric that captures the strength or importance of the relationship between
the connected entities.

• For calculating the weight of the link between word-word nodes, we use the point-wise mutual information
(PMI) method [1], which is a popular metric for calculating the weight between two-word nodes. To calculate
the weight of the link between two words i and j, PMI is defined in Eq. (3.1).

PMI(i.j) = log(
p(i.j)

p(i)p(j)
), (3.1)

P (i.j) =
#W (i.j)

#W
, (3.2)

P (i) =
#W (i)

#W
. (3.3)

In Eq. (3.3), the number of sliding windows in the complete dataset that contain the word i is denoted
by #W (i). Also in Eq. (3.2), #W (i, j) is the number of sliding windows that contain word i and word j.
The #W is the total number of sliding windows in the complete dataset. Positive PMI values indicate a high
semantic relationship between words in the dataset, while negative PMI indicates the absence of a semantic
relationship or a weak semantic relationship between two words, therefore, we only add edges with positive
PMIs to the graph. The edges are connected in a bidirectional manner here.
• For document-document nodes, we use the Jaccard [6] weighting metric which is utilized to compute the

similarity between two documents A and B, and is obtained using Eq. (3.4):

J =
|A ∩B|
|A ∪B|

=
|A ∩B|

(|A|+ |B| − |A ∩B|)
. (3.4)

If the two sets are completely equal, then J = 1, if they have no common elements, then J = 0; if they have
some common elements, then 0 ≤ J(A,B) ≤ 1. Also, the edges are bidirectional here.
• For word-document edges we use the Term Frequency-Inverse Document Frequency (TF-IDF) [14] weighting

metric. To obtain the TF-IDF score, we need to calculate each of these two terms separately and multiply
the results together. The resulting score will show us the weighted frequency of the keyword. The formula is
given in Eq. (3.5):

TF − IDF = tfx,y ∗ IDF = tfx,y ∗ log(
N

dfx
). (3.5)

The N is the total number of words in the content, tfx,y is the number of times the word x appears in the
document y divided by the number of words in the document y, dfx is the number of documents that contain
the word x and IDF is the logarithm of the number of total content divided by the content that contains the
word x.

These relation types are not learned during training but are constructed during preprocessing to guide
message passing in the RGCN framework. To obtain the co-occurrence information of keywords, we use
a sliding window with a fixed size on all text documents in the dataset to collect co-occurrence statistics.
Additionally, the direction of edges is from documents to words.

Figure 2 shows an overview of the constructed graph using the mentioned three metrics.

3.3. Pre-trained language models. BERT [4], developed by Google, is a transformer-based model that generates
contextual word representations by training on large corpora like English Wikipedia. RoBERTa [9] builds on BERT
with improved training strategies, including larger batches, longer training time, and removal of the next sentence
prediction task. ParsBERT [5], similarly based on the BERT architecture, is pre-trained on over 3.9 million Persian

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 5

Figure 2. Overview of the constructed graph - The constructed graph is a directed and weighted
heterogeneous graph with two types of nodes (words and documents) and three types of edges (word-
word, word-document, and document-document).

documents and supports a wide range of NLP tasks such as classification, named entity recognition, and question
answering in Persian.

This work leverages BERT (RoBERTa) to generate contextualized representations for both document and word
nodes. After constructing the graph, we first create an initial representation vector, using the pre-trained BERT
model and the pre-trained RoBERTa model for each of the nodes (documents and words) in the graph. Then, these
representation vectors are fed into the RGCN as the initial features of the nodes. For each document, Dd, we process
it through the pre-trained BERT (RoBERTa) model. This is expressed as in Eq. (3.6).

BDd
= BERT/RoBERTa(Dd), (3.6)

HnodeDd
= B

[cls]
Dd

, (3.7)

HnodeWm
= mind∈DWm

(BWm

Dd
). (3.8)

For example, we give the sentence “John feels happy” to BERT (RoBERTa) and the output would be B
[CLS]
Dd

BJohn
Dd

Bfeels
Dd

Bhappy
Dd

B
[SEP]
Dd

. Using Eq. (3.7), we consider the representation vector ”[CLS]” as the representation vector of the
document Dd. This ”[CLS]” token, a characteristic of BERT and RoBERTa, is known to encapsulate a comprehensive
representation of the entire input sequence. Consequently, HnodeDd

serves as the final document node representation
for the RGCN.

The Eq. (3.8) defines the representation vector for a word node Wm. We first consider all documents DWm
that

contain the word Wm. Subsequently, for each document Dd in this set, we extract the specific embedding vector BWm

Dd

corresponding to the word Wm within the document embedding BDd
. Finally, we employ min-pooling to select the

minimum vector across all documents containing Wm. This min-pooled vector, HnodeWm
, captures the most prominent

contextual representation of the word across different document occurrences.
We employ min-pooling to obtain the word node HnodeWm

representations across all documents containing the
word Wm. This choice helps reduce the influence of dominant or noisy contexts that might arise when using max-
or mean-pooling. In sentiment classification, where a word may appear across varied emotional tones, min-pooling
provides a conservative representation that reflects the most context-independent signal, which we found to improve
model stability. However, this is a design choice, and in future work, different pooling strategies such as mean-pooling

Unco
rre

cte
d Pro

of

6 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

or max-pooling can also be explored and compared to determine the most effective aggregation method for various
datasets or tasks.

3.4. RGCN framework. RGCN is a convolution operation that performs message passing on multi-relational graphs.
Unlike standard GCNs, which assume a single edge type and apply uniform transformations across all neighbors,
RGCNs support multiple relation types by assigning a separate transformation for each. This design allows them
to model heterogeneous graphs where edges represent different semantics (e.g., word–word co-occurrence, document
similarity, or TF-IDF between document–word pairs). Such relation-specific message passing enables richer represen-
tations and more accurate classification in tasks like sentiment analysis. We explain how graph convolutional networks
operate on directed graphs and how they can be extended to relational graphs. We describe message passing in terms
of matrix multiplication and explain the intuition behind this operation. This model is a generalized version of GCN
that operates on graphs in large-scale multi-relational data. Related methods, such as graph neural networks, can be
understood as special cases of the message-passing framework.

h
(l+1)
i = σ

(∑
m∈Mi

gm(h
(l)
i , h

(l)
j)

)
. (3.9)

In Eq. (3.9), h
(l)
i ∈ Rd(l) is the hidden state of node vi at layer l of the neural network, where d(l) is the dimension

of this layer. The received messages are aggregated using the function gm(·, ·) and passed through an element-wise
activation function σ(·), such as ReLU(0) = max(0, ·). The Mi denotes the set of incoming messages for node vi and
is often chosen to be the same as the set of incoming edges. The gm(·, ·) is typically chosen to be either a neural
network function (message-specific) or simply a linear transformation gm(hi, hj) = Whj with a weight matrix W .
This is essentially a transformation of the message before it is passed on. This type of transformation is very effective
in aggregating and encoding local features of the graph structure’s neighbors and has led to significant advances in
areas such as graph classification and graph-based semi-supervised learning.

Motivated by these architectures, we define the following simple propagation model for computing the forward-pass
update of an entity or node denoted by vi in a multi-relational (directed and labeled) graph.

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 . (3.10)

In Eq. (3.10), Nr
i denotes the index set of node i’s neighbors under relation r ∈ R. The ci,r is a problem-specific

normalization constant that can be learned or chosen beforehand (e.g., ci,r = |Nr
i |). Intuitively, the model aggregates

the transformed feature vectors of neighboring nodes via a normalized summation.
Different from conventional GCNs, in this model, relation-specific transformations, represented by the relation

weight matrix W
(l)
r , are introduced depending on the type and direction of an edge. As shown in Figure 3, three

weight matrices are shown with three different colors.
To ensure that the representation of a node in layer l + 1 can also be aware of the corresponding representation

of the same node in layer l, a self-loop of a special relation type is added to each node. Note that instead of simple
linear message transformations, more flexible functions (of course, with computational cost considerations) such as
multilayer neural networks can be selected. Eq. (3.10) is a layer update of the neural network in parallel for each
node in the graph. In practice, the formula can be efficiently implemented using sparse matrix multiplication to avoid
explicit summation over neighbors. Multiple layers can be stacked on top of each other to allow for dependencies over
multiple relational steps. This model is referred to as a Relational Graph Convolutional Network (RGCN).

The computational graph for updating a node in the RGCN model is shown in Figure 4. The d-dimensional feature
vectors of the neighboring nodes (in blue) are first aggregated and then transformed separately for each relation type
(both for incoming and outgoing edges). The resulting representation (green) is aggregated in a normalized summation
and passed through an activation function. This update can be computed for each node in parallel with parameters
shared across the entire graph. The overall RGCN model is thus to stack l layers as defined in the above formula,

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 7

Figure 3. Overview of RGCN and its corresponding computational graph for the example node ”A”.

Figure 4. The computation view for updating a single graph node in the RGCN model.

with the output of the previous layer being the input to the next layer. If no node features exist, the input to the
first layer can be chosen as a one-hot vector for each node in the graph. A problem with directly applying the above
equation is the rapid growth of the number of parameters, especially for data with a large number of edges. In order
to reduce the number of parameters of the model and prevent overfitting, the use of basis decomposition has been

proposed. With the basis decomposition, each W
(l)
r is defined as

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b , (3.11)

Unco
rre

cte
d Pro

of

8 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

i.e. as a linear combination of basis transformations V
(l)
b ∈ Rd(l+1)∗dl

with coefficients a
(l)
rb such that only the coefficients

depend on r.

3.5. Details of our proposed method.

3.5.1. Training settings. There are two settings of learning in GNNs: inductive and transductive [2]. Inductive learning
is the same thing as what we usually know as supervised learning. We build and train a machine learning model based
on a labeled training dataset that we already have (just training nodes and not test nodes). Then, we use this trained
model to predict the labels of a test dataset that we have never seen before [13, 19, 21].

On the other hand, in transductive learning, all data, both the training and test datasets, are observed in advance.
They learn from the observed training dataset including only the labels of the train data and then predict the labels
of the test dataset. Even if we do not know the labels of the test dataset, we can use the patterns and additional
information in this data during the learning process [15, 23].

Our model is trained in a transductive manner because, according to the transductive logic, it uses the entire graph
structure to obtain embeddings, i.e., the connections affect message passing. However, training is done using the labels
of the separate sections. The graph is constructed at the text corpus level, i.e., a graph is created over the entire
text data, and the word embedding is obtained from the min pooling of the embeddings of the documents it contains.
Therefore, the document that has labels is included in all three sections: training, validation, and testing. And the
word must also exist in order to preserve the complete connections. Finally, the entire graph structure plays a role in
training the model.

3.5.2. The model. Our proposed RGCN network consists of two layers, enabling information exchange between nodes
that are at most two hops (neighbors and neighbors of neighbors) apart. The activation function is the ReLU function,
and the optimizer function is the ADAM function. The first layer of the RGCN model is fed with a feature vector of
each node which is acquired from BERT or RoBERTa. Based on our obtained results, a two-layer RGCN performs
better than a one-layer RGCN, while increasing the number of layers does not improve the model’s performance. The
size of the representation vectors of the second layer is the same as the size of our class set, which is updated with
RGCN based on the graph structure. The final representation vectors obtained for each of the nodes of the document
are considered as the output of the RGCN, which are passed through a SoftMax classifier to perform the prediction.

By constructing a large heterogeneous text graph containing word nodes and document nodes, we can explicitly
model both word co-occurrences and easily apply graph complexities. The number of nodes in the text graph is equal
to the number of documents (corpus size) plus the number of distinct words in the set (vocabulary size).

We define the edge between document and word nodes as directed (from document to word) and the edge be-
tween two-word nodes or two document nodes as bidirectional. A heterogeneous graph is defined with the structure
(V,E, τ, φ) = G, where:

• Node type τ(v) is defined as word or document.
• Edge type φ(u, v) is defined as co-occurrence, similarity, or frequency.
• The relationship type is expressed as an ordered triple for R: (Word, Co-occurrence, Word), (document,

Similarity, document), (document, Frequency, Word)

Since the rule of message passing in a directed graph allows information to flow only in the direction of the edge,
this creates an asymmetry in how nodes exchange information. For example, in a triplet like 〈Amsterdam, LocatedIn,
Netherlands〉, messages would flow from ”Amsterdam” to ”Netherlands” but not the other way around. To address
this, we modify the graph structure inside the RGCN by adding reverse edges for all relation types. Specifically, for
each original edge < s.r.o >, we add a corresponding edge < o.ŕ.s >, where ŕ is a new relation representing the inverse
of r. This ensures that all nodes can both send and receive information, enabling full bidirectional message passing
across the graph, regardless of the original semantic direction.

The node update follows the RGCN framework defined in section 3.4, with additional self-loops and reverse edges
added to enable bidirectional message passing. Each relation type has a dedicated adjacency matrix, and the model
uses a two-layer RGCN with ReLU activations and softmax classification.

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 9

Table 1. Amazon dataset statistics.

tag 1 2 3 4 5 Total

number of Sentences 5774 7907 17490 32777 87284 151232

4. Experiments

4.1. Datasets.

4.1.1. The Amazon dataset. The dataset used in this research is the Amazon dataset1, which was collected from the
company’s website between May 1996 and July 2014. The Amazon website sells a wide variety of products from
different categories, such as electronics, books, clothing, and more. The website allows users to rate products and
write reviews. All of the information mentioned above is collected in text files in the Amazon dataset. This dataset
includes 142.8 million samples. Each sample in this file represents a user’s review of a product. Each sample includes
information such as the user ID, the item ID, the user’s rating of the item (a number between 1 and 5), the user’s
review of the item (in text form), and the time the user submitted the review. This paper use the core5-version of
the user reviews file (each user or item has at least 5 reviews), on the grocery shopping category (including food,
vegetables, prepared meals, etc.), which contains 9982 users, 8682 items, and 151,254 ratings and reviews (22 people
without text reviews). The specifications of this dataset after pre-processing are shown in Table 1. We also used a
2-class version of this dataset. This dataset has two labels: label 1 (combination of classes 1 and 2 from 5-core version)
and label 2 (combination of classes 4 and 5 from 5-core version)

Figure 5 shows the 5-class and 2-class Amazon datasets before balancing. It shows that before balancing the data, in
2-class version, the number of data with label 2 (combination of classes 4 and 5) is more than the label 1 (combination
of classes 1 and 2). We can say that label 2 is the majority class and the other class is the minority class. Additionally,
in the 5-class version, the class with label 5 is the majority class and the class with label 1 is the minority class. We
increased the data of classes with labels 1, 2, and 3 to the number of classes with label 4 with the oversampling method,
and we reduced the data of classes with label 5 to the number of data of classes with label 4 with the undersampling
method. Therefore, to balance the datasets, we employed a combination of reducing the majority class and increasing
the minority class in both versions. After balancing 5-class Amazon dataset has 32777 comments in each label and
the 2-class Amazon dataset has 13681.

The problem with a model trained on imbalanced data is that the model may bias toward the majority class,
neglecting accurate prediction of minority labels. This can be a problem when applying the model to a real-world
problem, where it is crucial to predict the minority class accurately. Balancing a dataset makes it easier to train a
model, as it helps to prevent the model from becoming biased towards one class. In other words, the model will no
longer favor the majority class, just because it has more data.

In Figures 6(a) and 6(b), we present the distribution of the number of words in the 5-class and 2-class datasets.

4.1.2. The Digikala dataset. We also evaluated the proposed model on the Digikala dataset which is in Persian. This
dataset includes 100,000 rows and 12 different columns, including user reviews, product pros and cons, number of likes
and dislikes, product ID, and more. We assessed the proposed model’s effectiveness in two cases:

• In the case where our data has two classes and has two labels ”Recommended” and ”Not Recommended”,
• In the case where the data has three classes and has three labels ”Recommended”, ”Not Recommended” and

”No Opinion”.

The specifications of this dataset after preprocessing are shown in Table 2.

4.2. Experiment setup. The proposed method in this research is implemented using the Python development envi-
ronment. The Geometric PyTorch library2, which is a PyTorch-based library designed for implementing graph neural

1https://jmcauley.ucsd.edu/data/amazon/
2https://pytorch-geometric.readthedocs.io/en/latest

 https://jmcauley.ucsd.edu/data/amazon/
https://pytorch-geometric.readthedocs.io/en/latest

Unco
rre

cte
d Pro

of

10 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

Table 2. Digikala dataset statistics.

Not Recommended No Opinion Recommended Total
Tag -1 0 1 -

Number of Sentences 16098 10528 36960 63586

Figure 5. (a) distribution of labels within comments for the dataset with 5 classes (b) distribution
of labels within comments for the dataset with 2 classes.

networks, was used to implement the graph convolutional and graph relational convolutional networks. The Hazm1

library was used for natural language processing in Persian, and the spaCy2 library was used for English.

4.3. Evaluation metrics. To evaluate the effectiveness of the proposed models, we use the cross-entropy loss function,
the accuracy metric, and the F1 score. Cross entropy is a concept that is commonly used in statistics and machine
learning, often as a loss function for measuring the dissimilarity between the predicted probability distribution and
the actual distribution of a classification problem. The intuition behind cross-entropy is that it measures how much
the predicted probabilities match the real probabilities. The cross-entropy between the real distribution P and the
predicted distribution Q is calculated as: crossentropy(P,Q) = −

∑
i pi ∗ log(qi)

Accuracy and F1 score are two metrics that are commonly used to evaluate text classification methods and are
calculated according to the following formulas: Accuracy = (TP + TN) / (TP + FP + FN + TN), Precision =
TP / (TP + FP), Recall = TP / (TP + FN), F1-score = 2 * (Precision * Recall) / (Precision + Recall), Where:
TN: Represents the number of records that the model correctly identified as negative and labeled as negative. TP:
Represents the number of records that the model correctly identified as positive and labeled as positive. FP: Represents
the number of records that the model incorrectly identified as negative but were labeled as positive. FN: Represents
the number of records that the model incorrectly identified as positive but were labeled as negative.

1https://github.com/roshan-research/hazm
2https://spacy.io

https://github.com/roshan-research/hazm
https://spacy.io

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 11

Figure 6. (a) distribution of word count within comments for the dataset with 5 classes (b) distri-
bution of word count within comments for the dataset with 2 classes.

4.4. Results.

4.4.1. Results on Amazon dataset. We evaluate the effectiveness of the proposed model in two cases:

• In the case where our data has two classes (excluding class with label 3), the first class includes reviews with
labels 1 and 2, and the second class includes reviews with labels 4 and 5.
• In the case where our data has five classes, they have labels 1, 2, 3, 4, and 5.

In each of these two cases, the model’s performance is evaluated when the data is imbalanced and when the data
is balanced. The results of this comparison are presented in Table 3.

Table 3. Amazon dataset Results

Model
2 class 5 class

Balanced Imbalance Balanced Imbalance
Accuracy Accuracy F1-score Accuracy Accuracy F1-score

BERT 64.46 85.88 71.42 42.00 56.98 50.06
RoBERTa 65.35 87.67 72.26 43.10 57.04 51.43

BERT + GCN 66.48 89.60 72.36 42.37 57.09 50.17
RoBERTa + GCN 67.25 89.66 73.50 43.96 57.18 52.70
BERT + RGCN 70.53 89.75 72.54 43.13 57.25 50.28

RoBERTa + RGCN 70.59 89.82 73.92 44.28 57.28 52.83

In Table 3, We can see that all the percentages in RoBERTa is higher that the numbers gained in the BERT model,
for example, accuracy in balanced dataset is 65.35% in RoBERTa but it is 64.46% in BERT in the 2-class version
and 43.10% to 42% in 5-class version. Transformers for Natural Language Processing beyond BERT refer to advanced
transformer-based models such as RoBERTa that were created to improve upon the limitations of BERT in natural

Unco
rre

cte
d Pro

of

12 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

language processing tasks. These models leverage the transformer architecture’s ability to handle long-range depen-
dencies and context-sensitive embeddings to offer improved performance on a variety of natural language processing
tasks. BERT revolutionized the field of natural language processing by introducing a bidirectional transformer-based
model that could understand a word’s context based on its entire surroundings (both left and right of the word).
However, subsequent models such as RoBERTa were developed to address some of BERT’s limitations, such as pre-
training incoherence fine-tuning inefficiency, and inability to use the full context of a sentence in the masked language
model. These changes lead to a significant improvement in its performance over BERT as can be seen from Table 3.
RoBERTa, despite its advantages, also comes with a set of challenges. Due to its large size and complexity, it requires
significant computational resources and time to train. Additionally, given its capacity, it can easily overfit on smaller
datasets if not fine-tuned properly.

As shown in the Table 3, compared to the effectiveness of BERT and RoBERTa models, in both balanced and
imbalanced data cases, when graph neural networks such as RGCN and GCN are used in combination with the above
language models, the model’s performances (RGCN/GCN) + BERT increases from BERT and (RGCN/GCN) +
RoBERTa from RoBERTa, which is due to the advantages of using graph neural networks, some of which were men-
tioned above. For example in balanced 5-class version of the dataset, the accuracy of the model GCN + RoBERTa is
43.96%, which is higher than the accuracy of the model GCN + BERT, which is 42.37%. According to the research and
results, GCN has a much higher accuracy than other methods, which shows that GCN is a much more standard model
in classification and natural language processing problems. Each of these methods has its advantages and may be
suitable for different scenarios. GNNs are designed to effectively capture rich semantic relationships and dependencies
between nodes in a graph, which enables better understanding and representation of text content. Text classification
often requires considering the contextual information of words or phrases to make accurate predictions. GNNs can
aggregate information from neighboring nodes in the graph, enabling them to effectively collect and propagate tex-
tual information. This allows GNNs to use the local context of each node and make informed decisions about text
classification tasks. On the other hand, one of the challenges of text classification is dealing with inputs of different
lengths, such as sentences and phrases with different numbers of words. GNNs can naturally handle variable-length
inputs using the graph structure. GNNs can depict the relationships and dependencies between words or sentences
and provide a more robust and flexible approach to text classification. GNNs also perform well in modeling long-range
dependencies in a graph. In text classification, long-range dependencies refer to dependencies that span the complete
dataset and text. By propagating information throughout the graph, GNNs can capture these long-range dependencies
and enable a comprehensive understanding of textual data and its classification.

Finally, in Table 3, we can see RoBERTa has more accuracy when used with RGCN than the case when it is used with
GCN. Best percentages are acquired from RoBERTa + RGCN model, it has 70.59% and 44.28% accuracy in balanced
versions and 73.92% and 52.83% F1 score in imbalanced versions. Relational Graph Convolutional Networks (RGCNs)
offer advantages over traditional Graph Convolutional Networks (GCNs) in scenarios where the relationships between
nodes are complex and diverse by defining different transformation matrices (Wr) based on the type of relationship
between nodes.

As a result, a specific message (h∗Wr) for that relationship is sent for each type of relationship, enabling the model
to distinguish between different types of interactions and leading to representations with finer differences. In contrast,
GCNs typically apply the same transformation to all edges in the graph, which may not be optimal for capturing the
diverse relationships in text documents. RGCNs provide a more expressive framework for modeling structured graph
data. By explicitly incorporating relation-specific parameters, they offer more flexibility in learning representations
that are tailored to the specific characteristics of the data and can lead to better performance, especially in tasks
where relationships play an important role, such as social networks, and text classification with rich semantic and
syntactic dependencies. Given that a separate adjacency matrix (Ar) is defined for each type of relationship in
RGCNs, this adjacency matrix represents not only the presence of edges between nodes but also the type or nature of
the relationships. As a result, they are more flexible than GCNs and can better generalize to unseen or heterogeneous
data. By learning separate parameters for different types of relationships, the model becomes more robust to changes
in the distribution of the data and increases its ability to adapt to different contexts and domains. This helps to solve
the challenge of sparsity and leads to improved results and robustness of text classification models.

Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-16 13

To summarize, RGCNs provide key advantages over GCNs in handling complex relationships and capturing diverse
interactions in documents, while relation-specific adjacency matrices provide a richer representation of relationships,
increasing the capacity of the model and improving its generalization capabilities. These characteristics make RGCNs
particularly suitable for message passing in text classification tasks.

Table 4. Digikala dataset Results.

Model
2 class 3 class

balanced imbalance balanced imbalance
accuracy accuracy F1-score accuracy accuracy F1-score

ParsBERT 68 87 72 57 62 55
ParsBERT + GCN 70 91.1 74 58 63.9 55

ParsBERT + RGCN 70.36 91.17 74.15 58.29 63.94 55.11

4.4.2. Results on Digikala dataset. ParsBERT is pre-trained on a large corpus of Persian text, enabling it to capture
language features and specific differences in the Persian language.

Table 4 shows the results and accuracy of the proposed model on the Digikala dataset. As shown, the combination
of the ParsBERT model with the RGCN model yielded improved performance than the combination of ParsBERT
with GCN. Using ParsBERT and GCN on the balanced two-class dataset with 500 epochs, we achieved an accuracy
of 70.36% on the test data and an accuracy of 71.51% on the training data. Increasing the number of epochs to 1000
resulted in an accuracy of 70.26% on the test data and an accuracy of 71.86% on the training data. It is predicted
that in this case, the model has overfitted, and we reached an accuracy of 58.29% on the test data and an accuracy
of 59.74% on the training data in the balanced three-class dataset with 1000 epochs, considering a learning rate of
0.01 and DROPOUT of 0.5. Notably, the amount of performance improvement of the RGCN + ParsBERT model
compared to the GCN + ParsBERT model in Persian is less than the amount of improvement of the RGCN + (BERT/
RoBERTa) models compared to GCN + (BERT/ RoBERTa) in English. Overall, it can be said that English and
Persian languages have significant differences in terms of grammar, syntax, and language features, some of which are
mentioned below:

• In English, words are usually separated by spaces, which makes tokenization relatively simple. In Persian,
words are connected and there is no clear space between them, so the tokenization process is more difficult.
• In Persian, compound words are often formed by combining several single words. Correctly tokenizing these

combinations can sometimes be difficult, as the boundaries between the constituent words must be accurately
identified.
• The complex morphological problem: In Persian is such that Persian words can undergo extensive changes

through prefixes, suffixes, and root inflections to indicate different grammatical features. This complexity adds
layer of difficulty to tokenization.
• Persian words can be ambiguous, meaning that a string of characters can have multiple valid interpretations.

Resolving this ambiguity during tokenization and stemming requires a deeper understanding of the language
and its context.

4.5. Computational Complexity Analysis. While Relational Graph Convolutional Networks (RGCNs) provide
enhanced expressiveness by modeling relation-specific dependencies within heterogeneous graphs, this flexibility intro-
duces additional computational overhead compared to standard Graph Convolutional Networks (GCNs) and transformer-
based models such as BERT or RoBERTa. In this section, we analyze the runtime and memory complexity of the
proposed RGCN framework.

Let |V | denote the number of nodes in the graph, |R| the number of distinct relation types, d(l) the dimensionality of
node representations at layer l, and L the number of layers. Each relation type r ∈ R is associated with a weight matrix

W
(l)
r ∈ Rd(l+1)×d(l)

, which introduces |R| additional parameter matrices per layer compared to vanilla GCNs. Thus,
the parameter complexity of each RGCN layer is O(|R| ·d(l) ·d(l+1)), while for a GCN layer it is simply O(d(l) ·d(l+1)).

Unco
rre

cte
d Pro

of

14 A. KHOSRAVI AND Z. RAHMATI AND A. VEFGHI

In terms of runtime, the RGCN requires performing message passing and aggregation for each relation type sepa-
rately. Assuming sparse adjacency matrices for each relation Ar ∈ R|V |×|V | with average node degree d, the cost of
sparse matrix multiplications across all relations per layer is approximately O(|R| · d · |V | · d(l)). This leads to higher
computational load especially in graphs with a large number of relation types or densely connected nodes.

To empirically evaluate the computational overhead, we measured both runtime per training epoch and memory
usage during training on the Amazon 2-class dataset. All models were trained on the same hardware using identical
optimization settings. The results are as follows:

• Runtime: RGCN models were approximately 1.3× slower per epoch compared to GCN-based models.
• Memory Usage: RGCNs consumed 20–25% more memory, mainly due to the additional relation-specific

parameters and intermediate activations.

Despite the higher computational cost, the RGCN models consistently outperformed both GCN and transformer-
only models in accuracy and F1-score across multiple settings. This trade-off between complexity and performance
may be acceptable in applications where capturing nuanced relationships in data is crucial.

5. Conclusion and Future work

5.1. Conclusion. This paper considered the classification of English and Persian texts and addressed this issue using
graph neural networks, focusing on relational graph convolutional networks. We made a heterogeneous text graph
from the complete dataset (all documents and all unique words) and constructed the graph by defining three types of
relationships (co-occurrence, similarity, and frequency) and weighted edges IDF-TF, PMI, and Jaccard. Subsequently,
we employed pre-trained models such as BERT and RoBERTa to extract features for each node and used a two-layer
relational graph convolutional network to train the model, which outperformed the standard GCN architecture.

5.2. Future work. While our model shows strong performance on structured review datasets such as Amazon and
Digikala, its generalization to other domains (e.g., social media sentiment, news classification, or question answering)
is an important direction for future work. These domains often contain noisy, short, or context-dependent language
that may not follow the same structural or semantic patterns as product reviews. Applying the RGCN framework
in these contexts would likely require adapting the graph construction process to capture task-specific relationships,
and potentially integrating additional modalities (e.g., user data, images, or temporal features). Investigating transfer
learning techniques or dynamic edge creation strategies could improve the adaptability and robustness of the model
across domains.

Many improvements can be made in this research area. Most supervised deep-learning models are trained on large
amounts of labeled data. In practice, collecting such labels in any new domain is expensive. A language model (such as
BERT) with fine-tuning for a specific task requires much less labeling than training a model from scratch. Therefore,
there are opportunities to develop new methods such as zero-shot or few-shot learning based on these language models.

In most text classification methods with GNNs, edges with a fixed value extracted from statistical information of
documents are used to construct graphs. This approach is applied to GNNs at the corpus level and the document level.
However, to better investigate the complex relationship between words and documents, it is suggested to use dynamic
edges. Dynamic edges in GNNs can be learned from various sources such as graph structure, semantic information of
documents, or other models.

Additionally, a more complex algorithm can be utilized to compute the edge between two documents, and it is
recommended to filter the word-word and word-document relationships to simplify the graph structure, i.e., identify
important edges based on a criterion and only store them.

GNN text classification models perform well at the corpus level. These models are mostly transductive, meaning that
they only work on the present graph and cannot be applied to new nodes and edges. when a new document is added,
the graph must be reconstructed from scratch, which is very expensive and impractical for real-world applications.
Therefore, it is worth considering the inductive learning approach.

Since the layers of RGCN are stacked in such a way that the input of one layer is the output of the previous layer,
taking the sum over the relationships causes an accumulation of activations. However, for two-layer networks, it does

Unco
rre

cte
d Pro

of

REFERENCES 15

not seem that this event affects the model’s performance. For deeper models, taking the average over the relationships
instead of the sum may be more appropriate.

Acknowledgment

This research has received no external funding.

References

[1] K. Church and P. Hanks, Word association norms, mutual information, and lexicography, Comput. Linguistics,
16(1) (1990), 22–29.

[2] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, On inductive–transductive learning with graph neural networks,
IEEE Trans. Pattern Anal. Mach. Intell., 44(2) (2021), 758–769.

[3] Y. Dai, L. Shou, M. Gong, X. Xia, Z. Kang, Z. Xu, and D. Jiang, Graph fusion network for text classification,
Knowledge-based Systems, 236 (2022), 107659.

[4] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for
language understanding, arXiv preprint arXiv:1810.04805 (2018).

[5] M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri, Parsbert: Transformer-based model for persian
language understanding, Neural Processing Lett., 53 (2021), 3831–3847.

[6] P. Jaccard, Étude comparative de la distribution florale dans une portion des Alpes et des Jura, Bull Soc Vaudoise
Sci Nat, 37 (1901), 547–579.

[7] F. Lei, X. Liu, Z. Li, Q. Dai, and S. Wang, Multihop neighbor information fusion graph convolutional network for
text classification, Mathematical Problems in Engineering, 2021 (2021), 1–9.

[8] Y. Lin, Y. Meng, X. Sun, Q. Han, K. Kuang, J. Li, and F. Wu, Bertgcn: Transductive text classification by
combining gcn and bert, arXiv preprint arXiv:2105.05727 (2021).

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, Roberta:
A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 (2019).

[10] X. Liu, X. You, X. Zhang, J. Wu, and P. Lv, Tensor graph convolutional networks for text classification, In
Proceedings of the AAAI conference on artificial intelligence, 34-05 (2020), 8409–8416.

[11] A. Marin, R. Holenstein, R. Sarikaya, and M. Ostendorf, Learning phrase patterns for text classification using a
knowledge graph and unlabeled data., in Interspeech (2014), 253–257.

[12] M. Ostendorff, P. Bourgonje, M. Berger, J. Moreno-Schneider, G. Rehm, and B. Gipp, Enriching bert with
knowledge graph embeddings for document classification, arXiv preprint arXiv:1909.08402, (2019).

[13] R. Ragesh, S. Sellamanickam, A. Iyer, R. Bairi, and V. Lingam, Hetegcn: heterogeneous graph convolutional
networks for text classification, in Proceedings of the 14th ACM international conference on web search and data
mining, (2021), 860–868.

[14] G. Salton, Introduction to modern information retrieval, McGraw-Hill, (1983).
[15] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling, Modeling relational data with

graph convolutional networks, in The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete,
Greece, June 3–7, (2018), 593–607.

[16] H. Tang, Y. Mi, F. Xue, and Y. Cao, An integration model based on graph convolutional network for text classi-
fication, IEEE Access, 8 (2020), 148865–148876.

[17] K. Wang, S.C. Han, S. Long, and J. Poon, Me-gcn: Multi-dimensional edge-embedded graph convolutional networks
for semi-supervised text classification, arXiv preprint arXiv:2204.04618, (2022).

[18] X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and P.S. Yu, A survey on heterogeneous graph embedding: methods,
techniques, applications and sources, IEEE Trans. Big Data, 9(2) (2022), 415–436.

[19] K. Wang, S.C. Han, and J. Poon, Induct-gcn: Inductive graph convolutional networks for text classification, in
2022 26th International Conference on Pattern Recognition (ICPR), (2022), 1243

[20] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, Simplifying graph convolutional networks, in
International conference on machine learning, (2019), 6861–6871.

Unco
rre

cte
d Pro

of

16 REFERENCES

[21] Q. Xie, J. Huang, P. Du, M. Peng, and J.Y. Nie, Inductive topic variational graph auto-encoder for text classifi-
cation, in proceedings of the 2021 conference of the North American chapter of the association for computational
linguistics: human language technologies, (2021), 4218–4227.

[22] L. Yao, C. Mao, and Y. Luo, Graph convolutional networks for text classification, in Proceedings of the AAAI
conference on artificial intelligence, 33=01 (2019), 7370–7377.

[23] H. Zhang and J. Zhang, Text graph transformer for document classification, in Conference on empirical methods
in natural language processing (EMNLP), (2020).

[24] H. Zhu and P. Koniusz, Simple spectral graph convolution, In international conference on learning representations,
(2020).

	1. Introduction
	2. Related Works
	3. Proposed Method
	3.1. Text Pre-processing
	3.2. Graph Construction
	3.3. Pre-trained language models
	3.4. RGCN framework
	3.5. Details of our proposed method

	4. Experiments
	4.1. Datasets
	4.2. Experiment setup
	4.3. Evaluation metrics
	4.4. Results
	4.5. Computational Complexity Analysis

	5. Conclusion and Future work
	5.1. Conclusion
	5.2. Future work

	Acknowledgment
	References

