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Abstract

This study presents a unified approach for solving convection-diffusion-reaction equations by integrating the Differ-

ential Transformation Method (DTM) for analytical approximations with the Crank-Nicolson numerical scheme.
The DTM is employed to derive an analytical solution, while the Crank-Nicolson method is used to compute the

numerical solution. The results demonstrate that the analytical solution obtained via DTM is identical to the exact

solution. Furthermore, the stability of the Crank-Nicolson numerical scheme is assessed using Von-Neumann sta-
bility analysis, confirming that the method is unconditionally stable. The local truncation error is determined via

Taylor series expansion to establish its order of accuracy. This analysis reveals that the Crank-Nicolson scheme

for the convection-diffusion-reaction equation exhibits a local truncation error of order O(h2 + k2), ensuring a
second-order accurate scheme. Numerical simulations are conducted for various parameter values to examine their

impact on the solution. The simulation results demonstrate the gradual transport of the substance from high to
low concentration regions, observed through the diminishing displacement of material along the x-axis. Further

numerical experiments investigate the effects of different values of h and k. The results indicate a direct correlation

between decreasing values of h and k and a reduction in the average error, underscoring the method’s accuracy
and efficiency.
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1. Introduction

Differential equations are essential for solving problems across various disciplines, including physics, economics,
chemistry, and electrical engineering. They are broadly classified into two types: ordinary differential equations
(ODEs) and partial differential equations (PDEs). The Convection-Diffusion-Reaction (CDR) equation is an example
of a PDE and plays a crucial role in fields such as fluid dynamics, heat transfer, chemical reaction processes, and
pollutant transport [3]. Many studies in environmental mathematics utilize CDR systems of equations to model and
predict pollution movement in the atmosphere, groundwater, and surface water [12].

The CDR equation encompasses three fundamental processes. The first is convection, which occurs due to the
movement of material from one location to another. The second is diffusion, which describes the migration of matter
from regions of high concentration to regions of low concentration. The third process is reaction, which results from
decay, adsorption, and the interaction of chemicals with other components [17]. Mathematically, the Convection-
Diffusion-Reaction (CDR) problem can be represented by differential equations along with the appropriate boundary
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conditions, as follows:

∂u

∂t
= −V · ∇u+∇ ·D∇u+Q (u) , in Ω, (1.1)

u = h(x, t), over Γu, (1.2)

∇u · n = g(x, t), over Γ∇, (1.3)

where u is the concentration of the species studied, V is the velocity of fluid in the medium, D is the diffusion constant,
Q(u) the function that defines the reaction process, h(x, t) is a function that defines the values of u in the Dirichlet
boundary condition Γu, and g(x, t) is the function that defines the normal gradient value of u along the Neumann
boundary condition Γ∇. Equation (1.1) is defined in the domain Ω, and the boundary ∂Ω = Γu + Γ∇ [11]. In this
research, we propose one dimensional problem of spatial x dan temporal t as follows

ut = −vux +Duxx + f (u) , (x, t) ∈ [a, b]× [c, d] . (1.4)

Here, u denotes a function that varies with respect to x and t, where t represents the observed concentration of the
substance. The variable v signifies the convection coefficient, equivalent to the fluid velocity within a medium. The
term D refers to the diffusion coefficient, while f(u) indicates the reaction function. The variable t serves as the
time variable, and x represents spatial variables. The interval [a, b] defines the spatial domain, and the interval [c, d]
delineates the temporal domain.

The analytical and numerical solutions of the CDR equations can be obtained using various approaches, such as
the Differential Transformation Method (DTM) and the Crank-Nicolson method. The DTM is particularly advanta-
geous for transforming complex differential equations into more manageable forms, facilitating analysis and solution
derivation. Its implementation in convection-dominated situations has proven effective in simplifying the governing
equations while preserving the fundamental characteristics of the original problem [9].

The DTM is an analytical method that utilizes the Taylor series to obtain solutions to differential equations in
polynomial form [14]. The given differential equations and initial conditions are transformed into recursive equations,
which then generate power series coefficients. This method is highly useful for solving both linear and nonlinear
differential equations without requiring linearization or perturbation [4]. Furthermore, [20] discusses the solution of
the Korteweg–de Vries (KdV) equation using the DTM, while [13] explores the application of the DTM to solve the
Schrödinger equation.

The Crank-Nicolson method is a well-established numerical technique for solving parabolic partial differential equa-
tions. Its implicit nature enhances both stability and accuracy, making it particularly advantageous. This method
achieves second-order accuracy in both time and space, making it suitable for problems involving convection and
diffusion [21]. Stability analysis indicates that the Crank-Nicolson method is unconditionally stable for linear prob-
lems, which is a significant advantage when dealing with stiff equations commonly found in convection-dominated
scenarios [5]. Additionally, an analysis of truncation error shows that the Crank-Nicolson method effectively balances
discretization errors, providing a robust framework for numerical simulations [1].

In the context of CDR equations, various stabilization techniques have been developed to address the challenges
posed by high convection rates. The Streamline Upwind/Petrov-Galerkin (SUPG) method has been integrated into
the Virtual Element Method (VEM) to enhance the stability of numerical solutions in convection-dominated problems
([9], [7]). This approach improves the accuracy of numerical solutions while preserving the maximum principle, which
is crucial for ensuring the physical realism of the results [6]. The effectiveness of SUPG-stabilized methods has been
assessed, demonstrating their ability to maintain convergence in challenging scenarios where conventional methods
may fail [19].

The CDR equation is numerically solved using the upwind forward Euler finite difference scheme, the nonstandard
finite difference scheme, and the unconditionally positive finite difference scheme. The upwind forward Euler and
nonstandard finite difference schemes are consistent, while the numerical stability of all three methods is conditional
[18]. The CDR equation has also been solved using the finite element approach, which revealed that the numerical
scheme becomes unstable when the spatial step size exceeds 0.1 [16]. Previous research has addressed the solution
of convection-diffusion-reaction equations in both the temporal and spatial domains, employing explicit and implicit
finite difference approaches for discretization. This research found that the implicit technique is unconditionally stable,
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whereas the explicit method must satisfy the von Neumann stability constraints [10]. Additionally, the Crank-Nicolson
approach has been applied to solve the convection-diffusion-reaction equation under Danckwerts boundary conditions
[3].

Moreover, analyzing truncation errors in numerical methods for CDR equations is crucial for understanding the
limitations and accuracy of the obtained solutions. Research indicates that the choice of discretization and stabilization
techniques significantly influences truncation errors, thereby affecting the overall effectiveness of the numerical method
[8]. The use of adaptive mesh refinement in combination with stabilized approaches has been shown to improve accuracy
while effectively managing truncation errors [22].

This research investigates the numerical solution of the CDR equation using the differential transformation method
and the Crank-Nicolson technique under Dirichlet boundary conditions, building on previous studies. Stability analysis,
accuracy order computations, and error analysis were then performed based on the numerical simulations.

This research introduces a novel approach that has not been extensively explored in the existing literature. While
previous studies have examined various numerical methods for convection-diffusion equations, the specific integration
of the differential transformation method with the Crank-Nicolson method, combined with a comprehensive stability
and truncation error analysis, represents a significant advancement.

To solve the problems in this research, several steps were taken. The first step involved formulating the CDR
equation using the Crank-Nicolson method. The variable u was approximated as the mean of the implicit and explicit
schemes, with ut discretized using the forward finite difference method and ux and uxx discretized using the central
finite difference method. In the second step, a von Neumann stability analysis was performed to determine the stability
requirements of the numerical scheme established in the previous step. The third step involved conducting a local
truncation error analysis to determine the order of the local truncation error. The fourth step consisted of performing
numerical simulations under three different conditions: varying the time intervals, modifying the spatial step size h,
and adjusting the temporal step size k. Finally, conclusions were drawn based on the findings from the previous steps.

2. The Differential Transformation Method (DTM)

[2] stated that the initial concept of the differential transformation method was first introduced by Zhou in 1986
to solve linear and nonlinear problems in electrical circuits. According to [15], the differential transformation method
is quite accurate for time intervals around t = 0. However, its accuracy decreases as the time interval increases. This
method is particularly suitable for observing the behavior of variables in a model over a relatively short period. The
convection-diffusion-reaction (CDR) problem in one-dimensional space x and time t is expressed as follows:

ut = −vux +Duxx + f (u) , (x, t) ∈ [a, b]× [c, d] , (2.1)

with an initial condition

u (x, t = 0) = p(x), (2.2)

and the boundary conditions as follows

u (x = a, t) =q(t), (2.3)

u (x = b , t) =r(t). (2.4)

Before we apply the TDM method, we proof the uniqueness of the solution for the CDR Equation (2.5).

Theorem 2.1 (Uniqueness of the solution). Consider the initial-boundary value problem:

ut = −vux +Duxx + f(u), (x, t) ∈ [a, b]× [c, d], (2.5)

with initial condition:

u(x, 0) = p(x), (2.6)

and boundary conditions:

u(a, t) = q(t), (2.7)

u(b, t) = r(t). (2.8)
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Assume that f(u) is Lipschitz continuous, i.e., there exists a constant L > 0 such that:

|f(u1)− f(u2)| ≤ L|u1 − u2|, ∀u1, u2. (2.9)

Then, the solution to the problem is unique.

Proof. Suppose there exist two solutions u1(x, t) and u2(x, t) satisfying the given Equation (2.5) with the same initial
and boundary conditions. Define their difference:

v(x, t) = u1(x, t)− u2(x, t). (2.10)

Then, v(x, t) satisfies the homogeneous (2.5):

vt + vvx −Dvxx = f(u1)− f(u2). (2.11)

Using the Lipschitz condition, we obtain:

|f(u1)− f(u2)| ≤ L|v|. (2.12)

The initial and boundary conditions for v are:

v(x, 0) = 0, (2.13)

v(a, t) = 0, (2.14)

v(b, t) = 0. (2.15)

Define the energy function:

E(t) =
1

2

∫ b

a

v2(x, t) dx, (2.16)

differentiating with respect to t, we get:

dE

dt
=

∫ b

a

vvt dx, (2.17)

substituting vt = −vvx +Dvxx + f(u1)− f(u2), we obtain:

dE

dt
=

∫ b

a

v(−vvx +Dvxx + f(u1)− f(u2)) dx, (2.18)

integration by parts and using the boundary conditions, we get:

dE

dt
= −

∫ b

a

v2vx dx−D

∫ b

a

v2x dx+

∫ b

a

v(f(u1)− f(u2)) dx, (2.19)

using the Lipschitz condition:∫ b

a

v(f(u1)− f(u2)) dx ≤ L

∫ b

a

v2 dx. (2.20)

Since v2vx integrates to zero, we obtain:

dE

dt
≤ L

∫ b

a

v2 dx. (2.21)

Applying Grönwall’s inequality:

E(t) ≤ E(0)eLt = 0. (2.22)

Thus, E(t) = 0, which implies v(x, t) = 0 for all (x, t), proving uniqueness. □
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Furthermore, we apply the two-dimensional differential transformation that is defined as

U(k, h) =
1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

, (2.23)

with u(x, t) being the original function and U(k, h) being the result of the transformation. The inverse differential
transform of U(k, h) is defined as

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth. (2.24)

Based on Equations (2.23) and (2.24), it will be obtained

u(x, t) =
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xkth, (2.25)

Equation (2.25) has similarities with the Maclaurin series form so that Equation (2.25) can be written as follows:

u(x, t) = U(0, 0)x0t0 + U(1, 0)x1t0 + U(0, 1)x0t1 + U(1, 1)x1t1 + U(2, 0)x2t0

+ U(0, 2)x0t2 + U(1, 2)x1t2 + ..., (2.26)

so it can be said that U(k, h) are the coefficients of the power series terms. The properties of the differential transforma-
tion method can be seen in Ayaz (2004). The Convection-Diffusion-Reaction (CDR) Equation (2.5) with f(u) = −qu
is transformed based on the properties of differential transformations. From the CDR Equation (2.5), we have ut,
ux, uxx, and f(u) = −qu terms. Furthermore, these terms are transformed by using the differential transformation
method. Transformation function of u is U(k, h), and the first derivative of u with respect to x is

∂u

∂x
=

∂

∂x

( ∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xkth

)
,

=

∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

∂

∂x
xkth,

=
∞∑
k=1

∞∑
h=0

k
1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xk−1th.

Suppose l = k − 1, then we obtain

∂u

∂x
=

∞∑
l=0

∞∑
h=0

(l + 1)
1

(l + 1)!h!

[
∂(l+1)+hu(x, t)

∂xl+1∂th

]
x=0,t=0

xlth. (2.27)

If l = k, then the Equation (2.27) becomes

∂u

∂x
=

∞∑
k=0

∞∑
h=0

(k + 1)
1

(k + 1)!h!

[
∂(k+1)+hu(x, t)

∂xk+1∂th

]
x=0,t=0

xkth,

=

∞∑
k=0

∞∑
h=0

(k + 1)U(k + 1, h)xkth.
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We get the transformation function of ux is (k + 1)U(k + 1, h). Furthermore, we take the second derivative of u with
respect to x is

∂2u

∂x2
=

∂2

∂x2

( ∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xkth

)
,

=
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

∂2

∂x2
xkth,

=
∞∑
k=1

∞∑
h=0

k
1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

∂

∂x
xk−1th,

=
∞∑
k=2

∞∑
h=0

k(k − 1)
1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xk−2th.

Suppose l = k − 2, then we get

∂2u

∂x2
=

∞∑
l=0

∞∑
h=0

(l + 2)(l + 1)
1

(l + 2)!h!

[
∂(l+2)+hu(x, t)

∂xl+2∂th

]
x=0,t=0

xlth. (2.28)

If l = k , then the Equation (2.28) becomes

∂2u

∂x2
=

∞∑
k=0

∞∑
h=0

(k + 2)(k + 1)
1

(k + 2)!h!

[
∂(k+2)+hu(x, t)

∂xk+2∂th

]
x=0,t=0

xkth,

=

∞∑
k=0

∞∑
h=0

(k + 2)(k + 1)U(k + 2, h)xkth.

The transformation function of uxx is (k + 2)(k + 1)U(k + 2, h). Then, the DTM of term ut is similar to the DTM of
ux as follows

∂u

∂t
=

∂

∂t

( ∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

xkth

)
,

=
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
x=0,t=0

∂

∂t
xkth,

=
∞∑
k=0

∞∑
h=1

h
1

k!h!

[
∂k+hu(x, t)

∂xk∂th

]
k=0,t=0

xkth−1.

Suppose l = h− 1, then we yield

∂u

∂t
=

∞∑
k=0

∞∑
l=0

(l + 1)
1

k!(l + 1)!

[
∂k+(l+1)u(x, t)

∂xk∂tl+1

]
x=0,t=0

xktl. (2.29)

If l = h, then the Equation (2.29) becomes

∂u

∂t
=

∞∑
k=0

∞∑
h=0

(h+ 1)
1

k!(h+ 1)!

[
∂k+(h+1)u(x, t)

∂xk∂th+1

]
x=0,t=0

xkth,

=

∞∑
k=0

∞∑
h=0

(k + 1)U(k, h+ 1)xkth.
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We get the transformation function of ut is (h+ 1)U(k, h+ 1). Next, we substitute the transformation function into
the Convection Diffusion-Reaction with f(u) = −qu, thus we get

U(k, h+ 1) =
D(k + 2)(k + 1)U(k + 2, h)− v(k + 1)U(k + 1, h)− qU(k, h)

h+ 1
. (2.30)

For example the initial condition of the CDR equation is u(x, 0) = p(x), then the initial value is tranformed into
U(k, 0) using the definition of differential transformation as follows

U(k, 0) =
1

k!

[
∂ku(x, 0)

∂xk

]
x

,

such that we obtain the value of U(k, 0) is

U(1, 0) =
1

1!

[
∂p(x)

∂x

]
x

= p′(0),

U(2, 0) =
1

2!

[
∂2p(x)

∂x2

]
x

=
1

2
p′′(0),

U(3, 0) =
1

3!

[
∂3p(x)

∂x3

]
x

=
1

6
p′′′(0),

U(4, 0) =
1

4!

[
∂4p(x)

∂x4

]
x

=
1

24
p(4)(0),

U(5, 0) =
1

5!

[
∂5p(x)

∂x5

]
x

=
1

120
p(5)(0),

U(6, 0) =
1

6!

[
∂6p(x)

∂x6

]
x

=
1

720
p(6)(0).

The next step is to calculate Equation (2.30) using the value of U(k, 0) to get the values of U(k, h), with k = 0, 1, 2, . . .
and h = 1, 2, . . . . For h = 1 and k = 0, 1, 2, ...

U(0, 1) =D(2)(1)U(2, 0)− v(1)U(1, 0)− qU(0, 0)

=2D

(
1

2
p′′(0)

)
− v(p′(0))− q(p(0)) = Dp′′(0)− vp′(0)− qp(0),

U(1, 1) =D(3)(2)U(3, 0)− v(2)U(2, 0)− qU(1, 0)

=6D

(
1

6
p′′′(0)

)
− 2v

(
1

2
p′′(0)

)
− q(p′(0)) = Dp′′′(0)− vp′′(0)− qp′(0),

U(2, 1) =D(4)(3)U(4, 0)− v(3)U(3, 0)− qU(2, 0)

=12D

(
1

24
p(4)(0)

)
− 3v

(
1

6
p′′′(0)

)
− q

(
1

2
p′′(0)

)
=

Dp(4)(0)− vp′′′(0)− qp′′(0)

2
,

U(3, 1) =D(5)(4)U(5, 0)− v(4)U(4, 0)− qU(3, 0)

=20D

(
1

120
p(5)(0)

)
− 4v

(
1

24
p(4)(0)

)
− q

(
1

6
p′′′(0)

)
=

Dp(5)(0)− vp(4)(0)− qp′′′(0)

6
,

U(4, 1) =D(6)(5)U(6, 0)− v(5)U(5, 0)− qU(4, 0)

=30D

(
1

720
p(6)(0)

)
− 5v

(
1

120
p(6)(0)

)
− q

(
1

24
p(4)(0)

)
=

Dp(6)(0)− vp(5)(0)− qp(4)(0)

24
.
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Then, for h = 2 and k = 0, 1, 2, ...

U(0, 2) =
D(2)(1)U(2, 1)− v(1)U(1, 1)− qU(0, 1)

2

=
1

2

(
2D(

1

2
Dp(4)(0)− 1

2
vp′′′(0)− 1

2
qp′′(0))− v(Dp′′′(0)− vp′′(0)− qp′(0))

− q(Dp′′(0)− vp′(0) + q3p(0))

)
=

D2p(4)(0)− 2vDp′′′(0)− (2Dq − v2)p′′(0) + 2qvp′(0) + q3p(0)

2
,

U(1, 2) =
D(3)(2)U(3, 1)− v(2)U(2, 1)− qU(1, 1)

2

=
1

2

(
6D(

1

6
Dp(5)(0)− 1

6
vp(4)(0)− 1

6
qp′′′(0))− 2v(

1

2
Dp(4)(0)− 1

2
vp′′′(0)− 1

2
qp′′(0))

− q(Dp′′′(0)− vp′′(0) + qp′(0))

)
=

D2p(5)(0)− 2vDp(4)(0)− (2Dq − v2)p′′′(0) + 2qvp′′(0) + q2p′(0)

2
,

U(2, 2) =
D(4)(3)U(4, 1)− v(3)U(3, 1)− qU(2, 1)

2

=
1
2D

2p(6)(0)− 1
2Dvp(5)(0)− 1

2Dqp(4)(0)− 1
2vDp(5)(0) + 1

2v
2p(4)(0) + 1

2vqp
′′′(0)− 1

2qDp(4)(0)

2

=
1
2D

2p(6)(0)− vDp(5)(0)− (Dq − 1
2v

2)p(4)(0) + qvp′′′(0) + 1
2q

2p′′(0)

2
.

By applying the same method for h = 3, 4, 5, ..., and k = 0, 1, 2, 3, ..., we obtaine value of U(k, h) as shown in the Table
1.

Table 1. U(k, h) value with initial condition u(x, 0) = p(x).

U(k,h) 0 1 2 ...

0 p(0) Dp′′(0)− vp′(0)− qp(0) D2p(4)(0)−2vDp′′′(0)−(2Dq−v2)p′′(0)+2qvp′(0)+q2p(0)
2

1 p′(0) Dp′′′(0)− vp”(0)− qp′(0) D2p(5)(0)−2vDp(4)(0)−(2Dq−v2)p′′′(0)+2qvp′′(0)+q2p′(0)
2

2 1
2p

′′(0) 1
2Dp(4)(0)− 1

2vp
′′′(0)− 1

2qp
′′(0)

1
2D

2p(6)(0)−vDp(5)(0)−(Dq− 1
2 v

2)p(4)(0)+qvp′′′(0)+ 1
2 q

2p′′(0)

2

...

The next step is substituting the value U(k, h) into the equation

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth,

so that the solution is obtained from convection diffusion-reaction is as follows

u(x, t) = p(0) + p′(0)x+ (Dp′′(0)− vp′(0)− qp(0))t+
1

2
p′′(0)x2 + (Dp′′′(0)− vp′′(0)− qp′(0))xt (2.31)

+

(
D2p(4)(0)− 2vDp′′′(0)− (2Dq − v2)p′′(0) + 2qvp′(0) + q2p(0)

2

)
+ ...
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Suppose the CDR equation is

ut+ux − uxx = −u, (x, t) ∈ [0, 10]× [0, 10] ,

u (x, 0) = e−x,

u (0, t) = et,

u (10, t) = et−10, (2.32)

so that the Table 1 becomes as shown in the Table 2.

Table 2. U(k, h) value with initial condition u(x, 0) = e−x.

U(k,h) 0 1 2 ...

0 1 D + v − q D2+2vD−2Dq+v2−2qv+q2

2

1 −1 −D − v + q −D2−2vD+2Dq−v2+2qv−q2

2

2 1
2

1
2D + 1

2v −
1
2q

1
2D

2+vD−Dq+ 1
2 v

2−qv+ 1
2 q

2

2

...

Based on the Table 2, Equation (2.31) can be written as follows

u(x, t) = 1− x+
1

2
x2 + (D + v − q)t+ (−D − v + q)xt+ (

1

2
D +

1

2
v − 1

2
q)x2t

+

(
D2 + 2Dv − 2Dq + v2 − 2qv + q2

2

)
t2 +

(
−D2 − 2Dv + 2Dq − v2 + 2qv − q2

2

)
xt2

+

( 1
2D

2 +Dv −Dq + 1
2v

2 − qv + 1
2q

2

2

)
x2t2 + ·.

Suppose

A = D + v − q, (2.33)

then

u(x, t) = 1− x+
1

2
x2 +At−Axt+

Ax2t

2
+

A2t2

2
− A2xt2

2
+

A2x2t2

2
+ ...,

=

(
1− x+

x2

2
− ...

)
+At

(
1− x+

x2

2
− ...

)
+

A2t2

2

(
1− x+

x2

2
− ...

)
+ ..., (2.34)

=

(
1− x+

x2

2
− ...

)[
1 +At+

(At)2

2
+ ...

]
.

By using the Maclaurin series, the series of function e−x and ex is as follows

e−x = 1− x+
x2

2!
− x3

3!
+ ...,

ex = 1 + x+
x2

2!
+

x3

3!
+ ...,

so that the equation (2.34) is obtained as follows.

u(x, t) = e−xeat,

= eat−x. (2.35)

The values of D = v = q = 1, based on Equation (2.33) we have the value A = 1, so that the Equation (2.35) can be
written as

u(x, t) = et−x.
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The solution of the Convection-Diffusion-Reaction equation is u(x, t) = et−x.

3. The Crank-Nicolson Numerical Scheme

In this part, the Convection-Diffusion-Reaction equation with f(u) = −qu is constructed using the Crank-Nicolson
scheme to obtain the following results

un+1
j − un

j

k
+ v

un
j+1 − un

j−1 + un+1
j+1 − un+1

j−1

4h
−D

un
j+1 − 2un

j + un
j−1 + un+1

j+1 − 2un+1
j + un+1

j−1

2h2
= −q

un+1
j + un

j

2
. (3.1)

Equation (3.1) can be simplified to

un+1
j−1

(
−kv

4h
− Dk

2h2

)
+ un+1

j

(
1 +

Dk

h2
+

kq

2

)
+ un+1

j+1

(
kv

4h
− Dk

2h2

)
= un

j−1

(
kv

4h
+

Dk

2h2

)
+ un

j

(
1− Dk

h2
− kq

2

)
− un

j+1

(
kv

4h
− Dk

2h2

)
. (3.2)

where

α =
kv

4h
+

Dk

2h2
,

β =
Dk

h2
+

kq

2
,

γ =
kv

4h
− Dk

2h2
. (3.3)

then we have

−αun+1
j−1 + (1 + β)un+1

j + γun+1
j+1 = αun

j−1 + (1− β)un
j − γun

j+1. (3.4)

Equation (3.4) is a numerical scheme of the Convection-Diffusion-Reaction equation using the Crank-Nicolson scheme.
Then, the numerical scheme is described for j = 1, 2, . . . ,M − 1 to obtain a system of linear equations which is
expressed in matrix form as follows

(1 + β) γ 0 0 · · · 0 0 0 0
−α (1 + β) γ 0 · · · 0 0 0 0
0 −α (1 + β) γ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −α (1 + β) γ 0
0 0 0 0 · · · 0 −α (1 + β) γ
0 0 0 0 · · · 0 0 −α (1 + β)





un+1
1

un+1
2

un+1
3
...

un+1
M−3

un+1
M−2

un+1
M−1



=



αun
0 + (1− β)un

1 − γun
2 + αun+1

0

αun
1 + (1− β)un

2 − γun
3

αun
2 + (1− β)un

3 − γun
4

...
αun

M−4 + (1− β)un
M−3 − γun

M−2

αun
M−3 + (1− β)un

M−2 − γun
M−1

αun
M−2 + (1− β)un

M−1 − γun
M − γun+1

M


. (3.5)

4. The Von-Neumann Stability Analysis

To perform Von-Neumann stability analysis, un
j is first defined as follows

un
j =

(
eαk
)n

eiθjh = λneiθjh. (4.1)
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Next, the un
j value is substituted into the Crank-Nicolson scheme (3.4) to obtain the λ value as follows

λ =
αe−iθh + (1− β)− γeiθh

−αe−iθh + (1 + β) + γeiθh
. (4.2)

Then, the α, β, and γ values are substituted back to obtain the following results

λ =

(
kv
4h + Dk

2h2

)
e−iθh + 1−

(
Dk
h2 + kq

2

)
+
(
kv
4h − Dk

2h2

)
eiθh

−
(
kv
4h + Dk

2h2

)
e−iθh + 1 +

(
Dk
h2 + kq

2

)
−
(
kv
4h − Dk

2h2

)
eiθh

, (4.3)

where

g =
kv

4h
,w =

Dk

h2
, z =

kq

2
. (4.4)

Furthermore, λ can be written as follows

λ =
g
(
e−iθh + eiθh

)
+ w

2

(
e−iθh − eiθh

)
+ 1− (w + z)

−g (e−iθh + eiθh)− w
2 (e−iθh − eiθh) + 1 + (w + z)

,

=
1− (w + z − 2g cos θh) + i w sin θh

1 + (w + z − 2g cos θh)− i w sin θh
. (4.5)

We denote

X1 = 1− (w + z − 2g cos θh) ,

X2 = 1 + (w + z − 2g cos θh) ,

Y = w sin θh, (4.6)

then, Equation (4.5) can be written as follows

λ =
X1 + iY

X2 − iY
. (4.7)

Furthermore, we calculate the modulus of (4.6) as follows

|λ| = |X1 + iY |
|X2 − iY |

, (4.8)

=

√
X2

1 + Y 2√
X2

2 + Y 2
, (4.9)

=

√
(1− (w + z − 2g cos θh))

2
+ w sin2 θh√

(1 + (w + z − 2g cos θh))
2
+ w sin2 θh

. (4.10)

It is clear that |λ| ≤ 1, which ensures that the Crank-Nicolson scheme (3.4) for the Convection-Diffusion-Reaction
equation is unconditionally stable.

5. Local Truncation Error Analysis

The local truncation error analysis is performed using a Taylor series expansion in the Crank-Nicolson scheme for
the Convection-Diffusion-Reaction equation. Equation (3.1) can be rewritten in the following form:

FDE =
un+1
j − un

j

k
+

v

2

(
δxu

n+1
j + δxu

n
j

2h

)
− D

2

(
δ2xu

n+1
j + δ2xu

n
j

h2

)
+

q

2

(
un+1
j + un

j

)
, (5.1)

with FDE is called a finite difference equation, and the Taylor series are defined as follow

un+1
j =

[
u+ kut +

1

2!
k2utt +

1

3!
k3uttt +

1

4!
k4utttt + . . .

]n
j

, (5.2)
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un−1
j =

[
u− kut +

1

2!
k2utt −

1

3!
k3uttt +

1

4!
k4utttt + . . .

]n
j

, (5.3)

δxu
n
j =

[
2hux +

1

3
h3uxxx +

1

60
h5uxxxxx + . . .

]n
j

, (5.4)

δ2xu
n
j =

[
h2uxx +

1

12
h4uxxxx +

1

360
h6uxxxxxx + . . .

]n
j

. (5.5)

The Crank-Nicolson scheme is a numerical method that is extended by considering the value t = n + 1
2 , allowing

Equations (5.2) to (5.5) to be transformed accordingly.

un+1
j =

[
u+

1

2
kut +

1

2!

(
1

2
k

)2

utt +
1

3!

(
1

2
k

)3

uttt +
1

4!

(
1

2
k

)4

utttt + . . .

]n+ 1
2

j

, (5.6)

un
j =

[
u− 1

2
kut +

1

2!

(
1

2
k

)2

utt −
1

3!

(
1

2
k

)3

uttt +
1

4!

(
1

2
k

)4

utttt + . . .

]n+ 1
2

j

, (5.7)

δxu
n+1
j =

[(
2hux +

1

3
h3uxxx +

1

60
h5uxxxxx + . . .

)
+

1

2
k

(
2huxt +

1

3
h3uxxxt +

1

60
h5uxxxxxt + . . .

)

+
1

2!

(
1

2
k

)2(
2huxtt +

1

3
h3uxxxtt +

1

60
h5uxxxxxtt + . . .

)
+ . . .

]n+ 1
2

j

, (5.8)

δxu
n
j =

[(
2hux +

1

3
h3uxxx +

1

60
h5uxxxxx + . . .

)
− 1

2
k

(
2huxt +

1

3
h3uxxxt +

1

60
h5uxxxxxt + . . .

)

+
1

2!

(
1

2
k

)2(
2huxtt +

1

3
h3uxxxtt +

1

60
h5uxxxxxtt + . . .

)
+ . . .

]n+ 1
2

j

, (5.9)

δxu
n+1
j =

[(
h2uxx +

1

12
h4uxxxx +

1

360
h6uxxxxxx + . . .

)
+

1

2
k

(
h2uxxt +

1

12
h4uxxxxt +

1

360
h6uxxxxxxt + . . .

)

+
1

2!

(
1

2
k

)2(
h2uxxtt +

1

12
h4uxxxxtt +

1

360
h6uxxxxxxtt + . . .

)
+ . . .

]n+ 1
2

j

, (5.10)
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δxu
n
j =

[(
h2uxx +

1

12
h4uxxxx +

1

360
h6uxxxxxx + . . .

)
− 1

2
k

(
h2uxxt +

1

12
h4uxxxxt +

1

360
h6uxxxxxxt + . . .

)

+
1

2!

(
1

2
k

)2(
h2uxxtt +

1

12
h4uxxxxtt +

1

360
h6uxxxxxxtt + . . .

)
+ . . .

]n+ 1
2

j

. (5.11)

Then, the Convection-Diffusion-Reaction equation can be written as follows

PDE = ut + vux −Duxx + qu, (5.12)

with PDE is called a partial differential equation. Equation (5.1) is expanded by Taylor series in each term with
t = n+ 1

2 to obtain

FDE = ut + vux −Duxx + qu+ q
1

8
k2utt +

1

24
k2uttt + v

1

8
k2uxtt + v

1

6
h2uxxx

−D
1

8
k2uxxtt −D

1

12
h2uxxxx +

1

192
k3utttt + q

1

384
k4utttt + v

1

48
k2h2uxxxtt + v

1

120
h4uxxxxx

−D
1

360
h4uxxxxxx −D

1

96
k2h2uxxxxtt + . . . (5.13)

The local truncation error is obtained by calculating the difference between the FDE in Equation (5.13) and the PDE
in Equation (5.12) to obtain the following results

τ
n+ 1

2
j = q

1

8
k2utt +

1

24
k2uttt + v

1

8
k2uxtt + v

1

6
h2uxxx

−D
1

8
k2uxxtt −D

1

12
h2uxxxx +

1

192
k3utttt + q

1

384
k4utttt + v

1

48
k2h2uxxxtt + v

1

120
h4uxxxxx

−D
1

360
h4uxxxxxx −D

1

96
k2h2uxxxxtt + . . . (5.14)

Specifically, the local truncation error order is determined by identifying the lowest degree of each term involving h
and k. By expanding the finite difference approximations and performing a Taylor series analysis, we have shown that
the leading error terms are of order h2 and k2. Thus, the local error order of the Crank-Nicholson scheme for the
convection-diffusion-reaction equation is given by O(h2 + k2).

6. Numerical Simulation

The Convection-Diffusion-Reaction equation to be simulated is

ut+ux − uxx = −u, (x, t) ∈ [0, 10]× [0, 10] ,

u (x, 0) = e−x,

u (0, t) = et,

u (10, t) = et−10, (6.1)

with exact solution

u (x, t) = et−x. (6.2)

The numerical simulation to observe the effect of parameters h and k. The effect of values will be observed by
simulating constant values h and varying values k. The parameter values used are h = 0.1 with k = 0.01, k = 0.1, and
k = 0.5 at time t = 10. Figure 1 shows numerical solution and exact solution of the Convection-Diffussion-Reaction
equation with h = 0.1 and k = 0.01 at time t = 1.

Next, we observe the effect of h values by simulating constant k values and varying h values. The parameter values
are k = 0.1 with h = 0.05, h = 0.1, and h = 0.2. Numerical simulation results are presented in Figure 2. The average
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(a) h = 0.1 and k = 0.01.
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(b) h = 0.1 and k = 0.1.

x

0 1 2 3 4 5 6 7 8 9 10

u
(x

,t
)

0

0.5

1

1.5

2

2.5

3

Numeric

Exact

(c) h = 0.1 and k = 0.5.

Figure 1. Numerical solution and exact solution of the CDF with h = 0.1 and k = 0.01, k = 0.1
and k = 0.5 at time t = 1

error value in each time the first and second numerical simulations is presented in Tables 3 and 4. Table 3 demonstrates

Table 3. Average error values for different k (k = 0.01, k = 0.01, and k = 0.5), at step size h = 0.1.

x k = 0.01 k = 0.1 k = 0.5
2 0.49983 0.688331 5.530431
4 0.135396 0.18651 1.508347
6 0.027506 0.037901 0.30853
8 0.004952 0.006825 0.055919
10 0 0 0

that for a fixed x, the average error increases with larger k values, indicating greater numerical discrepancies as k
grows. Conversely, for a constant k, the error progressively decreases as x increases, suggesting an improvement in
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(a) k = 0.1 and h = 0.05.
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(b) k = 0.1 and h = 0.1.
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(c) k = 0.1 and h = 0.2.

Figure 2. Numerical solution and exact solution of the CDF with k = 0.1 and h = 0.05, k = 0.1
and h = 0.2 at time t = 1

numerical stability over time. Notably, at x = 10, the error is zero across all k values, signifying the convergence of
the numerical method. This pattern implies that while higher k values initially contribute to greater inaccuracies, the
method exhibits enhanced precision as x advances. Table 4 reveals that as k increases for a fixed x, the average error

Table 4. Average error values for different k (k = 0.01, k = 0.01, and k = 0.5), at step size h = 0.2.

x k = 0.01 k = 0.1 k = 0.5
2 1.987093 2.229276 7.315085
4 0.539609 0.605542 1.999983
6 0.109897 0.123359 0.410103
8 0.019832 0.022268 0.074513
10 0 0 0
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also increases, indicating that larger k values introduce greater numerical discrepancies. Conversely, when k remains
constant, the error gradually decreases as x grows, suggesting enhanced numerical stability over time. Notably, at
x = 10, the error is zero across all k values, signifying that the numerical method successfully converges. This trend
suggests that while larger k values initially produce higher errors, the method’s accuracy improves as x progresses.

7. Discussion

The Convection-Diffusion-Reaction equations have been formulated analytically using the Differential Transforma-
tion Method (DTM) and numerically using the Crank-Nicolson method. The results are identical to the exact solution.
The numerical scheme, analyzed using Von Neumann stability analysis, demonstrates that the Crank-Nicolson method
for the Convection-Diffusion-Reaction problem is unconditionally stable. Subsequently, a local truncation error analy-
sis is conducted via Taylor series expansion, yielding a local truncation error of order O(h2+k2). Numerical simulations
with various treatments indicate that these treatments influence the flow of chemicals. Figures 3 and Table 4 illustrate
the impact of the values of h and k in the second and third simulations. According to these simulations, a reduction
in h and k values correlates with a decrease in the average relative error.

The error obtained using the Crank-Nicolson approach is smaller than that obtained from the Finite Element
Method (FEM), as investigated by [16]. This suggests that the Crank-Nicolson approach exhibits superior accuracy
compared to FEM. Furthermore, the Crank-Nicolson technique demonstrates enhanced stability compared to the
methods used in previous studies by [18] and [10].

8. Conclusion

This study develops a unified approach to solving convection-diffusion-reaction equations by integrating the Dif-
ferential Transformation Method (DTM) for analytical approximations with the Crank-Nicolson numerical scheme.
Through stability and truncation error analysis, this work confirms the robustness of the method and its ability to
accurately model convection, diffusion, and reaction dynamics. A comprehensive numerical investigation highlights
the influence of different parameters on solution behavior, revealing that reducing the discretization parameters h
and k significantly improves accuracy. The results suggest that optimizing these parameters leads to a more precise
representation of physical processes. The findings provide valuable insights into the interplay between convection,
diffusion, and reaction mechanisms. To the best of our knowledge, this is the first attempt to systematically compare
these methods in this context, offering both computational efficiency and analytical depth. Future research could
explore extending this approach to multi-dimensional cases or incorporating adaptive mesh refinement strategies to
further enhance accuracy and computational performance.
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Appendix

The Matlab script of Figure 1 and Figure 2 can be written as follows

c l e a r a l l ;

c l c ;

t i c

f p r i n t f ( ’THE CRANK=NICOLSON of CDR’ ) ;

v=1;

D=1;

q=1;

h=0.2 ;

k=0.1 ;
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x=0:h : 1 0 ;

t=0:k : 1 ;

a=(k*v/(4*h))+(D*k /(2* ( h ˆ 2 ) ) ) ;

b=(D*k/(hˆ2))+(k*( q / 2 ) ) ;

c=(k*v/(4*h))=(D*k /(2* ( h ˆ 2 ) ) ) ;

M=length (x ) ;

N=length ( t ) ;

u=ze ro s (M,N) ;

u ( : , 1 )= exp(=x ) ;

u (1 , : )= exp ( t ) ;

u (M, : )= exp ( t =10);

% Matrix A

A=ze ro s (M=2,M=2);

A(1 ,1)=1+b ;

A(1 ,2)= c ;

A(M=2,M=3)==a ;

A(M=2,M=2)=1+b ;

f o r i =2:M=3

A( i , i=1)==a ;

A( i , i )=1+b ;

A( i , i+1)=c ;

end

% Matrix B

B=ze ro s (M=2 ,1) ;

f o r n=1:N=1

B(1 ,1)=a *(u (1 , n)+u (1 , n+1))+(1=b)*u (2 , n)=c*u (3 , n ) ;

B(M=2,1)=a*u(M=2,n)+(1=b)*u(M=1,n)=c *(u(M, n)+u(M, n+1)) ;

f o r i =2:M=3

B( i ,1)=a*u( i , n)+(1=b)*u( i +1,n)=c*u( i +2,n ) ;

end

u ( 2 :M=1,n+1)=inv (A)*B;

end

% Exact So lu t i on

f o r j =1:M

f o r n=1:N

ueks ( j , n)=exp ( t (n)=x ( j ) ) ;

e r r o r ( j , n)=abs (u( j , n)=ueks ( j , n ) ) ;

end

end

% Plot exact so lu t i on , numerica l s o lu t i on , and e r r o r

f o r n=1:N

i f t (n)==1
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f i g u r e ( )

p l o t (x , u ( : , n ) , ’ o ’ , ’ l inewidth ’ , 1 , ’ co lo r ’ , ’ b ’ , ’ marker faceco lor ’ , ’ c ’ ) ;

hold on ;

p l o t (x , ueks ( : , n ) , ’ l inewidth ’ , 2 , ’ co lo r ’ , ’m’ ) ;

hold on ;

x l ab e l ( ’ x ’ ) ;

y l ab e l ( ’ u (x , t ) ’ ) ;

l egend ( ’ Numeric ’ , ’ Exact ’ ) ;

g r i d on ;

ax i s ( [ 0 10 0 3 ] ) ;

end

end

toc
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