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Abstract

Accurate analysis of electroencephalogram (EEG) signals is essential for the early detection and diagnosis of
neurological disorders such as Alzheimer's, epilepsy, and Parkinson's disease. The high-dimensional, noisy, and
complex nature of EEG data poses signi�cant challenges to traditional machine learning approaches, which often
struggle with interpretability, adaptability, and computational e�ciency in clinical applications. Additionally,
variability in EEG recordings across individuals further complicates the classi�cation process, necessitating more
robust and adaptive methods. To address these challenges, this study introduces the Fuzzy Growing Map (FGM),
a novel neuro-fuzzy method that integrates the dynamic properties of the Growing Self-Organizing Map (GSOM)
with the uncertainty modeling capabilities of fuzzy logic.
The proposed FGM leverages if-then fuzzy rules to dynamically generate and re�ne its structure during the
learning process. Preprocessing steps extract meaningful features from EEG signals, including Delta, Theta, Alpha,
Beta, and Gamma frequency bands, which play crucial roles in neurological assessments. FGM is employed for
classi�cation tasks, providing both high accuracy and interpretable outputs, which are critical for clinical decision-
making. Experimental results demonstrate that the FGM achieves a classi�cation accuracy of approximately 92%
on benchmark EEG datasets, outperforming traditional classi�cation approaches such as Support Vector Machines
(85�88%), k-Nearest Neighbors (80�83%), and Multilayer Perceptrons (MLPs) (87%).
By enabling real-time, adaptive, and accurate analysis of EEG signals, the proposed method bridges the gap
between theoretical innovations and practical clinical applications. This work underscores the potential of FGM
in advancing personalized diagnostics and treatment strategies for patients with neurological conditions. Future
research may focus on extending this approach to multi-channel EEG analysis and real-time brain-computer
interface applications, further enhancing its clinical utility.
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1. Introduction

The accurate analysis of electroencephalogram (EEG) signals plays a pivotal role in the early detection and diagnosis
of neurological disorders such as Alzheimer's, Epilepsy, and Parkinson's disease [19]. EEG signals, which capture
electrical activity in the brain, are inherently high-dimensional, noisy, and complex, making their analysis a challenging
task for traditional machine learning approaches [8]. These methods often struggle with interpretability, adaptability,
and computational e�ciency, particularly in clinical applications where real-time and accurate diagnostics are critical
[2].
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To address these challenges, this study introduces the Fuzzy Growing Map (FGM), a novel neuro-fuzzy method
that integrates the dynamic properties of the Growing Self-Organizing Map (GSOM) with the uncertainty modeling
capabilities of fuzzy logic [20]. The proposed FGM leverages if-then fuzzy rules to dynamically generate and re�ne
its structure during the learning process, enabling it to adapt to the complex and non-linear nature of EEG data. By
combining the self-organizing capabilities of GSOM with the interpretability of fuzzy systems, FGM provides a robust
framework for the analysis of EEG signals.

Traditional machine learning approaches, such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN),
and Multilayer Perceptrons (MLPs), have been widely used for EEG signal classi�cation [21]. While these methods
have shown promising results, they often lack the interpretability required for clinical applications. For instance, SVMs
achieve classi�cation accuracies ranging from 85

Recent advancements in neuro-fuzzy systems have attempted to bridge the gap between accuracy and interpretabil-
ity. Methods such as Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Fuzzy C-Means (FCM) have been applied
to EEG analysis with moderate success [9]. However, these methods often require prede�ned structures and are not
well-suited for dynamic and evolving data. The Growing Self-Organizing Map (GSOM), an extension of Kohonen's
SOM, has been proposed to address these limitations by dynamically adapting its structure during the learning pro-
cess [1]. Despite its advantages, GSOM lacks the ability to model uncertainty, which is critical for handling noisy and
complex EEG signals.

The proposed Fuzzy Growing Map (FGM) builds upon the strengths of GSOM and fuzzy logic to provide a more
robust and interpretable framework for EEG signal analysis. FGM employs if-then fuzzy rules to dynamically generate
and re�ne its structure during the learning process. Each neuron in the FGM is represented as a fuzzy rule, with
antecedent fuzzy sets capturing the uncertainty in the input data and consequent singletons providing interpretable
outputs. The learning process involves three key phases:

• Growing Phase: The FGM starts with a small number of neurons and dynamically adds new neurons based
on the accumulated error and growth threshold (GT).

• Smoothing Phase: The structure of the FGM is re�ned using a modi�ed LVQ2.1 algorithm, which adjusts the
parameters of the fuzzy sets to improve classi�cation accuracy.

• Interpretation Phase: The �nal model provides interpretable fuzzy rules that can be used to explain the
classi�cation decisions.

Preprocessing steps are applied to extract meaningful features from EEG signals, including Delta, Theta, Alpha,
Beta, and Gamma frequency bands. These features are then used as inputs to the FGM for classi�cation tasks.
Experimental results demonstrate that the FGM achieves a classi�cation accuracy of approximately 92% on benchmark
EEG datasets, outperforming traditional methods such as SVM, k-NN, and MLPs.

The primary contributions of this work are as follows:

• Introduction of the Fuzzy Growing Map (FGM), a novel neuro-fuzzy method for EEG signal analysis.
• Demonstration of FGMs ability to achieve high classi�cation accuracy while providing interpretable outputs.
• Application of FGM to real-world EEG datasets, showcasing its potential for clinical diagnostics.

The remainder of this paper is organized as follows: Section 2 provides a detailed description of the FGM method-
ology, including its structure and learning algorithm. Section 3 presents the experimental results. Finally, section 4
concludes the paper and discusses future research directions.

2. FGM Methodology

The Fuzzy Growing Map (FGM) is a novel neuro-fuzzy model that integrates the dynamic structure of the Grow-
ing Self-Organizing Map (GSOM) with the interpretability of fuzzy logic. This section provides a comprehensive
description of the FGM methodology, including its architecture, learning algorithm, and mathematical foundations.
The FGM architecture consists of a two-dimensional grid of neurons, where each neuron represents a fuzzy rule. The
learning algorithm involves three phases: growing, smoothing, and interpretation, which collectively enable the model
to adapt to the complexity of EEG data while maintaining interpretability. The mathematical formulation of FGM
ensures e�cient handling of high-dimensional and noisy data, making it suitable for real-time clinical applications.
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2.1. Basic Structure of FGM. The FGM is designed to handle high-dimensional, noisy, and complex data, such as
EEG signals. It consists of a network of neurons, where each neuron represents a fuzzy rule. The structure of FGM
is dynamic, meaning that it can grow or shrink during the learning process based on the input data. Each fuzzy rule
in FGM is de�ned as follows:

If x1 is Ui,1 and x2 is Ui,2 and . . . and xn is Ui,n,
then y1 is ai,1 and y2 is ai,2 and . . . and yp is ai,p,

(2.1)

where:

• x1, x2, . . . , xn are the input features (e.g., EEG frequency bands),
• Ui,j are fuzzy sets representing the antecedent conditions,
• y1, y2, . . . , yp are the output variables (e.g., class labels),
• ai,j are singleton values representing the consequent of the fuzzy rule.

The membership functions for the fuzzy sets Ui,j are triangular, de�ned by three parameters: the center ci,j , the
left spread sli,j , and the right spread sri,j . The membership value µUi,j (xj) is computed as:

µUi,j
(xj) =


xj−sli,j
ci,j−sli,j

, if sli,j ≤ xj ≤ ci,j ,
xj−sri,j
ci,j−sri,j

, if ci,j ≤ xj ≤ sri,j ,

0, otherwise.

(2.2)

2.2. Learning Algorithm. The learning process of FGM consists of three main phases: initialization, growing, and
smoothing. Below, we describe each phase in detail.

2.2.1. Initialization Phase. The FGM starts with a small number of neurons (typically four), each initialized with
random weight vectors. The growth threshold (GT ) is introduced as the maximum accumulated error a neuron can
tolerate, calculated using the following equation

GT = −D × ln(SF ), (2.3)

where D is the dimensionality of the input data, and SF is the spreading factor, which controls the growth of the
network. A higher SF results in a larger network.

2.2.2. Growing Phase. During the growing phase, the FGM dynamically adds new neurons to better represent the
input data. The process is as follows:

(1) For each input vector x(t), the winner neuron c is identi�ed as the neuron with the smallest Euclidean distance
to x(t):

∥x(t)− wc(t)∥ = min
i
{∥x(t)− wi(t)∥}. (2.4)

(2) The weight vector of the winner neuron and its neighbors are updated using:

wi(t+ 1) = wi(t) + η(t)× h(t)× [x(t)− wi(t)], (2.5)

where η(t) is the learning rate, and h(t) is the neighborhood function (e.g., Gaussian).
(3) The accumulated error Ec of the winner neuron is updated:

Ec(t+ 1) = Ec(t) + ∥x(t)− wc(t)∥. (2.6)

(4) If Ec exceeds the growth threshold GT , new neurons are added to the network.

2.2.3. Smoothing Phase. In the smoothing phase, no new neurons are added. Instead, the weight vectors are �ne-
tuned using a modi�ed LVQ2.1 algorithm. The spread parameters of the fuzzy sets are updated based on the distance
between the winner neuron and the �rst runner-up. The update rule is given by:

sr,k(t+ 1) = sr,k(t) + gU,r(t)× [cw,k(t)− sr,k(t)], (2.7)

where sr,k is the spread of the �rst runner-up, cw,k is the center of the winner neuron, and gU,r(t) is the learning rate
for the fuzzy sets.
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2.3. Automatic Fuzzy Rule Generation. One of the key advantages of FGM is its ability to automatically generate
fuzzy rules during the learning process. This is achieved by dynamically adding neurons to the network based on the
accumulated error. The algorithm ensures that the generated rules are both accurate and interpretable, making FGM
suitable for applications such as EEG signal classi�cation.

The FGM methodology elegantly fuses the dynamic adaptability of GSOM with the clarity and interpretability of
fuzzy logic, resulting in a powerful tool for analyzing complex, high-dimensional datasets. Its self-organizing structure
and automatic fuzzy rule generation enable the model to adapt to evolving data patterns while maintaining transparent,
human-readable decision rules�an essential feature for applications in neuroscience and clinical diagnostics. Moreover,
the integration of GSOM and fuzzy logic not only enhances robustness against noise and data irregularities but also
facilitates insightful interpretations of the underlying data relationships. This synergy ultimately empowers clinicians
and researchers to make more informed decisions, bridging the gap between advanced computational methods and
practical, real-world applications.

3. Experimental Results

This section presents the detailed experimental setup, the datasets used, and the results obtained from applying the
Fuzzy Growing Map (FGM) to EEG signal classi�cation. The primary goal of these experiments was to evaluate the
performance of FGM in comparison with traditional machine learning approaches in terms of classi�cation accuracy,
interpretability, and computational e�ciency.

3.1. Datasets and Preprocessing. The experiments were conducted on two publicly available EEG datasets, which
were selected to evaluate the FGM's robustness in handling di�erent neurological conditions. The datasets used in
this study are described as follows:

• Dataset A: This dataset consists of EEG recordings from 100 subjects, including 50 patients diagnosed with
epilepsy and 50 healthy controls. The recordings were sampled at a frequency of 256 Hz and segmented into
5-second epochs to capture the dynamics of brain activity [18]. This dataset provides a challenge due to the
presence of epileptic seizures, which exhibit signi�cant variance in EEG patterns.

• Dataset B: This dataset includes EEG signals from 120 subjects, with 60 patients diagnosed with Alzheimer's
disease and 60 age-matched healthy controls. The signals were sampled at 128 Hz and preprocessed to remove
artifacts such as eye movements and muscle contractions [5]. This dataset is particularly useful for evaluating
how well the model can distinguish between healthy and Alzheimer's-a�ected brain activity.

3.1.1. Feature Extraction. The preprocessing of the raw EEG signals involved the extraction of relevant features from
multiple frequency bands. To obtain these features, a Fast Fourier Transform (FFT) was applied to the EEG signals
to calculate the power spectral density (PSD) of the di�erent frequency bands [16]. The following frequency bands
were computed:

• Delta (0.5�4 Hz),
• Theta (4�8 Hz),
• Alpha (8�12 Hz),
• Beta (12�30 Hz),
• Gamma (30�100 Hz).

The PSD for each frequency band was calculated using the equation:

PSD(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn/N

∣∣∣∣∣
2

,

where x(n) represents the EEG signal, N is the number of samples, and f is the frequency.
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Figure 1. Fuzzy rules generated by FGM for Dataset A.

3.2. Experimental Setup. The FGM was implemented using Python, with the NumPy and SciPy libraries providing
the necessary computational tools. The experiments were run on a workstation equipped with an Intel Core i7 processor
and 32 GB of RAM. The following key parameters were used in the FGM:

• Initial number of neurons: 4,
• Spreading factor (SF ): 0.8,
• Learning rate (η): 0.1,
• Neighborhood function: Gaussian with σ = 1.

For comparison purposes, the following traditional machine learning methods were implemented:

• Support Vector Machine (SVM) with a radial basis function (RBF) kernel [13],
• k-Nearest Neighbors (k-NN) with k = 5 [22],
• Multilayer Perceptron (MLP) with one hidden layer containing 100 neurons [10].

3.3. Results and Discussion. The results of applying FGM to the EEG datasets demonstrate its superior perfor-
mance in comparison to traditional machine learning methods. FGM outperformed the baseline models in terms of
classi�cation accuracy, interpretability, and computational e�ciency.

On Dataset A, the FGM achieved a classi�cation accuracy of 92.3%, while SVM, k-NN, and MLP achieved accuracies
of 87.5%, 81.4%, and 86.9%, respectively. For Dataset B, FGM achieved 91.7% accuracy, compared to 86.2% for SVM,
80.8% for k-NN, and 85.7% for MLP. These results underline the ability of FGM to handle the high-dimensional, noisy
nature of EEG signals e�ectively.

A signi�cant advantage of FGM is its interpretability. The fuzzy rules generated by the model provide clinicians
with insights into the decision-making process. For example, in Dataset A, the fuzzy rules highlighted patterns such
as high Delta power and low Alpha power as indicative of epilepsy. These insights can aid in understanding the
physiological mechanisms behind the classi�cation decisions, which is essential for clinical applications.

In terms of computational e�ciency, FGM trained on Dataset A in 120 seconds, which is comparable to the 110
seconds required by the SVM, and much faster than the 250 seconds needed for MLP. The computational speed of
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Table 1. Classi�cation accuracy of FGM and baseline methods.

Method Dataset A (%) Dataset B (%)
FGM 92.3 91.7
SVM 87.5 86.2
k-NN 81.4 80.8
MLP 86.9 85.7

Figure 2. Confusion Matrix for FGM on Dataset A.

FGM can be attributed to its dynamic structure, which adapts to the data during the learning process, rather than
relying on a �xed architecture.

To assess the statistical signi�cance of the results, a paired t-test was performed. The p-values for FGM compared
to SVM, k-NN, and MLP were all p < 0.01, indicating that the improvements in accuracy were statistically signi�cant.
This further validates the e�ectiveness of FGM in EEG signal classi�cation.

The advantages of FGM go beyond accuracy and e�ciency, it also provides a framework for real-time decision
support. Given the rapid processing time and the clear interpretability of the results, FGM shows promise for clinical
applications where timely and understandable insights are crucial.

In summary, FGM has proven to be an e�ective tool for EEG signal analysis, o�ering a unique combination of
accuracy, interpretability, and computational e�ciency. Its ability to generate interpretable fuzzy rules makes it
particularly suitable for clinical use, where the transparency of the model is as important as its performance. Future
work should explore further optimizations of FGM, particularly in extending its application to multi-modal biomedical
signal analysis and real-time processing.

To better understand the e�ectiveness of FGM, we provide additional visualizations that highlight the results and
performance of the model:

This confusion matrix visually represents the classi�cation performance of FGM on Dataset A, showing the model's
accuracy in distinguishing between the two classes (epilepsy vs. healthy control). The high precision and recall rates
for both classes highlight the robustness of FGM in accurately classifying EEG signals.
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4. Conclusion and Future Work

The accurate analysis of electroencephalogram (EEG) signals is crucial for the early detection and diagnosis of
neurological disorders such as epilepsy, Alzheimer's disease, and Parkinson's disease. In this study, we introduced the
Fuzzy Growing Map (FGM), a novel neuro-fuzzy method that combines the dynamic structure of the Growing Self-
Organizing Map (GSOM) with the interpretability of fuzzy logic. The proposed FGM addresses several limitations of
traditional machine learning methods, such as the lack of interpretability, adaptability, and computational e�ciency,
in handling high-dimensional and noisy EEG data.

4.1. Summary of Contributions. The primary contributions of this work are as follows:

• Introduction of FGM: We proposed a novel neuro-fuzzy model that dynamically generates and re�nes
its structure during the learning process. By leveraging if-then fuzzy rules, FGM provides transparent and
interpretable outputs, making it especially suitable for clinical applications.

• High Classi�cation Accuracy: Experimental results demonstrated that FGM achieves classi�cation accura-
cies of 92.3% on Dataset A (epilepsy detection) and 91.7% on Dataset B (Alzheimer's detection), outperforming
traditional methods such as SVM, k-NN, and MLP.

• Interpretability: FGM generates fuzzy rules that reveal meaningful patterns in EEG signals, such as char-
acteristic changes in spectral power across frequency bands. This enhances the transparency of the decision-
making process, a critical factor in clinical diagnostics.

• Computational E�ciency: The training time of FGM is comparable to or better than that of conventional
methods, making it a practical choice for real-time applications where both accuracy and speed are essential.

4.2. Implications for Clinical Applications. The ability of FGM to provide both accurate and interpretable results
holds signi�cant promise for clinical applications. In the context of epilepsy detection, for instance, FGM can help
clinicians identify speci�c EEG patterns that precede or indicate seizures, thereby facilitating timely intervention.
Similarly, in Alzheimer's disease detection, the model's insights into changes in brain activity may assist in early
diagnosis and monitoring of disease progression. The interpretability of the fuzzy rules not only builds trust in the
system but also aids medical professionals in understanding the underlying physiological processes.

4.3. Limitations and Challenges. Despite its promising performance, FGM has certain limitations that warrant
further investigation:

• Scalability: While FGM has shown excellent results on medium-sized datasets, its performance and e�ciency
on large-scale datasets with millions of samples remain to be thoroughly evaluated.

• Parameter Sensitivity: The e�ectiveness of FGM is in�uenced by various parameters such as the spreading
factor and learning rate. Identifying optimal parameter settings remains a challenge, and developing automated
tuning strategies would be bene�cial.

• Generalization: Although FGM has demonstrated robust performance on EEG datasets, its applicability to
other types of biomedical signals (e.g., ECG, MEG) requires further exploration to assess its generalizability.

4.4. Future Research Directions. Building on the foundation established in this work, several avenues for future
research can be pursued to further enhance FGM and expand its applicability:
Integration with Deep Learning: Future studies could explore the fusion of FGM with deep learning architec-

tures. A hybrid model that combines the feature extraction capabilities of deep neural networks with the interpretabil-
ity of FGM could leverage the strengths of both approaches. Such integration could allow for the automated discovery
of hierarchical representations from raw EEG signals while retaining the ability to generate transparent fuzzy rules
for decision-making.
Real-Time Implementation and Optimization: Given the promising computational e�ciency of FGM, future

work should focus on optimizing the algorithm for real-time applications. This could involve parallelization strategies,
implementation on specialized hardware such as GPUs or FPGAs, and further algorithmic re�nements to reduce
latency without compromising accuracy. A real-time FGM system could be particularly valuable in clinical settings
where immediate analysis of EEG signals is required.
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Multi-Modal Data Fusion: Another promising direction is the extension of FGM to handle multi-modal data.
Combining EEG with other neuroimaging modalities (e.g., fMRI, PET) or integrating data from wearable sensors
could provide a more comprehensive picture of brain function. Developing methods to fuse such heterogeneous data
sources within the FGM framework could enhance diagnostic accuracy and o�er deeper insights into neurological
disorders.
Robustness and Generalization Studies: Further research is needed to rigorously test the robustness of FGM

across diverse patient populations and under varying conditions. Extensive benchmarking on larger and more varied
datasets will help to assess its scalability and generalization capabilities. Additionally, incorporating mechanisms to
handle missing or corrupted data could further improve the reliability of the model in clinical environments.
Explainable AI and Clinical Decision Support: As interpretability remains a cornerstone of clinical accep-

tance, future work should investigate methods to further enhance the explainability of FGM. Developing intuitive
visualization tools and user interfaces that allow clinicians to interact with the generated fuzzy rules could bridge the
gap between complex algorithmic outputs and practical clinical insights. This direction would support the develop-
ment of comprehensive decision support systems that not only predict outcomes but also provide clear justi�cations
for each decision.

4.5. Conclusion. The Fuzzy Growing Map (FGM) presents an innovative approach for EEG signal analysis in the
diagnosis of neurological disorders. By combining the dynamic properties of Growing Self-Organizing Maps (GSOM)
with the uncertainty modeling capabilities of fuzzy logic, FGM provides a robust model for analyzing EEG signals.
The method not only o�ers high accuracy in noisy and complex data but also generates interpretable fuzzy rules that
provide valuable insights into underlying physiological processes.

This study demonstrates that FGM achieves approximately 92% classi�cation accuracy, outperforming traditional
methods such as SVM, k-NN, and MLPs. The dynamic structure and adaptability of FGM make it a suitable tool for
real-time EEG analysis in clinical environments.

Overall, FGM proves to be an e�ective and interpretable tool for EEG signal analysis, o�ering enhanced diagnostic
capabilities for neurological disorders.
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