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Abstract ( )
This study introduces novel generalized fractional derivatives known as (v, ¢)-fractional derivatives of the Riemann-
Liouville and Caputo types, each incorporating exponential function kernels. These new operators offer distinct
advantages, including a semi-group property and a seamless extension of the Riemann-Liouville (RL-FD) and
Caputo fractional derivatives (C-FD), as well as integrals (RL-FI). We explore the Laplace transform of these
(v, ¢)-fractional derivatives and (v, ¢)-integral, leveraging them to address linear (¢, ¢)-fractional differential
equations. Moreover, these fractional operators are general to classical fractional operators, cotangent fractional
operators, and generalized proportional operators.
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1. INTRODUCTION

Fractional calculus (FC) [26, 28-32] stands as a comprehensive extension of conventional differentiation and in-
tegration, encompassing non-integer orders. Over the past few decades, it has emerged as a highly potent tool for
characterizing long-memory processes. Its applications span across various domains including chemistry, physics, elec-
tricity, and mechanics, as extensively covered in references such as [9, 11, 22, 25]. The literature on FC is vast, with
numerous works discussing its applications and theories. For further exploration, you may refer to publications like
[4, 10, 12, 15-17]. Local fractional derivatives (FDs), allowing differentiation with arbitrary orders beyond traditional
FDs, play a pivotal role in advancing classical FC. In [20], the conformable derivative (CD) was introduced; however,
its limitation lies in the failure to converge to the original function at 3¢ = 1. Addressing this, [1] explored alternative
CD concepts and posed an open challenge to harness CD for generating more generalized FDs.

To address these concerns, generalized FDs and fractional integrals (FI) were proposed and analyzed in [18, 19],
offering partial solutions to this problem. Additionally, Anderson in [5, 6] introduced a novel local FD that converges
to the original function at s = 1, thus enhancing the CD. Subsequently, various authors developed new FD types
accommodating exponential functions [2, 3, 8, 14, 24, 27] or the Mittag-Leffler function [7] in their operator kernels.
However, these novel nonsingular kernel-type FDs suffer a drawback: their corresponding integral operators lack a
semi-group property, posing challenges in solving complex fractional systems within their frameworks. Nevertheless,
considerable efforts have been invested in defining general FDs and integrals involving the general Mittag-Leffler
functions in their representations, as evident in papers see [13, 21, 23]. Motivated by these advancements, we introduce
a novel generalized FC based on a specific case of proportional derivatives (PD) as discussed in [5].

Our novel (¢, ¢)-fractional operators exhibit three distinct features that set them apart:

(1) The fractional operator’s kernel incorporates the exponential function.
(2) The resulting fractional integral demonstrate a semi-group property.
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(3) At order » = 1, these operators revert to the Riemann-Liouville fractional derivative (RL-FD), Caputo
fractional derivative (C-FD), and Riemann-Liouville fractional integral (RL-FI).

This paper encompasses various sections detailing distinct aspects of the subject: Section 2 presents essential defini-
tions for FD and FI, crucial for subsequent comparisons. In section 3, a discussion on PD and their corresponding
integrals, accompanied by their Laplace transforms, forms the basis of the primary results. This section defines
the (¢, ¢)-fractional derivatives and integrals while exploring their inherent properties. Section 4 delves into the
Laplace transforms about Riemann-Liouville (¢, ¢)-fractional derivatives. The final section focuses on the exploration
of Caputo (v, ¢)-fractional derivatives, examining their linear (1, ¢)-fractional equations. Additionally, this section
elucidates the relationship linking RL-FD and C-FD.

2. REVIEW oF FC

In this section, we present several foundational definitions related to FD and FI, which are instrumental for the
analysis and comparisons carried out in this work. Let ¢ € C be such that Re(d)) > 0, and denote ny = [J] + 1. We
begin by defining the left-sided RL-FI of a function x of order ¥ as follows:

1 e
v = —— — )Vt : 2.1
(o72) (©) = 755 / (O — 8)"~1a(s)ds (2.1)
The right-sided RL-FT of a function x, of order ¥, is given by the expression:
1 b
o 9—1
= — — ds. 2.2
(72) (©) = 55 [ (5= )" al)is (22)
The left-sided RL-FD of a function x, of order #, is given by the expression:
ny
(D) (©) = 4 (2T "2) (©). (2.3)
do
The right-sided RL-FD of a function z, of order 1}, is given by the expression:
d\""
9 _ ([ _ % Ny —13
i) ©) = (~35)  (5°7"z) @) (24)

The left-sided C-FD of a function x, of order ¥, is given by the expression:

(¢D"z) (©) = (QJW—%W) ). (2.5)
The right-sided C-FD of a function z, of order 9, is given by the expression:

(“Dyw) (©) = (Jpr~ (=1) ) ) (8), (2.6)
The left and right generalized proportional integral (GPI) [14] are defined respectively as

1 ©

9 79,3 — 7(@—5) _ 9-1 2

(23772) (6) = s / ¢ (© — )" 2(s)ds, (2.7)
and

(Jﬂ’%x) (0) = _ /b e (5=9) (s —©)" 1 a(s)ds (2.8)

’ #'T'(9) Jo . '

Consider s € (0,1]. The left- and right-sided generalized proportional derivatives of Riemann-Liouville (GPD-RL)
type, as introduced in [14], are defined respectively by:

P Dnﬁ’% © z-1l@_gs Ny —U9—
(D72) (6) = e [ O @ — oy a(e)is, (29)
and
9,5 Dg"” " e —9-1
(Db’ ac) (0) = =TT (g — ) /e e = TP (s—0)™ x(s)ds, (2.10)

(=)=
E)NE
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where
D(la’%x(@) = (1 - »)z(0) + 2'(0), and D& = Dl’%Dgﬂ*L%.

The left and right generalized proportional derivatives of Caputo type (GPD-C) [14] are defined respectively as

1 © L
C 19,% — 7(@—8) _ n19—19—1 Ny, 11
(€D"%2) (€) = =5 / e (O — 5)ro ==L Do a(s)ds, (2.11)
and
b
(“Dy7z) () = : / "5 (7O (5 — @) V1 Dro (s ds. (2.12)
b »>w =T (nyg —9) Jg s

The left and right cotangent fractional integral (CFI) [27] are defined respectively as

1 © —cot(xZ —s —
(23774) ©) = Gormaryy ¢ PO © -9 ategas (2.13)
b) a
and
9, 1 ’ —cot(»x%)(s—O) -1
2

Let s €]0,1]. The left and right cotangent fractional derivatives of RL type (CFD-RL) [27] are defined respectively
as

P Dnﬁ’% © —cot (% —s ny—9—
(aDﬂ’ x) (@) = sin(%ﬂ)”i’?ﬁf(nﬁ _ 19) / € t( 2)(@ )(6 - 8) oY 1$(S)d$, (215)
2 a
and
9 ng% ’ t(>2Z)(s—O 9—1
(Db7 :v) (©) = sin(3¢Z)" 9T (ng — 1) /@ e” B0 (s — ) u(s)ds, (2.16)
2

where Dé)’%m(@) = cos(x%)x(0) + sin(2 5 )a’(©). The left and right cotangent fractional derivatives of Caputo type

(CFD-C) [27] are defined respectively as

O~ cot(Z)(O—s) o \ne—9—1
Y9, _ € 2 (G) S) N,
($D”*z) (©) —/a Sa(eZ ) T (ny — ) DI x(s)ds, (2.17)
and
b —cot(xZ)(s—0O) o nyg—9—1
CyY,> _ € 2 (8 6) Ny,
(“Dy7z) () = /@ GeE) T, gy Db (o) (2.18)

It’s notable to mention that when s = 1:

the GPI (2.7) and (2.8) reduce to RL-FI (2.1) and (2.2)

the GPD-RL (2.9) and (2.10) become the RL-FD (2.3) and (2.4)

the GPD-C (2.11) and (2.12) have the forms of the C-FD (2.5) and (2.6).
the CFI (2.13) and (2.14) reduce to RL-FI (2.1) and (2.2)

the CFD-RL (2.15) and (2.16) become the RL-FD (2.3) and (2.4)

the CFD-C (2.17) and (2.18) have the forms of the C-FD(2.5) and (2.6).
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3. THE RIEMANN-LIOUVILLE (¢, ¢)-FRACTIONAL DERIVATIVE

In this section, we give the first part of the main results by defining the (1, ¢)-fractional derivatives and (v, ¢)-

fractional integrals and studying their properties. From [5, 6] we have the following definition.

Definition 3.1. Let s € [0, 1] and v, ¢ : [0, 1] — [0, +-00[ be continuous where

li =1, I =0, li -0, li -1
lim ¢ =1, lim ¢(>) =0, lim ¢(>) =0, lim ¢()=1,

and

¢(3) # 0, ¥(3) #0, » €]0,1].

The FD of x of order s is defined by
D*z(0) = ¢(5)x(0) + ¥ (5)2'(©).

We aim to find the integral related to the FD in (3.1). Consider the following equation:

D*y(©) = ¢(>)y(0) + ¢ (x)y'(0) = z(V),
the solution of (3.2) is:

1 (9 _emg g
y(©) = —/ e 000 O (5)ds.
(%) Ja
The fractional integral ((1, ¢)-fractional integral) of FD Eq. (3.1) is defined by:
1 O _sen
IV () = —/ e~ 96 (O~ (s)ds,
=569 ), )

where we accept that ,J%*z(0) = z(0).

() g
Remark 3.2. Let s €]0,1[. Then the z(©) = e~ C7© is Al moneonstant function. However, (D*z) (©) = 0.

(D7) (0) = d(x)e ¥ +u(x)(e TP O)
= 4l Ly (- A e

O > a.

()

b (<) b(22)

= P(x)e T ° — p(s)e” 1)

= 0.

Proposition 3.3. Let x differentiable on'|a, +o0o[ and » €]0,1]. We get

JY*D*3(0) = 2(0) — e‘%(@_‘”x(a).
Proof. We have
1 © P (O—s
aJl,J{D%x(@) — ﬁ/ e z((%)) © )D%Jf(s)ds
K a

6()
e 900 O p(5)ds
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¢(%)

_ () e O

O
New let (o J™*2) (0) = (o JV7 (o J" " 1>2) (©)).
Theorem 3.4. Let n € N*, we have
1 e
(@) 0= iy [, OO o e (34)
Proof. By changing the order of integrals we have
L[ —se-ry, 1 [T _sanm
u ., — w(,() ™) d v \T1TT2) g
@) =5 e ). e
1 Tn—1 s
x 1/}(%)/ e~ HB =) o (1 Vi (3.5)
1 / " #3000 _ gyig(e)d
=——— e W= —s x(s)ds.
P()"T(n) Jo
O

From equation (3.4), we can express the subsequent generalized form of FI.

Definition 3.5. Let s €]0,1] and ¥ € C, Re(d) > 0, the left and right Riemann-Liouville (¢, ¢)-fractional integrals
of x are respectively defined as

© e
I "2)®) = gy [, ¢ 0~ " et (36)
and
b e
GR00) = gy [, e B st (&)

Remark 3.6. We have

e If 5x =1, then we get the left and right RL-FI (2.1) and (2.2), respectively.
o If 1(5c) = 3 and ¢(3¢) = 1 — 3¢, then we get the left and right GPI (2.7) and (2.8), respectively.
o If () = sin(§ ») and ¢(s¢) = cos(5 ), then we get the left and right CFI (2.13) and (2.14), respectively.

Let n € N, we use the notation
(Dg”x) (©) = (Dg D§ - Dg x)(O).
—_———
n times

Definition 3.7. Let » €]0,1] and ¢ € C, Re(¥) > 0. The left and right RL (v, ¢)-fractional derivatives of x are
respectively presented as follows:

(DP2)(O) = DE “( )
©3) ( s)(@ 5 ng—>9—1
= Dg&” / ( - 19]:‘(719)’[9) x(s)ds, (3.8)
and
(D)7 z)(©) = DE I "7 u(0)
e ) ng—9-1
ny e [ € PO (s—O)™
= D&’ /@ G Ty —0) x(s)ds, (3.9)
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with ny = [Re(9)] + 1.

Remark 3.8. We have

e If 5c =1, then we get the left and right RL-FD (2.3) and (2.4), respectively.
o If (5) = 5 and ¢(5) = 1 — 5, then we get the left and right GPD (2.9) and (2.10), respectively.
o If 9(3) = sin(§ ) and ¢(s) = cos(5 ), then we get the left and right CFD (2.15) and (2.16), respectively.

Lemma 3.9. Let function y(0), we have

b(x) <)

D*(ste)H5°) v/ @) 5.

Proposition 3.10. Let s €]0,1] and 91,92 € C be such that Re(¥1) > 0 and Re(¥2) > 0. We have

D(>)
s —2G9 g 9o — T(95)e ¥0Go) (97‘1)(@_ yo1+92-1
(1) oJov (e 56 ( a)(@_a) 2 1) — I(W2)e w(”)mf(ﬁl-w(z\) ‘

7‘7’(3 (b—©)

V1,50 [ -2 (p—© _ T(9)e ¥( b—@)P1+92-1
(2) Jp* <e oy ( )(b_@)ﬁz 1) — L(®W2) w(%)ﬂlp(ﬁ(ﬁ%)) _

()
v —2=(0-a _ )10 (95)e” ¥Ga ©7 V(@ _g)?2-1-%1
(3) oD (e w6 )(@—a)% 1) _ $(9)"iT(92) : 2_191)( ) )

P (3¢)
D1,¢[ —2=(p—0 _ L1 (95)e” BGa P) (h_@yda—1-01
(4) DY (e w0 )(b _ @)192 1) _ %)l (92) F(ﬂzfﬁl)( ) |

Proof. (1) We have

(e ) = i [ CE e e
w(%bﬁrwl) /ae IO — )" (s — a)’ds
making the change of variable y = 8:2 , we get
W JoF <e—i’(<’2§9(@ — a)ﬂ2_1> = w(e%_)f(i?(@ﬁl) /ae(@ — 5)191_1(5 — a)ﬂrlds
_ w(%‘)ﬂ?ﬁ;) (6 et /0 L ey,

1
Utilizing the Beta function defined as B(¥1,92) = / w1711 — u)"271du, and considering the identity
0

B(d,05) = LOVLW) g,

T(01492) 2
Jﬂ1%< 4300 a)ﬂ2_1> e~ HGTO (© — qyn+oa1 LEL()
a ’ € > - = -

Y00 (0y) (91 + 2)

_2M g
_ [(d2)e ¥ (6 — ayhi+oat.

PY(0)1 T (91 + Ja)

(2) Similar of 1.

(=)=
E)NE
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(3) Let 2(©) = 6_%6(@ —a)?2~! using Lemma 3.9 and we have

aDﬂl’;{(.’E(@)) _ Dgﬂl,% aJ’n,ﬁl —01,3¢ (e—i(;‘))@«_) _ a)ﬂg—l)
_ 20
- D ,91,;4< ['(9g)e 70 © ©- a)ml_ﬁl-wz—l)
© \Y(G)" T (ng, — V1 +0s)
Y(50)" 1T (02)(ng, — V1 + 19_2{ D(ng, =t +02—-1)--- (s =) e HFO( — g)e-1n
P(3)"1 1T (ng, — Y1 + Y2)
V) T() st

e 902 (0 — )21
L(92 —h) ( )
(4) The proof follows a similar pattern to that of relation 3.
O
Lemma 3.11. Let A € R. Then
01,5 ,— 255 (©—a) 9 9 J(©—a) 9
D" e e Ey, 9, ()‘(@ - a‘) 1) = M/J( ) e w}{) Eyy9, ()‘(@ a‘) 1)
where Ey, 9, is the Mittag-Lefler function [22].
Proof. Let h(©) = 67%(67(1)E§17§2 (A(© — a)?1). We have
D"H(O) = aD“"< RERCICE a>ﬂ1>>
+0o0 k
A B ()
— aD’L91,% T () (@—a) @ _ k"L91
(kz_o Tk +1)° (©-a)
+o00 )\k ( |
= — = DV 5 (0-a) (g _ 4)kn
Zrﬁlk+1) <6 (©-a) >
—+oo
> M )" Tk +1) _seg (0=0) (@ _ q)?k~1
F(ﬂlk—Fl) (191k+1—191)
=)t vA O io X (© — a)’ (k=D
Y F'(i(k—1)+1)
oo k—1
= )\ P :4) (@ @ _ 191(](771)
Yo" Y oy ©Y
= Mp()re IR O “)Em, (A(© —a)™).
O

It’s evident that the (¢, ¢)-integral operators don’t exhibit the semigroup property in s. Nevertheless, the semigroup
property of (1, ¢)-integrals in 9 remains valid.
Theorem 3.12 presents the semigroup property (1, ¢)-integral Riemann-Liouville type.

Theorem 3.12. . Let x be continuous and » €]0,1], Re(¥1) > 0, and Re(d2) > 0. We have

T (L J7272) (0) = J7 (,J772) () = (o J"T7>72) (0), © >a. (3.10)
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Proof. We have
1
$(3) 1921 (91)0(2)

/ / e~ A (O—w) —§ES (um (O —u)" " (u — 5)"2  a(s)dsdu

JI7 (o727 x) (©) =

¢(>2)

(C]
e*m<@*8>x(s)/ (© —u)" " (u — 5)"2 " duds,

©
- w(%)’91+”2F(191) (¥2) /a

making the change of variable y = g

1
$(5e) 4021 (91)1'(92)

e 1
X / o) (@75)(6) - 5)791+’9271m(5)ds/ (1 —y) " 1yP27 1y
a 0

JO (G J77x) (©) =

1 S Y
— —5G (08 (g _ o)Prtd2—1
GG, 1 0) / e (©—y3) x(s)ds
= (aJﬁl+§27%l‘) (@)

(|
Theorem 3.13. Let x be integrable in each interval [a,0],0 > a and 0 <1 < [Re(9)] + 1. Then
D' (,J77z) (©) = (o JV ") (©). (3.11)
Proof. Using the definition and by noting that Dg”ef%(@ﬂ) =0, we have
DY (4 J"7x) (©) = D'=H7 (DV7,J %7 1) ()
- Dlil’%d)(%)ﬂ-llrw -1 /a@ eI OT(© — )7 2a(s)ds.
If we continue l-times in this way we reach (3.11). O
Corollary 3.14. Let 0 < Re(¥2) < Re(¥1) and ! — 1 < Re(¥2) <. Then, we have
oDV T2 (0) = o T V7 a(O).
Proof. Leveraging Theorems 3.12-and 3.13, we obtain:
oD% TP 0(0) = DLF I 7 J0 75 (0) = DL R (0) = (I TP w(6).
]
Theorem 3.15. Let x be integrable on © > a and Re[d] > 0, > €]0,1],ny = [Re(V)] + 1. We get
oDV TV 75(0) = 2(O).
Proof. By combining the definition and Theorem 3.12, we derive:
oDV TV 70 (0) = Do g% U (0) = DM, T % (0) = 2(0).
(]
Lemma 3.16. For ¢ > 0,3 €]0,1] and [ is positive integer we have
(o J7* D" 2) (©) = (D", J" 7 x) S~ (0 —a) T S50 (D**z) (a) (3.12)
¢ “ 'Y+ k — 1+ 1)ap(se) 01k ' '

k=0
(=)=
E)NE
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Ifl =1, we have

1,95 (@-a)
z(a). (3.13)

_a)?
("7 D*x) (©) = (D*oJ"*x) (©) — © zbz%)ﬂ—lr(ﬁ)
Proof. Observing that (D*zy) () = z(0) (D*y) (©) + y(©) (D*z) (©) — ¢(3)x(0)y(O) (see also Lemma 1.7 in [5]),
we get
6 () 6 (o)

D7 [(© = a0 1 FH O D (a)| = h3e) (g — 0 — 1)(O — a)e 2 FEFO ), (3.14)

We establish the proof for (3.13) first. The relationship (3.12) follows from applying (3.13) inductively, utilizing (3.14).
The demonstration of (3.13) relies on the observation of (3.14) and the Laplace transform. Specifically, employing
(4.1) from Theorem 4.1 in the subsequent section and incorporating the identity:

Lo {D*z(0)} (p) = (6(5) + ¢ (5)p) Xa(p) — P(3)x(a),

where
Lula(@)p) = [ e a(s)ds
we obtain
Pk Dy _ Lo {D*2(0)} () _ (6(2) + ¥ ()p) Xu(p) — ¥()(a)
LoD 2O} 0) = T e 6+ 0(2p)? |
L, {D%ajﬁ,zx(@)} (p) = (¢(%) + 1/)(%)17) (¢(%))ilgf()%)p)19’
and
(©—a)’te” e __x(@)pix)
e { D)7 1T(0) x(”‘)} ®) = 660+ wGam)

Alternatively, relation (3.13) can be proved by integration by parts and by noting that

(€]
D, g (@) = W= DY) / "B O (@ _ 5)72(s)ds.

()T ()
O
Remark 3.17. We have
o (oD"*x) () = (o J 7x) ().
e Using Lemma 3.16 we get
(D%aDﬁ,zm) (@) — Dng,%D%aJnﬁfﬁ,%x(@)
#(x)
_ @701)71,9 - 1e qj(%)( a)
— D " ) 19,;4D;f_(
! Ty — DG o1
e
_ @_a) I— 16 w(%)( a)
= o) 19’”D”x@f( z(a).
P R N
e Lemma 3.16 is valid for any real 4.
Theorem 3.18. Let Re(¥) > 0,nyg = —[— Re(ﬂ)], z € Li]a,b] and (,J%*z) (©) € AC™[a,b]. Then
(S a)ﬁfm
" ﬁ,%aDﬁ,% — m—17, ”‘ + ( . 1
[c [m]
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Proof. From applying (3.12) in Lemma 3.16 and using the semi-group property for Riemann-Liouville (¢, ¢)-integrals,
we have

(g,zaDﬂ,%l,(@) :Z,%Jng,%ajnqgfﬂ,%l,(@)
:Dnﬁ,%g,%a(]nw*ﬁ»%x(@)

— b(x)
ny—1 (@7a)197n19+ke*w(%)(@*a)

a ];) LW+ k —nyg + 1)p(sc)9—notk

(Dk’%ajn’97ﬁ’%x) (a)

ny—1 (@ . a)19*7h9+k67%(@7a)
fx(@) - ];) F(ﬂ +k—mng—+ 1)w(%)19—n19+k

(ajnlgfﬁfk,%x) (CL+)

(© —a)?—m
()T +1—m)’

Ty
—2(0) — e T O 37 (L) (a)
m=1

4. THE LAPLACE TRANSFORM FOR (¢, ¢)-RL-FI aAND RL-FD

In this section, we present the Laplace transform for (¢, ¢)-fractional integral and the Riemann-Liouville (¢, ¢)-
fractional derivative. We give exacte solution of linear (1, ¢)-fractional differential equations of Riemann-Liouville
type.

Theorem 4.1. Let x to be exponential order, s« €]0,1] and ¥ € C where Re(¥) > 0. Then
1

La{(wl""2) O} 0) = i L r©) ) (4.1)

Proof. We have
9, ¢ 1 _9) g 9 q
Lo{(aJ"72) (0)} (p) = Wﬁa {e won 0QU L x(@)} (p)
- 1 I'(9)
~ Y(0)7T(9) (p_ M)

¥ (%)

5 La{2(0)}(p)

1
= @069+ o)~ [ ON )

Theorem 4.2. Let x € €™~ ([a, +00]) be such that ¥) are of exponential order on each subinterval [a,b], k =
1,2,...,n9 — 1. Then,

Lo {(D"72) (©)} (p) = (¢(5) + ¢ (3)p)™* La{(0) }(p)

’ngfl

U6 3 (600 + G (D) a), -
k=0
where ¥ sash that ny = [Re(9)] + 1.
Proof. Since L, {2'(©)} (p) = pLa{z(0)}(p) — z(a), we get for ny =1
Lo {(DVx) (0)} (p) = Lo {6(3)2(0) + 9 (5)2' (0)} (p) (43)
= (¢(30) + ¥ (3)p) La{z(©)}(p) — ¥ (5)z(a). .
Applying (4.3) leads us to derive the relation (4.2). O

(=)=
E)NE
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Theorem 4.3. Let s €]0,1], ¥ € C where Re(¥) > 0 and ny = [Re(I)] + 1, we have

nyg—1

Lo {(«D"72) (©)} (1) = (d() + ¥ (3)p)" Xa(p) = ¥(5) D ($(5¢) + 9 (e)p)" 1 (S (),

k=0
with Xq(p) = L{x(0)}(p). If x is continuous at a then

Lo { (D7) (©)} (p) = (6(3¢) + (39)5)” Xa(p)-
Proof. Through the application of Theorems 4.1 and 4.2, we obtain
Lo {(aD"72) (©)} (p) = La {aDy> ™ ~"72) (0)} (p)
= (¢(3) + ¥ (3)p)"* La {a ™ ") (©)} (D)

ny—1

—(5) Y ($0) + Y (e)p)"e T (DT ) (at)

k=0

= (¢(52) + 9 (3)p)™ (6 (52) + Y (5)p)” ™" X (p)

nyg—1

— () 3 (609) + 0 (p)"0 T (o0 PR <) ().

k=0

Theorem 4.4. The solution of
DV 2(0) = \x(0) +y(0), 0<9,x<1,
(aJlfﬁ”‘:zr) (a*) = z,.

18:

z(0) :e*%(ef‘l)ﬂm (7,[1(%)*19)\(@ - a)ﬁ) Zq
€]
+ (00 / e U ©O=)(0 — )01 Hy » (1(5) MO — 5)7) y(s)ds.

Proof. Applying the operator £, to Equation (4.4) and utilizing Theorem 4.3 with ny = 1, we obtain:

(6(2) + 9(6)P) La{(0)}(p) — ¥() (o'~ "2) (a™)
= Aa{z(0)}(p) + La{y(©)}(p).
Which is equivalent to

[(@() + ¥ (a)p)” = A] La{2(0)} (p) = ¥ (5)aa + La{y(©)}(p)-

Thus,
-1

La{(©)}) = [(#() + 0(Ip)” = A ()0 + [(6() + ()" = A La{y(0)} ().

Equation (4.6) can be written as:
-1

9
£.{2(0)}(p) = (”ZEQ) —w(%)”A] b))z
9 DN -
#0697 | (p+ 55 - w09 A] Loy(©) (),

using

Lo{e™ 97 Y2(0)}(p) = La{2(0)}(p + o),

11

(4.6)

(4.7)
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as follows:
{0 a)" " Bos (w920 ~ 0)”) } (p + %) — L. {e*%(@*@(e 0" By (600 AO - a)”)} (7). (48)
and
Lo{Es1 (¥(3)7°A© —a)”)} <p + %) =L, {e*%@*am,l (¥ ()" N(© — a)ﬁ)} (p). (4.9)
In our case, using the facts that (see 1.9.13 in [22])
£a{(© =)' Eay (MO - ")} (0) = . (4.10)
and
9 P!
Ea {Eﬂ (A(Gfa) )}(p) = pﬂ—)\, (411)
as follows:
Lo{ (©—0a)" " Eyy (()"NO —a)”)} (p + ;ZE};)))
S0 . (4.12)
_ PN 50) 0
|0+ S v
And,
@ (s S (g 20NN ] s
£l (o xe =} (o 55) = (e 55) | (o 565) v A] B
Hence, by using Equations (4.9) and (4.13), we have:
N T C AN ) 06—y (g 2D
(i) |erig) e A} = £ {Bar (060 7"N0 ~0))] (4 55 (414)
=L, {e 5@ a)Eg e )INO — a)ﬁ)} (p).
Further, by using Egs. (4.8) and (4.12), we get
G0N _ Al = £ (6 -y 1By s (50020 — ) 4 200
(pe5ig) o A} = £ 1(© 0" Fu (669730~} v+ 57 ) (4.15)
= £, {e T O (0 — )" By (600 NO — 0)”) } ().
We may get the following result by combining Eqs. (4.14) and (4.15) in Eq. (4.7), we get
Lafa(©)](p) = Lo {e” T OBy 1 () NO ~ 0)”) } (p)a o
+ 7,&(%)7195 {6 wE%; (- a)(@ _ a)ﬁflEﬁ,ﬂ (@D(%)*ﬁ/\(@ — a)ﬁ)} (p)ﬁa[y(@)](p) .
Hence, by using convolution formula in Eq. (4.16), we have
Lafa(©)](p) = £ {e O, 4 (060 IAO — @)") } ()2
(4.17)

*)

+ 909 L { T TE OO = )7 By (0() IA© — 0)”) +5(©) } ()
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Applying the Laplace inverse of Eq. (4.17), we get:

z(@)=e 3656~ “VEp1 ($(9)7"NO = a)”) 24

# ()

+1p(30) 77 {e 260 (9790 — a)' L Ey g (¥(3)TINO — a)”) * y(e)} :

Therefore,
2(0) = e ¥ OV By | ((3)IAO — a)?) z,
() (4.18)
+p(50) " / e e OO — )" By (1(3)TINO — 5)7) y(s)ds
O

5. THE CAPUTO (%, ¢)-FRACTIONAL DERIVATIVE

In this section, we present the Caputo (1, ¢)-fractional derivatives, Caputo (v, ¢)-fractional derivatives of some
special functions, the Laplace transform for Caputo (v, ¢)-fractional derivatives and relation that links the Caputo
and Riemann-Liouville (¢, ¢)-fractional derivatives. Finly we give exacte solution of linear (¢, ¢)-fractional differential
equations of Caputo type.

Definition 5.1. Let s €]0,1] and ¥ € C, Re(}) > 0, define the left Caputo (¢, ¢)-fractional derivative starting at a

by:
(ED")(O) = W (DY 2(E)
(C] (v) (©—s) ng—9—1
e (©—s)™
= Dn7% '1
/a ( )nﬁ*’ﬁl—‘(nﬁ_ﬁ) s x(‘g)dsa (5 )
and the right Caputo (¢, ¢)-fractional derivative ending at b is defined by:
(“Dy"x)(0) = Syt HD " x(0)
b —,d)(%) (s—9©) nyg—u9v—1
e ¥ (s—O)™
= D> x(s)ds, 5.2
T e e 2

where ng = [Re(9)] + 1.

Remark 5.2.

o If r =1, then we get the left and right RL-FD (2.5) and (2.6), respectively.
o If 1(5c) = 3 and ¢(5¢) =1 — 3, then we get the left and right GPD (2.11) and (2.12), respectively.
o If 9(5) = sin(s7) and ¢(») = cos(x7 ), then we get the left and right CFD-C (2.17) and (2.18), respectively.

Proposition 5.3. Let » €]0,1], ¥1,02 € C be such that Re(¥1) > 0 and Re(d2) > 0. We get

2 _ 90 ®—a _ 2)91 (9 ¢ () O—a —1-
(1) D" (e w6 ( )(@—a)192 1) = %e w6 ( )(@—CLY92 1=01,

(2) CDi> (e;‘;i;‘iw@)(b _ @)%1) HGUIT0) 3 0-0) ), _ @)0s-1-1.
Let ng, = [Re(¥1)] + 1, for k=0,1,...,n9, — 1, we have
Cpie 1,,2,39(@ —a)*=0 and CDfl’%e_%(b_e)(b —0)F=o.

. _ () _b00)
In particular, S D"v*¢” 569 = 0 and CDglv”e 56 (0=©) _ .
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Proof. Let ny, = [Re(Y¥1)] + 1, from Proposition 3.10, we get

_ 9() _ o()
CDIe$E50(0 — a)t =, g Do [ HE5O (6 — )|

:aJ’qugl 7191,%

x [B0a (9 = 1) = 2) .. (92— 1= 19, )(O — a) =01 e

_ P0G (W2 — (U2 —2) ... (92 — 1 —ny,)T(I2 —n)
L(¥2 — D1)p(s0)n="1

(6= gt e

()T (D) %560 _ \P2—1-v,
—r(%iﬂl)e (©—a) .

The proof of the second relationship follows a similar approach.

Lemma 5.4. Let A € R. We have

() ()
D7 HR OV E, 5, (A(© — )) = M)t e FFOTUE,, 4, (A(© —a)").

1,

Proof. Let h(©) = 6_%(9_@.5191’192 (A(© — a)?1), we have

cprene) = oo (O B e - ™)
+o0 k
A & (50)
_ O AN e ea) g kD
oD (;)F(ﬁkﬂ)e (6-a) )
+00 k
A C o, 2 (6—a) ko
zmﬂ) (¥ -0

_ Z - 19]6 . 1 ( )19F('l9k' + 1)67%(67(1) (@ - a)ﬁkfﬁ

(19k+1—19)
3 Yewsa©- N N g g)?k-D)
Y(x)Te Z k-1 +1)(® 2
= ()’ $CF - a>z T eyt
—1 )+ 1)

- /\z/)(%)ﬁe_m(e_“)Eg71(/\(@ —a)?).

Theorem 5.5. Let » €]0,1] and nyg = [Re(9)] + 1, then

— Dk *x 5
aJﬁ,% (aCDﬂ,% ) Z kk' ) _ a)ke—%(@—a)'

b(50)
w0 ©
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Proof. From the Theorem 3.18 where ¥ = ny, we get
aJﬂ,% (gDﬁ’%l‘) (@) _ aJt?,x (aJTlrg—’L?,%D’I'ng,%x) (@) _ (aJng,%Dng,xx) (@)

B Y J—ng,x + _ g\o—J
_a(@) e 0030 (I ) @) (O oy
j=1 Y(3e) T (ng — j + 1)

mom (DR (a Y
(©-a).

=z(0) — TOOH (O — a)Fe” v0n

k=0

Theorem 5.6. Let s €]0,1] and ¥ € C with Re(¥) > 0 ny = [Re(9)] + 1. If Xo(p) = L{x(©)}(p), then

£, {(SD%%2) (©)} (5) = (90) + (P Xa(p) — (59 3 (6()

+9 (o)’ (DM ) (a).
Proof. From the Theorems 4.1 and 4.2, we get
Lo {(§D"*2) (©)} (p) = Lo { (™ "*D"*z) (©)} (p)
= (6() + ¥ ()p)" " Lo { (D7) (©)} (p)
= (6(30) + 9 ()p)" "

x [(ab(%) G (p)™ Xa(p) — ¥

ny—1

> (6(0) + (o)™ (DF7x) (a)

k=0

= (9(5) + 9 (5)p)" Xa(p) — ()

x> (8(0) + 0 (ap)’ ' 7F (DP7a) (a).
k=0
]

Utilizing Theorems 4.3 and 5.6, we establish the following relationship between the Caputo and Riemann-Liouville
(v, ¢)-fractional derivatives.

Proposition 5.7. Let »€]0,1], ¥ € C where Re(¥) > 0 and ny = [Re(P)] + 1, then

no=l U NIk(Q _ g kP v (0—a)
(£0"0) €)= (:D""5) (0) — 1 i “?(k +)1 - (D) (), (5.5)

and

e @)k—ﬁe—%(b—@)

EABIOMCASIORDY T(k+1-9)

k=0

(DF7z) (b). (5.6)

Remark 5.8. We have
e ({D?*¢c)(©)#0, Vxe€l0,1].

AL —9 AN
o Let ny = [Re(9)] + 1 then £, {($D?*1) (0)} (p) = L2r SE L v €]0, 1],

_ () . . _ o) (g
o D*¢ t9° = ( implies that ¢ D¢~ w0t (0~ —
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Theorem 5.9. Consider the linear Caputo (¢, ¢)-fractional differential equation:

CDY*x(0) = A\x(0) +y(©), 0<V,»x<1, (5.7)
z(at) = z,. ’
Then the solution of (5.7) is:
2(0) = e ¥ OV Ey | (h(3) A0 — a)?) z,
(5.8)

(C]
Fu) ™" [ IO ) B (069 7IA® - 9)) y(s)ds:

Proof. Applying the operator £, to equation (5.7) and employing Theorem 5.6 with ny = 1, we obtain:

(6(3) + ()" La{2(0)}(p) — ¥ (5)(0(3) + b (5)p)" 0 = AMa{2(0)}(0) + La{y(©)}(p)-
Which is equivalent to

[(¢(5) + ¥ (5)p)” = A] Lo{z(0)}(p) = () (¥ (3)p + ¢(5))" ' wa + La{y(©)}(p).
Thus,

La{2(0)}(p) = [(6(5) + ¥ (3)p)” — A]

Equation (5.9) can be written as:

-1

bGP+ 6())" w0 + [(0() = D) A Laly(©)}p).  (5.9)

9 -1 ¥—1
Lafa(@o) = | (4 55 ) - W)—%] (r+55) "
~1 (5.10)
)
#0060 | (p+ 20 ) =060 Lotu®) ),
using
La{e O 2(0)}p) = La{2(0)}(p +0),
as follows:
Lo {(©—a)" By (¥(3)7"ANO —a)”)} <p 1 %) =L, {e*%@*a) 5.1)
(©—a)" " Eyo (v()""A© —a)’)} (p)
And
—9 9 P(x) — 2 (9—a) —9 9
Lo{Es1 (v()""ANO —a)’)} (p + (%)) =L, {e e By (¥(5)7"A(© — a) )} (p). (5.12)
Using Egs. (4.10) and (4.10) as follows:
Lo{(©—a)" "By (¥(3)7"NO —a)”) } <p + m> = {(p + Z((Z)))ﬁ - w(%)%} o (5.13)
And,
-1 0 -1
Lol Boa (W0 3@ =)} (p+ 55 ) = (v+ 53 l(p +53) - WWA] S 6w
Hence, by using Equations (5.12) and (5.14), we have:
N T AN N6 — )} (s 2
(p +w(%)> <p+ 1/}(%)) () = Lo {Eg1 (v(>)7"MO —a)”)} <p+ W{)) 615
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Further, by using Egs. (5.11) and (5.13), we get

-1

9
<p + W)) - W)‘”A] = Lo {(© = a)" " Epy (¢()"A© ~ 0)”)} (p + W))

¥(x) () (5.16)
= £, {eFF O (0 0)" LBy (600 NO — 0)”) } ().
We may get the following result by combining Eqgs. (5.15) and (5.16) in Eq. (5.10), we get
Lafa(©)](p) = Lo {e OB, 4 (460 IAO — 0)?) } ()2 -
+ 000 La {eTTH OV (@ — )7 By (8() UAO — 0)”) } (0)Laly(©)](1).
From Eq.(5.17), we get
Lafa(©)](p) = Lo {e OB, 4 (1) AO — 0)?) } ()7
+ (37" La {e*%(@*“)(@ —a)’ ' By (¥(30)7NO — a)”) y(@)} (p). (519
We use the Laplace inverse of Eq.(5.18), we get
2(0) = ¢ SO VB, | () MO — a)")
+ ()7 {em T OO — )7 1By g (560 NO — 0)?) +4(6) }
Therefore,
#(0) = e FEOIE, | (4(5) A — )" g
+ ()" / ¢ HFO(0 — )T Ey 4 (1) INO — 5)”) y(s)ds (5.19)
O

6. CONCLUSIONS

We’ve introduced (v, ¢)-fractional derivatives of Riemann-Liouville and Caputo types that rely on parameters 9,
», and functions ¢, ¢ derived from proportional derivatives. When s = 1, these yield Riemann-Liouville and Caputo
fractional derivatives. We’ve explored the interplay between the integrals and derivatives proposed. The (¢, ¢)-
integrals exhibit semigroup properties and, in conjunction with their respective derivatives, encompass exponential

functions within their kernels. Notably, the function z(©) = 67%@ stands as a non-constant function, having a
proportional derivative that renders its left Caputo fractional derivative as zero. Utilizing the Laplace transform of
(¢, ¢)-fractional derivatives and integrals, we’ve formulated linear (v, ¢)-fractional differential equations. Moreover,
these fractional operators are general to classical fractional operators, cotangent fractional operators, and generalized
proportional operators.
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