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Abstract

In bang-bang optimal control problems, the control function is inherently piecewise constant. This feature creates

substantial difficulties for the standard Legendre-Gauss-Radau pseudospectral method, which relies on polynomial
approximation for the control function. This study introduces a simplified approach that seamlessly integrates

sigmoid-based control parameterization with the traditional Legendre-Gauss-Radau pseudospectral method. This

integration enables precise approximation of discontinuous control profiles while maintaining the polynomial ap-
proximation for state variables. The proposed method significantly minimizes the number of decision variables in

the optimization problem while precisely determining both the number and locations of switching points. This

leads to notable enhancements in computational efficiency and solution accuracy. Numerical experiments con-
ducted on two benchmark problems, a bridge crane system and a robotic arm control problem, demonstrate the

exceptional precision and efficiency of the proposed method. Despite its simplicity, the method delivers results
that are on par with those produced by more advanced and intricate techniques.
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1. Introduction

Bang-bang optimal control problems, where the control switches between two extreme values, are prevalent in
many engineering and scientific applications [4, 11, 36, 49]. These problems are especially important in fields such as
aerospace [9, 12, 13, 26], where they are used to optimize fuel-efficient trajectories for spacecraft or aircraft, and in
robotics [2, 39, 40], where they model minimum-time maneuvers for robotic arms and autonomous vehicles. Similarly,
in economics and resource management, bang-bang controls are applied to determine optimal switching between
different operational modes or investment strategies [31, 35].

The ability to accurately solve bang-bang optimal control problems is crucial for reducing operational costs and
achieving accurate solutions. However, the discontinuous nature of the control variables poses significant challenges
for numerical methods, making the development of robust and efficient solution techniques essential for advancing
these applications. Various numerical methods have been developed to address these challenges, broadly categorized
into indirect methods, direct methods, and hybrid approaches.

Indirect methods involve deriving the necessary conditions for optimality using the Pontryagin maximum principle
[49], resulting in a boundary-value problem that is then solved numerically by collocation or (multiple) shooting
methods [5, 32, 33, 41, 42, 48]. Direct methods, including direct collocation and pseudospectral methods [7, 9, 15,
23, 34, 50], direct shooting [3, 10, 16, 17, 27], and direct control parameterization [37], transform the optimal control
problem into a nonlinear programming problem.

Direct and indirect methods for solving bang-bang optimal control problems often face significant challenges, in-
cluding sensitivity to initial guesses, insufficient accuracy, and slow convergence. These difficulties are more prominent
in indirect methods, primarily due to the discontinuous nature of the optimal control function. To overcome these
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challenges, various strategies have been developed. Some approaches focus on smoothing the control function to en-
hance numerical stability [8, 44, 52, 54], while others treat the switch points as decision variables to improve solution
accuracy [45, 46, 51]. Additionally, certain techniques aim to mitigate the sensitivity to initial guesses [22, 30, 43].
Techniques involving mesh refinements have also been employed to tackle these problems effectively [1, 29, 47].

Direct methods are the most commonly used due to their straightforwardness, effectiveness, and efficiency. Within
the family of direct methods, pseudospectral methods are recognized as some of the most accurate and frequently
applied approaches. Several types of pseudospectral methods are employed in solving optimal control problems,
including Legendre-Gauss-Lobatto, Gauss, and Legendre-Gauss-Radau (LGR) methods. Of these, the LGR pseu-
dospectral method is considered one of the most advanced and widely utilized due to its exceptional accuracy and
computational efficiency [19, 24, 53]. Moreover, recent advancements in LGR pseudospectral methods, including hp-
LGR and hybrid techniques, enhance their accuracy and efficiency for solving bang-bang optimal control problems by
effectively identifying switching points [14, 20, 21, 38, 47].

In this study, we utilize the LGR pseudospectral method as a foundational framework and introduce an innovative
enhancement through sigmoid-based control parameterization. The sigmoid function, widely recognized in machine
learning [28], maps input values onto a smooth curve between 0 and 1, facilitating gradual transitions and improved
numerical stability. These attributes make it particularly suitable for approximating bang-bang control functions. In
the proposed approach, state functions are approximated using the traditional LGR pseudospectral method. However,
the control function is modeled as a combination of sigmoid functions, offering a smooth and adaptable representation.
This enhancement allows the method to be classified as a smoothing technique. The key features of the proposed
method are as follows:

(i) Simplicity: The method does not rely on intricate hp scenarios or mesh refinement techniques. Instead, it
extends the traditional LGR pseudospectral framework with a novel control approximation strategy.

(ii) Reduced decision variables: The proposed method requires fewer decision variables compared to traditional
and hp LGR pseudospectral methods, enhancing computational efficiency.

(ii) Automatic detection: The method automatically identifies the number of switching times and the structure
of the optimal control function without requiring prior knowledge.

(iv) Accurate switching time estimation: While maintaining simplicity, the switching times are determined with
an accuracy that is comparable to, but not necessarily superior to, more complex methods.

The limitation of the proposed method is that, due to its simplicity, it cannot detect the switching points with the
same accuracy as state-of-the-art methods. However, it provides reasonable accuracy that is sufficient for practical
applications.

The structure of the paper is as follows: In section 2, the general formulation of bang-bang optimal control problems
is stated. Section 3 provides the necessary preliminaries for developing the proposed method. In section 4, the proposed
method is introduced. Finally, the proposed method is demonstrated on two benchmark bang-bang problems in section
5, and the results are reported and compared with other methods.

2. Problem Formulation

The general form of a bang-bang optimal control problem is expressed as finding the control function u(t) =
[u1(t), . . . , uq(t)] and the state function x(t) = [x1(t), . . . , xp(t)] that minimize the following functional:

J = θ(x(tf ), tf ) +

∫ tf

t0

[L1(x(t), t) + L2(x(t), t)u(t)] dt, (2.1a)

subject to the dynamics

ẋ(t) = f1(x(t), t) + f2(x(t), t)u(t), (2.1b)

with the initial and terminal conditions

x(t0) = x0, x(tf ) = xf , or free, (2.1c)
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and control box constraints

umin
i ≤ ui(t) ≤ umax

i , i = 1, . . . , q. (2.1d)

The final time tf may be fixed or free. It is important to note that the control function appears linearly in both
the Lagrangian and the system dynamics. Consequently, due to the presence of box constraints, the optimal control
is either bang-bang or singular [36, 49]. In this article, we consider cases where the problem is bang-bang and not
singular.

3. Preliminaries

An introductory discussion is presented, laying the groundwork for the development of the proposed method. These
preliminaries establish the essential concepts and tools required for constructing the approach.

3.1. Legendre-Gauss-Radau points and quadrature. Legendre-Gauss-Radau (LGR) points are a specialized set
of collocation points derived from the orthogonal polynomial theory [18, 25]. They are widely utilized in numerical
methods for solving optimal control problems. Mathematically, LGR points of order n are defined as the roots of the
Radau polynomial R(x) = Pn−1(x) + Pn(x), where Pn and Pn−1 are the Legendre polynomials of orders n and n− 1,
respectively [18].

The LGR points are distributed in the interval [−1, 1). To extend the definition of LGR points to any arbitrary
interval [a, b), a linear transformation is applied, mapping the LGR points from [−1, 1) to [a, b):

x̃i =
b− a

2
zi +

b+ a

2
,

where zi are the original LGR points in the interval [−1, 1).
LGR points also play a crucial role in numerical integration, particularly through LGR quadrature. This quadrature

method provides an efficient approximation of integrals of the form∫ 1

−1
f(t) dt ≈

n∑
j=0

wjf(zj),

where wj
n
j=0 are the associated quadrature weights [18]. These weights are defined as

w0 =
2

(n+ 1)2
, wj =

1− zj
(n+ 1)2 [Pn(zj)]

2 , j = 1, . . . , n. (3.1)

These weights ensure exactness for polynomials of degree 2n − 2 or less, making the LGR quadrature particularly
accurate for smooth integrands. This feature underscores its utility in solving computational problems requiring
precise numerical integration.

3.2. Function approximation and derivative approximation by interpolation. Let f : [0, 1] → R. For ap-
proximating f , we can use the interpolation polynomial of f based on some nodes in [0, 1]. Let t0, . . . , tn be distinct
nodes in [0, 1]. Then, in the interval [0, 1], we can approximate f as

f(t) '
n∑
j=0

aj`j(t), (3.2)

where aj = f(tj) and `j(t), j = 0, . . . , n, are the Lagrange polynomials corresponding to points t0, . . . , tn defined as

`j(t) =

n∏
k=0,k 6=j

t− tk
tj − tk

, j = 0, . . . , n.

It is worthwhile to note that the distribution of nodes t0, . . . , tn can affect the accuracy and stability of the above
approximation [18, 25]. In this way, LGL points (together with point 1) are a good choice for interpolation nodes.
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Figure 1. The sigmoid function with various values of β.

If f is differentiable and approximated as (3.2), then ḟ could be approximated as

ḟ(t) ≈
n∑
j=0

bj`j(t), bj =

n∑
k=0

djkaj , (3.3)

where

djk =

{
λk

λj(tk−tj) , j 6= k,

−∑n
r=0,r 6=j djr, j = k,

λj =

n∏
r=0,r 6=j

(tj − tr).

If the coefficients a0, . . . , an and b0, . . . , bn are organized into vectors a and b, respectively, the relationship between
a and b can be represented as

b = Da, (3.4)

where D is called the derivative matrix and defined as [D]jk = djk [6, 55].

3.3. The sigmoid function. The sigmoid function is a smooth, differentiable mathematical function commonly used
to approximate the step function [28]. Its general form is given by

σ(x) =
1

1 + e−βx
,

where β > 0 is a parameter that adjusts the transition between the two states of the step function. A larger value of β
results in a sharper transition, effectively mimicking the discontinuities of a step function. Conversely, smaller values
of β yield a smoother transition. To illustrate the sigmoid function, Figure 1 presents plots of the sigmoid function
for β = 1, 5, and 10.

By shifting the argument of the sigmoid function, such as replacing x with x − x0, it is possible to control the
position of the step. This shift allows the step-like transition to occur at x = x0 instead of at the origin. Adjusting x0
provides additional flexibility in modeling scenarios where the step occurs at a specific location.

4. The Present Method

To simplify the presentation of the solution method for the optimal control problem (OCP) (2.1), we first transform
the time domain from [t0, tf ] to [0, 1]. Additionally, the box bounds for ui, where i = 1, . . . , q, are changed to −1 and
+1. This transformation converts the OCP (2.1) into the following problem:

min J [v] =θ(y(1), tf ) + (tf − t0)

∫ 1

0

[
L̂1(y(t), t) + L̂2(y(t), t)v(t)

]
dt, (4.1a)

subject to: ẏ(t) = (tf − t0)f̂1(y(t), t) + (tf − t0)f̂2(y(t), t)v(t), t ∈ [0, 1], (4.1b)

y(0) = x0, y(1) = xf , or free, (4.1c)
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− 1 ≤ vi(t) ≤ +1, i = 1, . . . , q, t ∈ [0, 1], (4.1d)

where:

y(t) = x(t0 + t(tf − t0)), t ∈ [0, 1],

vi(t) =
1

umax
i − umin

i

[
ui(t0 + t(tf − t0))− (umax

i + umin
i )

]
, t ∈ [0, 1],

L̂k(a, t) = Lk(a, t0 + t(tf − t0)), k ∈ {1, 2}, t ∈ [0, 1],

f̂k(a, t) = fk(a, t0 + t(tf − t0)), k ∈ {1, 2}, t ∈ [0, 1].

Note that in the OCP (4.1), the domain of the problem is independent of tf , which simplifies the discretization,
especially when tf is free.

To discretize the OCP (4.1) using the pseudospectral method, we first need to approximate the state and control
functions. The state functions are approximated using the traditional LGR method. However, in this paper, we
introduce a new adaptive approximation for the control functions.

4.1. Approximation of control functions. We propose a sigmoid-based parameterization for vi(t) as

vi(t) = ±
mi∏
j=1

σ̂(β(t− sij)), i = 1, . . . , q, (4.2)

where β is a known parameter that adjusts the steepness of the transition and sij , j = 1, . . . ,mi, are decision variables
that are considered for the unknown switching times of vi. We note that the value of

∏mi

j=1 σ̂(β(t − sij)) at t = t0 is

(−1)mi . However, to ensure that the value of vi at t0 is equal to −1 or +1, we use the ± symbol to achieve this.
By selecting a large enought β, this formulation provides smooth transitions that effectively approximate the ideal

bang-bang profile with switching points sij , j = 1, . . . ,mi. It is worthwhile to note that in the above approximation,
the number of switching points, say mi, is considered known. Moreover, the value of control at t0 is not known.
However, as we know, the number of switching points and the value of control at the initial time are not known a
priori. This issue will be addressed in the proposed method. Accordingly, for now, in the approximation (4.2), we
treat mi as a fixed parameter.

The following points are some key considerations regarding the approximation (4.2), which are crucial for under-
standing the proposed method:

• We emphasize that approximation (4.2) serves a dual purpose: on one hand, it provides a smooth approxima-
tion, which is a valuable property for ensuring the stability and robustness of direct methods. On the other
hand, it effectively captures the behavior of bang-bang functions.

• We note that sij , j = 1, . . . ,mi, is considered as the switching points. These switching points may occur at
any position. But we should force these switching points to lie in [0, 1]. Accordingly, we consider the following
conditions on sij :

0 ≤ sij ≤ 1, i = 1, . . . , q, j = 1, . . . ,mi. (4.3)

• In the approximation (4.2), under the conditions (4.3), the number of switching points is not exactly equal to
mi. Instead, mi represents the maximum possible number of switching points. For instance, if si1 = si2, then
si1 and si2 are not truly switching points. Additionally, if the conditions (4.3) are not imposed, some sij may
lie outside the interval [0, 1]. In this case, the number of distinct switching points within [0, 1] can be fewer
than mi. This characteristic of the approximation (4.2) is not a drawback; rather, it is a beneficial feature
that can help identify the correct number of switching points.
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4.2. Approximation of state functions. For a given integer n > 1, let τ1, . . . , τn represent the LGR nodes associated
with the interval [0, 1]. Recall that τn < 1. We extend the LGR nodes by adding τn+1 = +1 to them and define
`j , j = 1, . . . , n, as the Legendre polynomials based on τ1, . . . , τn+1. The state function y(t) is then approximated
using the traditional LGR pseudospectral method as

y(t) '
n+1∑
j=1

aj`j(t), (4.4)

where aj , j = 1, . . . , n, are unknown p-vectors that represent the approximate values of y(t) at the LGR points
τ1, . . . , τn+1, i.e.

y(τj) ' aj , j = 1, . . . , n. (4.5)

Using the approximation (4.4) and derivative matrix, we can approximate ẏ(t) as:

ẏ(t) '
n+1∑
j=1

Daj`j(t), (4.6)

and consequently

ẏ(τj) = Daj , j = 1, . . . , n. (4.7)

4.3. Problem discretization. We are now at a position that can discretize the OCP (4.1) to a Non-Linear Pro-
gramming (NLP). To this end, we begin with discretization of the performance index. By using LGR quadrature, the
performance index (4.1a) is approximated as

J ' θ(y(1), tf ) + (tf − t0)

n∑
j=1

[
L̂1(y(τj), τj) + L̂2(y(τj), τj)v(τj)

]
.

Using (4.2) and (4.5), finally the performance index is converted to

J ' θ(an+1, tf ) + (tf − t0)

n∑
j=1

[
L̂1(aj , τj) + L̂2(aj), τj)wj

]
, (4.8)

where

wj = v(τj) =

±
∏m1

k=1 σ̂(β(τj − s1k))
...

±∏mq

k=1 σ̂(β(τj − sqk))

 ∈ Rq. (4.9)

Note that the values of the state and control functions at the point τn+1 = 1 are not used in approximating the integral
part of the performance index.

To discretize the dynamic equations, by evaluating (4.1b) at t = τj for j = 1, 2, . . . , n and using (4.5), (4.7), and
(4.9), we finally obtain

Daj = (tf − t0)f̂1(aj , τj) + (tf − t0)f̂2(aj , τj)wj , j = 1, . . . , n. (4.10)

It is important to note that the dynamic constraints (4.1b) are not collocated at the endpoint τn+1 = 1.
The initial and possibly terminal conditions (4.1c) are discretized as

a1 = x0, an+1 = xf or free. (4.11)

It should be noted that there is no need to explicitly discretize the box constraints (4.1d), as the control function
approximation (4.2) inherently satisfies constraint (4.1d). However, we should consider the constraints (4.3).
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Finally, the OCP (4.1) is discretized into the following NLP:
Find: aj , j = 1, . . . , n, and sik, i = 1, . . . , q, k = 1, . . . ,mi,

to minimize the objective function(4.8),

subject to the constraints (4.10), (4.11), and (4.3).

(4.12)

4.4. Selecting the number of switching times. In the proposed method, the number of switching times in each
control vi, denoted by mi, is assumed to be known. However, in practice, the number of switching times in each control
is not known a priori. Determining the optimal number of switching times is, in fact, a key challenge in bang-bang
optimal control problems.

To address this, it is necessary to devise an effective strategy for selecting the optimal number of switching times.
The following two observations about the proposed method play a crucial role in developing such a strategy:

• If the number of switches in the presented method, say mi, is set to be less than the optimal number, the
corresponding NLP (4.12) may either become infeasible or yield a suboptimal solution.

• On the other hand, if the number of switches is assumed to be greater than the optimal number, some switching
points may overlap in the solution, or they may appear with negligible differences due to rounding errors or
solver precision.

Based on these observations, to determine the optimal number of switches, one can start with a large assumed number
of switching points, solve the problem, and then analyze the solution to identify the correct number of switching
points. This approach is further illustrated in Example 5.1.

5. Numerical Experiments

The proposed method in this paper has been implemented in Python, utilizing the Pyomo optimization library
for formulating and for solving the optimization problem. The IPOPT solver was employed, which is well-suited for
large-scale nonlinear optimization tasks. The experiments were conducted in a Google Colab environment with a
standard Python configuration.

To evaluate the method and demonstrate its capabilities, two case studies are presented. These examples are used
to assess the performance of the proposed approach and provide insights into its applicability and effectiveness in
different settings.

Example 5.1 (The optimal control of a bridge crane system). As the first example, the optimal control of a bridge
crane system is considered. This problem models the motion of a crane carrying a load, where the goal is to transfer
the load from an initial position to a specified final position in minimal time. The formulation of this problem is as
follows

min J [u] =tf ,

subject to:

ẋ1(t) = x2(t), x1(0) = 0, x1(tf ) = 15,

ẋ2(t) = u(t), x2(0) = 0, x2(tf ) = 0,

ẋ3(t) = x4(t), x3(0) = 0, x3(tf ) = 0,

ẋ4(t) = −0.98x3(t) + 0.1u(t), x4(0) = 0, x4(tf ) = 0, −1 ≤ u(t) ≤ +1.

This problem is particularly challenging because of its nonlinear nature and the presence of three switching points.
This problem is chosen because it was thoroughly analyzed in [51], where the switching points were precisely identified.
Consequently, it serves as a suitable benchmark for assessing the accuracy of our proposed method in determining the
switching points.
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Figure 2. The control function obtained for the bridge crane problem using the proposed method
with m = 8, β = 400, and n = 150.

Initially, to identify the structure and the number of switches in the solution, the proposed method is applied to
the problem with m = 8 and the following control characterization:

u(t) = +

8∏
j=1

σ̂(400(t− sj)).

The following switching times are determined using the proposed method:

s1 = 0.71707968, s2 = 0.71707972, s3 = 3.05483114, s4 = 3.4120997,

s5 = 3.41210003, s6 = 4.4114645, s7 = 5.68716613, s8 = 8.67867246,

tf = 8.67867237.

As we see, the switching times s1 and s2 are almost the same. Also, s4 and s5 are almost the same. In addition, s8
and tf are also almost the same. This result shows that s1, s2, s4, s5, and s8 are not really switching points and
are extra. Indeed, the control does not switch at these points. For better vision, in Figure 2, the obtained control is
plotted.

Based on these results, we detect that the true number of switching times is 3. Moreover, the value of the control
at the initial point t = 0 is +1. Consequently, the true approximation for the control function is given by

u(t) = −
3∏
j=1

σ̂ (400(t− sj)) .

In the next step, we apply the presented method to the bridge crane problem, incorporating the above control
parameterization. Additionally, to demonstrate the impact of β, we perform the method for values of β = 20, 50, and
400. After applying the proposed method with the different values of β to this problem, the obtained control function
is depicted in Figure 3.

Also, in Table 1, the obtained values for the switches (with β = 400) and the results of [51] are reported. As we can
see, the switch values have a good match with the values obtained in [51]. In Figure 4, the obtained state functions
by the method with n = 150 and β = 400 are plotted.

Example 5.2 (Robot arm problem). Robot arm problems are a fundamental topic in robotics, focusing on optimizing
the motion of robotic arms to perform tasks where precise and efficient motion planning is essential. These problems
are typically formulated as optimal control or motion planning problems. Here, we examine a specific optimal control
problem that involves minimizing the time tf required for a robotic arm to move between two points in three-
dimensional space as follows

min J [u1, u2, u3] = tf ,
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Figure 3. The optimal control functions obtained using the proposed method with m = 3, n = 150,
and various values of β = 20, 50, and 400.

Table 1. Switching times and final time obtained using the proposed method with β = 400 for
various values of n, compared with the results from [51] for the bridge crane problem.

n s1 s2 s3 tf CPU Time

50 3.0144397 4.3362332 5.6480158 8.5821765 0.086
100 2.9896016 4.3021411 5.6037928 8.5806433 0.198
150 2.9856529 4.2930080 5.5953170 8.5805476 0.431
200 2.9853438 4.2908345 5.5949048 8.5805439 2.314
250 2.9854319 4.2903836 5.5949980 8.5805436 3.982
300 2.9854751 4.2902938 5.5950415 8.5805436 6.228
350 2.9854862 4.2902761 5.5950526 8.5805436 7.867
400 2.9854883 4.2902727 5.5950547 8.5805436 16.684
[51] 2.98534 4.2900513 5.5947621 8.5801026 –
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Figure 4. The state functions obtained using the proposed method with parameters β = 400 and n = 150.

subject to: ẋ1(t) = x2(t), x1(0) =
9

2
, x1(tf ) =

9

2
,

ẋ2(t) =
u1(t)

5
, x2(0) = 0, x2(tf ) = 0,

ẋ3(t) = x4(t), x3(0) = 0, x3(tf ) =
2π

3
,

ẋ4(t) =
3u2(t)

((5− x1(t))3 + x31(t)) sin2(x5(t))
, x4(0) = 0, x4(tf ) = 0,
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ẋ5(t) = x6(t), x5(0) =
π

4
, x5(tf ) =

π

4
,

ẋ6(t) =
3u3(t)

((5− x1(t))3 + x31(t))
, x6(0) = 0, x6(tf ) = 0,

− 1 ≤ ui(t) ≤ 1, i = 1, 2, 3.

The robot arm problem exhibits a bang-bang control structure for all three control components, with two switching
points for u1, one for u2, and two for u3. The number of switching points, as well as the structure of the three controls,
can be determined using the proposed method; however, the process is omitted here for brevity.

By applying the proposed method to the robot arm problem with β = 400 and n = 150, the obtained states and
control functions are plotted in Figure 5. To evaluate the method’s ability to capture switching times, the switching
points obtained using the proposed method with β = 400 and n = 100, 150, and 200 are compared with the results
from [47] in Table 2. As observed, our results match those of [47] with at least four correct significant digits.
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Figure 5. The state and control functions obtained using the proposed method with β = 400 and n = 100.

Table 2. The switching points and final time obtained using the proposed method with β = 400 for
various values of n, compared with the results from [47] for the robot arm problem.

n s11 s12 s21 s31 s32 tf
100 2.282646 6.851677 4.582725 2.793798 6.341290 9.142325
150 2.286757 6.857798 4.573584 2.797828 6.347573 9.142074
200 2.285411 6.856439 4.571556 2.795871 6.345702 9.142050
[47] 2.285228 6.855684 4.570456 2.796043 6.344869 9.140912

We note that our method is significantly simpler than the approach presented in [47] and does not require complex
algorithms for mesh refinement. Despite its simplicity, our method achieves comparable results.
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6. Conclusion

This study presents an improved Legendre-Gauss-Radau pseudospectral method that incorporates sigmoid-based
parameterization for control functions in bang-bang optimal control problems. The proposed approach resolves the
limitations of traditional methods in managing piecewise constant control profiles. The method reduces decision
variables, leverages sigmoid functions for flexibility, and improves the detection of both the number and location of
switching points. As part of future research, the proposed parameterization of the control function could be applied
to other well-established methods, such as direct and indirect shooting methods. Additionally, this framework could
be extended to more complex control systems, including singular optimal control problems.
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