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Abstract
This paper discusses an effective approach for solving non-local functional differential equations with delayed or

advanced arguments. The reproducing kernel method is utilized to avoid the need for an orthogonalization process.

The main objective of this technique is to successfully apply this method to solve singular multi-point boundary
value problems with non-local conditions, resulting in an accurate approximate solution and a valid error analysis.

This method greatly improves the accuracy of the solutions obtained.
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1. Introduction

This paper is concerned with an efficient semi-analytical method to solve non-local functional differential equations
with delayed or advanced arguments as follows,{

L(u(τ)) = u′(τ) + ρ(τ)u(κ(τ)) + %(τ)u(τ) = N(u(τ)) + F(τ), τ ∈ [0, 1],

u(1) = λ1u(c)− λ2

∫ 1

0
su(s)ds, or u(0) =

∑m1

i=1 νiu(ζi),
(1.1)

where ρ(.), %(.) ∈ C[0, 1] and κ(.) ∈ C1[0, 1] and L(u(.)) is bounded linear operator and N(u(.)) is continuous nonlinear
operator and 0 < ζi < 1, νi are constants, c ∈ [0, 1], λ1, λ2 ∈ R and m1 is a constant integer. We suppose, F(.) is
given such that Eq. (1.1) satisfies the existence and uniqueness of the solutions.

The existence and uniqueness of solutions for functional differential equations have been extensively studied in
[10, 11, 13, 17]. Several authors have proposed different computational methods for solving non-local functional
differential equations [2, 5, 14, 16]. X. Li , B. Wu used the general form of the Reproducing Kernel Method (RKM) to
solve Eq. (1.1), [22]. This method is very useful and many researchers use it for solving hard problems, i.e., the system
of nonlinear singularly perturbed boundary value problems [1], forced Duffing equations [15], nonlinear boundary
value problems [19]. In our research, we utilize a different implementation of the general form of RKM, as presented
by Wang et al. in [25, 26]. This approach referred to as RKM without the use of the orthogonalization process, is
fully explained in their work. There are main factors to increase the accuracy of the approximate solution in the
Reproducing Kernel Method : A suitable choice is an inner product in the reproducing kernel space (for short RKS)
because the inner product directly affects the kernel function and accordingly the accuracy of the approximation
of the solution. The subsequent factor is the selection of the points in the interval [0,1] to construct the basis of
the RKS. Indeed, the equidistance points can not provide an appropriate basis, and subsequently, the approximate
solutions cannot be determined with high accuracy. Before expressing our structure in this study, it is worth noting
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that approximate solutions must be obtained in a large space. We are trying to calculate the approximate solutions
in the large space. This work is structured as follows. Section 2 discusses the main definitions and requirements of
the nonlocal Functional Differential Equations procedure and the theory of the RKS. In section 3, the approach is
introduced without the Gram-Schmidt orthogonalization process the convergence is analyzed, and the error for the
presented scheme. Also, several numerical experiments are presented to illustrate the effectiveness of the proposed
technique in sections 4, and 5, respectively. Section 6 terminates this article with a brief conclusion.

2. The Construction of the RKS

The reproducing kernel space and the function corresponding to it is constructed as follows. We consider the Hilbert
space WK [0, 1], [12]

WK [0, 1] =
{
u(.)|u(K−1)(.) is absolutely continuous, and u(K)(.) ∈ L2[0, 1]

}
,

which are equipped with the following inner products and norms for K = 2, 3,

< u1(.), u2(.) >W3[0,1]=
2∑
i=0

u1
(i)(1)u2

(i)(1) +

∫ 1

0

u1
′′′

(τ)u2
′′′

(τ)dτ,

< u1(.), u2(.) >W2[0,1]= u1(0)u2(0) + u1
′
(1)u2

′
(1) +

∫ 1

0

u1
′′
(τ)u2

′′
(τ)dτ,

‖u(.)‖WK [0,1] =
√
< u, u >WK [0,1], u1(.), u2(.) ∈WK [0, 1].

Theorem 2.1. The space WK [0, 1] is reproducing kernel Hilbert space and its reproducing kernel is given as follows,

Qy(τ) =

{
Q(τ, y), τ ≤ y,
Q(y, τ), τ > y,

where for u(0) = 0 and K = 2 and K = 3 the reproducing kernel Q(τ, y) is τ3

6 + 1
2τ
(
y2 − 4y

)
and

τ5/120 + (2617τy)/2208− (71τ2y)/138− (13τ5y)/2208− (71τy2)/138 + (187τ2y2)/414 + (τ5y2)/828

− (τ2y3)/12 + (τy4)/24− (13τy5)/2208 + (τ2y5)/828− (τ5y5)/33120,

respectively. Without u(0) = 0 for K = 2 and K = 3 the reproducing kernel Q(τ, y) is τ3

6 + 1
2τ
(
y2 − 4y

)
− 1 and

1
12τ

2
(
−y3 + 6y2 − 9y + 4

)
+ 1

24τ
(
y4 − 18y2 + 56y − 39

)
+ 1

120

(
−y5 + 40y2 − 195y + 276

)
, respectively, see [12].

Using non-local conditions u(0) =
∑m1

i=1 νiu(ζi) and u(1) = λ1u(c) − λ2

∫ 1

0
su(s)ds in the form γ1u = u(0) −∑m1

i=1 νiu(ζi) and γ2u = u(1)− λ1u(c) + λ2

∫ 1

0
su(s)ds with the same inner products, we define the reproducing kernel

space ŴK [0, 1] as follow.

Definition 2.2. The reproducing kernel space ŴK [0, 1] is constructed by satisfying the conditions γ1u = 0, or γ2u = 0
and is defined as:

ŴK [0, 1] =
{
u(.)|u(.) ∈WK [0, 1], γ1u = 0, or γ2u = 0

}
.

It is clear that ŴK [0, 1] is a closed subspace of WK [0, 1]. Hence, ŴK [0, 1] is also a reproducing kernel space.

Taking account into the operator form of the Eq. (1.1), it is easy to demonstrate that L : Ŵ2[0, 1] −→ W1[0, 1] is
bounded linear operator.

Theorem 2.3. [3, 27, 28] If Qy(.) is reproducing kernel of the space W2[0, 1], and B : W2[0, 1] −→ W1[0, 1] is a

bounded linear operator, and q1(τ) = By(Qy(τ)) and q2(τ) = By
(
Qy(τ)− q1(τ)q1(y)

‖q1‖2
W2

)
, then

‖q1‖2W2 = By
(
Bs
(
Qy(s)

))
,
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‖q2‖2W2 = By
(
Bs
(
Qy(s)− q1(s)q1(y)

‖q1‖2W2

))
,

where, symbols Bτ or By indicate that this operator applies on τ or y, respectively.

Theorem 2.4. If Qy(.) is reproducing kernel of the space W2[0, 1], then

Q̂y(τ) = Qy(τ)− q1(τ)q1(y)

‖q1‖2W2

,

is reproducing kernel of the space H[0, 1] =
{
u(.)|u(.) ∈W2[0, 1], B(u) = 0

}
.

Proof. First, we show that Q̂y(τ) ∈ H[0, 1], since q1(τ) = By(Qy(τ)), q1(y) = Bs(Qy(s)) and applying Theorem 2.3,
we get ‖q1‖2W2 = By

(
Bs
(
Qy(s)

))
, thus

By(Q̂y(τ)) =By(Qy(τ))− q1(τ)By(q1(y))

‖q1‖2W2

=By(Qy(τ))− By(Qy(τ))By(Bs(Qy(s)))

By
(
Bs
(
Qy(s)

)) = 0.

In continuation we show ∀u(y) ∈ H[0, 1], u(τ) =
〈
u(y), Q̂y(τ)

〉
H

,〈
u(y), Q̂y(τ)

〉
H

=
〈
u(y), Qy(τ)− q1(τ)q1(y)

‖q1‖2W2

〉
H

=
〈
u(y), Qy(τ)

〉
H
−
〈
u(y),

q1(τ)q1(y)

‖q1‖2W2

〉
H

= u(τ)− q1(τ)

‖q1‖2W2

Bs
〈
u(y), Qy(s)

〉
H
,

since Q̂y(τ) ∈ H[0, 1] we follow B(u) = 0, hence Bs(u(s)) = 0, as a result
〈
u(y), Q̂y(τ)

〉
H

= u(τ). For more details
refer to [3, 20, 27, 28]. �

3. Main idea

Suppose ry(τ) is the reproducing kernel function for space W1[0, 1] and {τi}∞i=1 are dense set on domain of Eq. (1.1).

We define bases of the reproducing kernel space Ŵ2[0, 1] as follow,

ξi(τ) = Q̂y(τ)|y=τi .

Theorem 3.1. [12] If {τi}∞i=1 are dense set on [0, 1] then ξi(τ) = Q̂y(τ)|y=τi is a system of complete functions in

Ŵ2[0, 1].

Theorem 3.2. [12] If {τi}∞i=1 are dense set on [0, 1], then analytical solution of the Eq. (1.1) is

um(τ) =
∞∑
i=1

ci,mξi(τ), m = 1, 2, . . . , (3.1)

where ci,m represents the unknown coefficients, they can be determined.

We called approximation solution of Eq. (1.1) with un,m(τ). We solve following system of algebraic equations for
m = 1, 2, . . . to determine the unknown coefficients ci,m,

n∑
i=1

ci,mLξi(τ)|τ=τj = N(un,m−1(τ))|τ=τj + F(τj), m = 1, 2, . . . j = 1, 2, . . . , n. (3.2)

We have Eq. (3.2) as matrix form,

AC = B,
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where

A = Lξi(τ)|τ=τj =


Lξ1(τ1) Lξ2(τ1) Lξ3(τ1) . . . Lξn−1(τ1) Lξn(τ1)
Lξ1(τ2) Lξ2(τ2) Lξ3(τ2) . . . Lξn−1(τ2) Lξn(τ2)

...
...

...
. . .

...
...

Lξ1(τn−1) Lξ2(τn−1) Lξ3(τn−1) . . . Lξn−1(τn−1) Lξn(tn−1)
Lξ1(τn) Lξ2(τn) Lξ3(τn) . . . Lξn−1(τn) Lξn(τn)

 , (3.3)

and

B = N(un,m−1(τ))|τ=τj + F(τj) =


N(un,m−1(τ1)) + F(τ1)
N(un,m−1(τ2)) + F(τ2)

...
N(un,m−1(τn−1)) + F(τn−1)

N(un,m−1(τn)) + F(τn)

 , (3.4)

and

C =


c1,m
c2,m

...
cn−1,m

cn,m

 , (3.5)

where C = A−1B, and from our assumptions, the A−1 exists and unique, see [4, 6, 8].

Remark 3.3. We can define another bases for the reproducing kernel space Ŵ2[0, 1] as follow,

ηi(τ) = LyQ̂y(τ)|y=τi =
∂Q̂y(τ)

∂y
|y=τi + ρ(y)Q̂y(κ(τ))|y=τi + %(y)Q̂y(τ)|y=τi .

4. Convergence Analysis and Error Bound

Theorem 4.1. [26] Approximate solution (3.2) and its derivative are uniformly convergent to exact solution of
Eq. (1.1).

Corollary 4.2. [12] The approximate solution u
(l)
n,m(τ) uniformly convergent to u(l)(τ) in space ŴK [0, 1] for K = 2, 3

and l = 0, 1.

Theorem 4.3. [9, 18, 21] In the space ŴK [0, 1], if u(K+1)(τ) ∈ C[0, 1] and ‖u(K+1)
n,m (τ)‖∞ is bounded, then errors

bounds are given as follows,

‖un,m − u‖∞ = maxτ∈[0,1]|un,m(τ)− u(τ)| ≤ θ1h
K+1,

‖u′n,m − u′‖∞ = maxτ∈[0,1]|u′n,m(τ)− u′(τ)| ≤ θ2h
K ,

where un,m(τ) is approximate solution and u(τ) is exact solution of the problem (1.1) and h = max|τi+1 − τi|,
i = 1, 2, . . . , n and θ1, θ2 are positive constants.

Remark 4.4. The stability of the solution for Eq. (1.1) is defined in the kernel space ŴK [0, 1]. Let u(τ) be a solution
of Eq. (1.1). It is called that the approximate method on the solution u(τ) from un,m(τ) with the right hand side

Fn(τ) is stable in ŴK [0, 1], if limn→∞ ‖F − Fn‖ŴK = 0, then limn→∞ ‖u− un,m‖ŴK = 0.

To investigate the stability of the proposed method for the solution of problem (1.1). We add a perturbation ε in
the right-hand side. On the other hand, we demonstrate variation of the obtained solution from the proposed method
is bounded by a constant multiple of ε. In other words, the obtained solution depends continuously on the right-hand
side.
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Theorem 4.5. The present method is stable in the reproducing kernel space ŴK [0, 1].

Proof. Suppose the Eq. (1.1) has solution u(τ) and let L(un,m(τ)) = Fn(τ) and F(τ) = Fn(τ) + εn(τ), where εn(.) is

a perturbation and εn(.)
ŴK

−−−→ 0 (n→∞). From the Equations (3.1) and (3.2)

u(τ) =
∞∑
i=1

ciξi(τ), un,m(τ) =
n∑
i=1

ciξi(τ),

for F(τ),Fn(τ) ∈W1[0, 1], we have,

L(u(τ)− un,m(τ)) = F(τ)− Fn(τ) = εn(τ).

According to the properties of the operator L in Eq. (1.1), we follow the existence and uniqueness of the solution,
namely, the operator L−1 exists. therefore,

u(τ)− un,m(τ) = L−1εn(τ),

since L−1 is continuous, it is bounded and εn(.)
ŴK

−−−→ 0 (n→∞), we have

lim
n→∞

‖u− un,m‖ŴK ≤ ‖L−1‖‖εn‖ŴK = 0.

�

5. Numerical Examples

In this section we used software package Mathematica 12.1 and absolute errors are used to show numerical examples

results. The convergence order for the approximate solutions are calculated using the Cr = Log
En/E2n

2 where En =
Maxτ∈[0,1]

∣∣u(τ) − un,m(τ)
∣∣ and E′n = Maxτ∈[0,1]

∣∣u′(τ) − u′n,m(τ)
∣∣. Comparing the accuracy of the present method

with the method [22] (En, E
′
n) are given in the Tables 1, 4, 7, and 8 for Examples 5.1, 5.2, and 5.3 in the spaces

W3[0, 1] and Ŵ3[0, 1] . The convergence orders for Examples 5.1, 5.2, and 5.3 with different numbers of collocation
points (n = 5, 10, 20, 40) are calculated and presented in Tables 2, 3, 5, 6, 9, and 10. These results serve as evidence
for the accuracy of error analysis Theorem 4.3. The graph of the absolute errors for the approximate solutions and
their derivatives with n = 11 and n = 51 for Examples 5.1, 5.2, and 5.3 in the spaces Ŵ2[0, 1] and Ŵ3[0, 1] are given
in the Figures 1, 2, 3, 4, 5, and 6.

Example 5.1. [22–24] Consider the nonlocal functional differential equation with advanced argument as follows:{
u′(τ) + u(τ)− sin(

√
τ)u( τ

2

2 ) = F(τ), τ ∈ (0, 1),

u(0)− u( 1
8 )− u( 1

2 ) + a0u( 1
8 ) = 0,

where a0 = 5.15793is considered such that exact solution is u(τ) = sinh(τ).

Example 5.2. [22–24] Consider the functional differential equation with integral condition of the form:{
u′(τ) + 500eτu(

√
τ) + 2000u(τ) = F(τ), τ ∈ (0, 1),

u(1) = 5
∫ 1

0
su(s)ds,

the exact solution by u(τ) = τ3.

Example 5.3. [22–24] Consider the following functional differential equation with proportional delay (pantograph
equation) :{

u′(τ) + 1
10u( τ5 ) + u(τ) = F(τ), τ ∈ (0, 1),

u(0) = 1,

the exact solution of this equation is u(τ) = e−τ .
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Table 1. Comparison of the errors in space Ŵ3[0, 1] and W3[0, 1] for Example 5.1.

PM [22]

Ŵ3 W3

E11 E51 E′11 E′51 E11 E51

2.50× 10−6 1.25× 10−7 1.40× 10−4 2.00× 10−7 1.60× 10−4 1.00× 10−6

Table 2. Convergence order for Example 5.1 in space Ŵ2[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

1.20× 10−3 3.00× 10−4 2.00 7.00× 10−5 2.09954 1.50× 10−5 2.22239

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

3.00× 10−2 8.00× 10−3 1.90689 2.00× 10−3 2.00 4.00× 10−4 2.32193

Table 3. Convergence order for Example 5.1 in space Ŵ3[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

2.50× 10−4 5.00× 10−6 5.64386 3.00× 10−7 4.05889 1.25× 10−7 1.26303

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

2.50× 10−3 2.00× 10−4 3.64386 1.20× 10−5 4.05889 8.00× 10−7 3.90689

Table 4. Comparison of the errors in space Ŵ3[0, 1] and W3[0, 1] for Example 5.2.

PM [22]

Ŵ3 W3

E11 E51 E′11 E′51 E11 E51

4.00× 10−5 8.00× 10−9 4.00× 10−3 8.00× 10−6 1.50× 10−4 1.75× 10−6

The numerical results obtained using the RKS method are presented in the tables and all figures, including the
convergence order, maximum absolute error for an approximate solution, and maximum absolute error for the derivative
of an approximate solution, more details are given in the introduction of this section. Further, the numerical results
obtained by applying the proposed method are in agreement with the theoretical results and order of convergence.
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Table 5. Convergence order for Example 5.2 in space Ŵ2[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

1.50× 10−2 1.20× 10−3 3.64386 8.00× 10−5 3.90689 5.00× 10−6 4.00

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

6.00× 10−1 1.50× 10−1 2.00 4.00× 10−2 1.90689 1.00× 10−2 2.00

Table 6. Convergence order for Example 5.2 in space Ŵ3[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

3.50× 10−3 6.00× 10−5 5.86625 1.40× 10−6 5.42146 2.50× 10−8 5.80735

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

8.00× 10−2 6.00× 10−3 3.73697 3.00× 10−4 4.32193 1.50× 10−5 4.32193

Table 7. Comparison of the errors in space Ŵ2[0, 1] for Example 5.3.

τ [22] PM [22] PM

W3 Ŵ2 W3 Ŵ2

(n = 11) (n = 11) (n = 51) (n = 51)
2−1 1.59× 10−6 6.09× 10−7 3.33× 10−11 1.13× 10−9

2−2 1.87× 10−6 2.60× 10−7 4.13× 10−11 2.03× 10−10

2−3 2.71× 10−6 1.60× 10−7 4.62× 10−11 1.38× 10−10

2−4 2.41× 10−6 2.45× 10−8 4.89× 10−11 1.46× 10−10

2−5 1.00× 10−6 2.07× 10−11 5.05× 10−11 1.07× 10−11

2−6 3.51× 10−7 6.71× 10−9 4.74× 10−11 9.69× 10−12

Table 8. Comparison of the errors in space Ŵ3[0, 1] for Example 5.3.

τ [22] PM [22] PM

W3 Ŵ3 W3 Ŵ3

(n = 11) (n = 11) (n = 51) (n = 51)
2−1 1.59× 10−6 5.26× 10−7 3.33× 10−11 2.50× 10−10

2−2 1.87× 10−6 1.07× 10−8 4.13× 10−11 3.58× 10−11

2−3 2.71× 10−6 1.57× 10−7 4.62× 10−11 7.70× 10−12

2−4 2.41× 10−6 3.64× 10−7 4.89× 10−11 4.17× 10−11

2−5 1.00× 10−6 6.39× 10−7 5.05× 10−11 1.69× 10−11

2−6 3.51× 10−7 3.99× 10−7 4.74× 10−11 1.915× 10−11
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Table 9. Convergence order for Example 5.3 in space Ŵ2[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

2.50× 10−5 1.20× 10−6 4.38082 6.0× 10−8 4.32193 4.00× 10−9 3.90689

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

3.00× 10−4 2.50× 10−5 3.58496 2.50× 10−6 3.32193 3.00× 10−7 3.05889

Table 10. Convergence order for Example 5.3 in space Ŵ3[0, 1].

E5 E10 Log2
E5

E10
E20 Log2

E10

E20
E40 Log2

E20

E40

6.00× 10−5 1.20× 10−6 5.64386 3.50× 10−8 5.09954 8.00× 10−10 5.45121

E′5 E′10 Log2
E′

5

E′
10

E′20 Log2
E′

10

E′
20

E′40 Log2
E′

20

E′
40

8.00× 10−4 5.00× 10−5 4.00 2.50× 10−6 4.32193 7.00× 10−8 5.15843

(a)
∣∣u(.) − u11(.)

∣∣. (b)
∣∣u(.) − u51(.)

∣∣.

(c)
∣∣u′(.) − u′11(.)

∣∣. (d)
∣∣u′(.) − u′51(.)

∣∣.
Figure 1. Graphs of the absolute error in space Ŵ2[0, 1] for Example 5.1.
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(a)
∣∣u(.) − u11(.)

∣∣. (b)
∣∣u(.) − u51(.)

∣∣.

(c)
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Figure 2. Graphs of the absolute error in space Ŵ3[0, 1] for Example 5.1.
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Figure 3. Graphs of the absolute error in space Ŵ2[0, 1] for Example 5.2.
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Figure 4. Graphs of the absolute error in space Ŵ3[0, 1] for Example 5.2.
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Figure 5. Graphs of the absolute error in space Ŵ2[0, 1] for Example 5.3.
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Figure 6. Graphs of the absolute error in space Ŵ3[0, 1] for Example 5.3.

6. Conclusion

In this paper, we have successfully solved non-local functional differential equations with delayed or advanced
arguments using various implementations of the RKM. This approach eliminates the need for the Gram-Schmidt
orthogonalization process. Our method allows for the straightforward incorporation of non-local conditions into the
reproducing kernel of the spaces W 2[0, 1] and W 3[0, 1], resulting in the creation of new spaces Ŵ2[0, 1] and Ŵ3[0, 1]
for solving the problem. After comparing the tables and figures related to absolute errors, it can be concluded that
the present method has a faster convergence rate for both the approximate solution and its derivative compared to the
method used in [22]. When comparing the convergence order tables 2,3,5,6,9 and 10, it is clear that the convergence

rates for Examples 5.1, 5.2, and 5.3 are O(h3), O(h2) in the space Ŵ2[0, 1], and O(h4) and O(h3) in the space Ŵ3[0, 1],
respectively.
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