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Abstract

Quadratic fractional optimization problems frequently arise in wireless communications. This paper introduces
an enhanced semidefinite optimization relaxation approach for tackling signal design challenges associated with

quadratic double–ratio minimax optimization in complex space. It results in two algorithms that offer a global
optimum solution for the problem.
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1. Introduction

Quadratic ratio minimax optimization problem is a significant challenge in wireless communications, as it seeks to
maximize minimum network performance for fairness [11, 21, 24]. The signal–to–noise–and–interference ratio (SNIR)
is a key performance metric in wireless communications. This paper examines an effective signal design strategy for
the following NP–hard [17, 23] optimization problem:

(P) min
x∈Cn

max

{
p1(x)

p2(x)
,
p3(x)

p4(x)

}
,

where pi(x) = xHAix − 2Re(aHi x) + αi, Ai ∈ Hn are Hermitian matrices, ai ∈ Cn are complex vectors and αi ∈ R
are constants for all i = 1, 2, 3, 4. “H” and “Re” denote the conjugate transpose operation and real part of z ∈ C,
respectively. Moreover, we assume that p2(x), p4(x) > 0 for all x in the feasible region.

In 1984, Datta and Bhatia [10] Investigated the complex minimax programming problem. Hereafter, many authors
have explored linear and nonlinear fractional optimization problems in complex variables, employing diverse objective
functions and developing various methods for addressing the design problem. For example, Lai and Liu [19] established
optimality conditions for complex minimax programming problems based on generalized convexity. Lai and Haung [18]
utilized Wolfe–type and Mond–Weir–type dual problems to find the optimal solution for the nondifferentiable minimax
fractional programming problem in complex space. Gharanjik et al. [13] employed an iterative optimization framework
with penalized reformulation to address the Max-Min beamforming design problem. Huang [16] formulated the second–
order Mond–Weir type and Wolfe type dual models with respect to a complex minimax fractional programming
problem. Recently, Hu et al. [9] studied a secure wireless communication system enhanced by an intelligent reflecting
surface through complex quadratic fractional optimization.

It is worth noting that the structured total least squares (TSL) problem frequently occurs in wireless communications
and signal processing in both complex and real spaces [5, 20, 25, 26]. In fact, the linear system ARe(x) ≈ b approximate
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by solving

min
x∈Cn

∥ARe(x)− b∥2

∥x∥2 + 1
,

where A ∈ Cm×n is a complex matrix, b ∈ Cm and ∥ · ∥ denotes the Euclidean norm. Two approaches exist for
stabilizing the ill–conditioned TLS: adding a quadratic constraint to limit the solution size [2, 3] or incorporating
a quadratic penalty into the objective (Tikhonov regularization) [1, 6]. Accordingly, this paper aims to introduce a
stabilization method using (P) as follows:

min
x∈Cn

max

{
∥ARe(x)− b∥2

∥x∥2 + 1
, ρ∥Im(Lx)∥2

}
, (1.1)

where ρ ∈ R is a positive regularization parameter, L ∈ Ck×n (k ≤ n) is a regularization matrix of full row rank and
“Im” denotes image part of z ∈ Cn.

1.1. Applications. We examine an underlay cognitive radio network consisting of one primary and one secondary
network, as illustrated in Figure 1 [22].

Figure 1. System model [22].

The primary network consists of a primary transmitter (PT) and a primary receiver (PR). The secondary network
includes two secondary users (SU1 and SU2) and N relay nodes (SR1, . . . ,SRN). All terminals are equipped with a
single antenna and operate in half–duplex mode, with channels subject to frequency selective Rayleigh fading and
additive white Gaussian noise (AWGN). The primary network supports unidirectional transmission from PT to PR,
while the secondary network enables bidirectional communication between SU1 and SU2 via the relay nodes, with no
direct link between them. According to the network geometry in Figure 1, signals from SU1 and SU2 do not reach PR,
but signals from SR1 to SRN can be detected by PR. In contrast, SU1 and SU2 cannot detect PT’s signal, although
they are influenced by it. The information exchange between SU1 and SU2 requires two–time slots: in the first, SU1

and SU2 transmit to the relay nodes while PT communicates with PR. Using the finite impulse response (FIR) filter
model for the frequency selective channel, the received signal at the relay nodes in the first time slot can be expressed
as follows:

r(n) =

2∑
i=1

L−1∑
l=0

fi,lxsi(n− l) +

L−1∑
l=0

g1,lxp,1(n− l) + v(n), (1.2)

where r(n) is an N × 1 vector whose ith element denotes the received signals by SUi and PT, respectively, v(n) is the

additive white Gaussian noise process, fi,l = [fi,l,1, . . . , fi,l,N ]
T
, where fi,l,j and (·)T denote the lth channel coefficient

between SUi and the transpose, respectively. Moreover, relay j, g1,l = [g1,l,1, . . . , g1,l,N ]
T
, where g1,l,j denotes the lth
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channel coefficient from PT to relay j, and L denotes the number of frequency selective channel coefficients and is
determined based on the multipath spread of the channel. The first term in the right–hand side of (1.2) is the received
signal from SU1 and SU2, and the second term is the interfering signal received from PT. To combat the frequency
selectivity of the channel, each relay employs an FIR filter to process the received signal. The resulting network–coded
signal can be described as

t(n) =

Lw−1∑
l=0

UH
l r(n− 1),

where t(n) is an N × 1 vector whose ith element denotes the transmitted signal by relay by relay i,

Ul = diag (ul,1, ul,2, . . . , ul,N )

where ul,i denotes the lth tap of the FIR filter. In the second time slot, the relay nodes broadcast their network–coded
signals, and at the same time, PT transmits its signal to PR. Under channel reciprocity assumption, the received
signals at SUi and PR in the second time slot can be formulated as

yi(n) =
L−1∑
l=0

fT
i,lt(n− 1) + nsi(n), i = 1, 2, (1.3)

yp(n) =

L−1∑
l=0

hp,lxp2(n− 1) +

L−1∑
l=0

gT2,lt(n− l) + np(n), (1.4)

where xp2
(n) is the transmitted signal by PT in the second time slot, g2,l = [g2,l,1, . . . , g2,l,N ]

T
, where g2,l,j denotes

the lth channel coefficient from relay j to PR, hp,l is the lth channel coefficient from PT to PR, and nsi(n) and np(n)
are the AWGN processes at SUi and PR, respectively. The first term on the right–hand side of (1.4) represents the
signal received from PT, while the second term denotes the interference from the relay nodes. Define

ṽ(n) =
[
vT (n), . . . , vT (n− Lw + 1)

]T
, x̃si(n) = [xsi(n), . . . , xsi(n− L− Lw + 2)]

T
,

x̃p1
(n) = [xp1

(n), . . . , xp1
(n− L− Lw + 2)]

T
, F̃i =

[
F
T

i,0, . . . ,Fi,Lw−1

]T
,

G̃i =
[
G
T

i,0, . . . ,Gi,Lw−1

]T
, Gi = [gi,0, . . . gi,L−1] ,

F̃i,l =
[
0N×l,Fi, 0N×(Lw−l−1)

]
, Fi =

[
fT
i,0, . . . , fi,L−1

]
,

Gi,l =
[
0N×l,Gi, 0N×(Lw−l−1)

]
, ui = diag{Ul},

Gi,1 = diag{gi,1}, Fi,1 = diag{fi,1},

u =
[
uT
0 , . . . , u

T
Lw−1

]T
, i = 1, 2, l = 0, . . . , L− 1.

Based on the above definitions, yi(n) can be expressed as

yi(n) =

L−1∑
l=0

{
uH (ILw

⊗ Fi,l)
[
F̃1x̃s1(n− 1) + F̃2x̃s2(n− l) + G̃1x̃p1

(n− 1)
]
+ ṽ(n− 1)

}
+ nsi(n), i = 1, 2, (1.5)

where ⊗ denotes the Kronecker product. Similarly, yp(n) can be rewritten as

yp(n) = uHΨg2

[
F̂1x̂s1(n) + F̂2x̂s2(n) + Ĝ1x̂p1

(n) + Î v̂(n)
]
+

L−1∑
l=0

hp,lxp2
(n− 1) + np(n), (1.6)

where

F̂ i, l =
[
0NLw×l, F̃i, 0NLw×(L−l−1)

]
, F̂i =

[
F̂T
i,0, . . . , F̂

T
i,L−1

]T
,
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Ĝi,l =
[
0NLw×l, G̃

T
i,L−1

]
, Ĝi =

[
ĜT

i,0, . . . , Ĝ
T
i,L−1

]T
,

Ψgi = [ILw
⊗Gi,0, . . . , ILw

⊗Gi,L−1] , Ψfi = [ILw
⊗ Fi,0, . . . , ILw

⊗ Fi,L−1] ,

v̂ =
[
vT (n), . . . , vT (n− L− Lw + 2)

]T
, x̂si(n) = [xsi(n), . . . , xsi(n− 2L− Lw + 3)]

T
,

x̂p1
= [xp1

(n), . . . , xp1
(n− 2L− Lw + 3)]

T
, Î =

[
0NLw×Nl, INLw×N(L−l−1)

]
,

Î =
[
ÎT0 , . . . , Î

T
L−1

]T
.

SU1 and SU2 are assumed to have perfect channel state information (CSI), enabling complete cancellation of self–
interference from the relayed signal. After this cancellation, SUi obtains

ỹi(n) = uHΨfi

[
F̂j x̂sj (n) + Ĝ1x̂p1

(n) + Î v̂(n)
]
+ nsi(n), i, j = 1, 2, i ̸= j, (1.7)

which can be used for the detection of the desired symbols. The tap weights of the FIR filters provide NLw degrees
of freedom for beamforming at relay nodes, optimizing secondary network performance while keeping interference at
the PR within an allowable level.

Now, the transmitted power of the mth relay is given by

p̃m = uH
(
p1D1,m + p2D2,m + ppD3,m + σ2

vDN,m

)
u,

where σ2
v is the noise variance at the relay nodes, p1, p2, and pp are the transmitted power by SU1, SU2, and PT,

respectively, and D1,m, D2,m, D3,m, and DN,m are given by

DN,m = (ILw
⊗ Em) (ILw

⊗ Em)
H
,

D3,m = (ILw
⊗ Em)G1G

H

1 (ILw ⊗ Em)
H
,

Di,m = (ILw ⊗ Em)FiF
H

i (ILw ⊗ Em)
H
, i = 1, 2

where Em = diag{em}, and em is the mth row of the identity matrix. So, the total power transmitted by the relay
nodes can be calculated as follows:

pr =

N∑
m=1

p̃m = uH
(
p1D1 + p2D2 + pPD3 + σ2

vINLW

)
u,

where Di =
∑N

m=1 Di,m, for all i = 1, 2, 3. The signals from SU1 and SU2, as well as those from each user at different

time indexes, are assumed to be independent. Using substituting Ψfi F̂j =
[
hs,Hs

]
and x̂sj (n) =

[
xsj (n), x̃sj (n)

]T
into (1.7), ỹi(n) can be rewritten as

ỹi(n) = uHhsxsj (n) + uHHsx̃sj (n) + uHΨfiĜ1x̂p1(n) + uHΨfi Î v̂(n) + nsi(n), (1.8)

where xsj (n) and x̃sj (n) are the desired signal and ISI components at SUi, respectively. From (1.8), the powers of the
desired signal, the ISI component, PT interference, and AWGN process at SUi can be calculated as

Psi = E{| uHhsxsj (n) |2} = pju
HAsu,

PISI = E{| uHHsx̃sj (n) |2} = pju
HBISIu,

PPIi = E{| uHΨfiĜ1x̂p1
(n) |2} = ppu

HBPi
u,

PNi = E{| uHΨfi Î v̂(n) + nsi(n) |2} = σ2
vu

HΨfi Î Î
HΨH

fiu+ σ2
si ,

where As = hsh
H
s , BISI =HsH

H

s and Bpi = ΨfiG1Ψ
H
fi
G
H

1 . Thus, the signal–to–interference–plus–noise ratio (SIPNR)
at SUi is given by

SIPNRi =
Psi

PISIi + PPIi + PNi

, i = 1, 2.
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By using (1.6), the interference power at PR can be determined as

T = E{| uHΨg2 F̂1x̂s1(n) |2}+ E{| uHΨg2 F̂2x̂s2(n) |2}+ E{| uHΨg2Ĝ1x̂s1(n) |2}

+ E{| uHΨg2 F̂1Î v̂(n) |2} = uHCu,

where

C = p1Ψg2 F̂1F̂
H
1 ΨH

g2 + p2Ψg2 F̂2F̂
H
2 ΨH

g2 + ppΨg2Ĝ1Ĝ
H
1 ΨH

g2 + σ2
vΨg2 Î Î

HΨH
g2 .

Now, the problem formulation is given by

min
u

max {SIPNR1, SIPNR2} , s.t T ≤ Ith, (1.9)

where Ith is the maximum allowable interference power level at PR.

1.2. Contributions and structure. This paper examines the nonconvex problem (P) and finds its global optimum
solution. A parametric approach reformulates the problem into a quadratic optimization format, allowing for the
global optimum to be determined using semidefinite optimization (SDO) relaxation and the Dinkelbach–type schemes.
SDO relaxation provides a powerful tool for approximating the solution space, significantly enhancing the efficiency
of the search for the global optimum.

The paper is organized as follows: Section 2 introduces the classical Dinkelbach method to reformulate the problem
(P) into a quadratic optimization problem, then presents an SDO relaxation scheme and a Dinkelbach–type scheme
to attain a global optimum. At last, section 3 reports numerical experiments on various randomized test problems.

2. Main results

First, we consider the following lemma to transmit the problem (P) into a nonfractional one.

Lemma 2.1. ([27]) The following two statements are equivalent:

1) min
x

f1(x)
f2(x)

= λ∗.

2)F(λ∗) := min
x

{f1(x)− λf2(x)} = 0.

Notice that the function F(λ) is continuous, concave, and strictly decreasing with a unique root. Now, from Lemma
2.1, we can reformulate problem (P) as follows:

F(λ) := min
x∈Cn

max {p1(x)− λp2(x), p3(x)− λp4(x)} . (2.1)

Meanwhile, problem (2.1) can be rewritten as

min
x∈Cn,θ

θ, s.t.

{
θ ≥ p1(x)− λp2(x),

θ ≥ p3(x)− λp4(x).
(2.2)

In the following, we propose two optimization algorithms to solve (2.2) globally.

2.1. SDO relaxation approach. Note that problem (2.2) is equivalent to

min
X,θ

θ, s.t. θ ≥ Ã1 •X, i = 1, 2, (2.3)

X = xxH ,

where E •G = Re
(
tr
(
EHG

))
and tr (·) denotes the trace of a matrix and

Ã1 =

[
A1 −a1
−aH1 α1

]
, Ã2 =

[
A2 −a2
−aH2 α2

]
,

A1 = A1 − λA2, a1 = a1 − λa2, α1 = α1 − λα2,

A2 = A3 − λA4, a2 = a3 − λa4, α2 = α3 − λα4.
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Define

S =
{
(x,X) | θ ≥ Ãi •X, i = 1, 2, X = xxH

}
,

S̃ =
{
(x,X) | θ ≥ Ãi •X, i = 1, 2, X ⪰ xxH

}
. (2.4)

Moreover, we have

tr(X) = Re
(
xHx

)
≤ σ,

σ :=

(
max
x∈S̃

∥x∥∞
)
Re

(
xHe

)
,

where e be column vector with all elements being 1, then problem (2.3) is convex. Now, since S ⊆ S̃, (2.3) can be
rewritten as

min
X,θ

θ, s.t. θ ≥ Ãi •X, i = 1, 2, (2.5)

σ ≥ tr (X) , (2.6)

X = xxH .

The nonconvex constraint X = xxH in (2.5) can be relaxed to the convex constraint X ⪰ xxH , leading to the following
convex SDO relaxation of (2.5):

min
X,θ

θ, s.t. θ ≥ Ãi •X, i = 1, 2, (2.7)

σ ≥ tr (X) , (2.8)

X ⪰ xxH .

It should be noted that incorporating constraint (2.8) improves the SDO relaxation of (2.3). Hence, we have the
following theorem.

Theorem 2.2. The optimal value of problem (2.7) is a lower bound for the optimal value of problem (2.3).

Proof. Since the feasible set of (2.5) is a subset of that of (2.7), the optimal value of (2.7) serves as a lower bound for
the optimal value of (2.3). □

We now need the following assumption and results to obtain the global optimum solution of (2.3).

Assumption 2.3. There exist η1, η2 ≥ 0 such that η1Q1 + η2Q2 ≻ 0.

Lemma 2.4. ([4]) Let G ∈ Rn×n be symmetric, g ∈ Rn and ϱ ∈ R, then

xTGx− 2gTx+ ϱ ≥ 0 ⇔
[

G −g
−gT ϱ

]
⪰ 0.

Theorem 2.5. For any well defined problem (P) satisfying feasibility condition

λ∗ = max
γ1,γ2≥0,λ

{
λ :

[
0n×n 0n×1

01×n θ

]
− γ1

[
A1 −a1
−aH1 α1 − θ

]
− γ2

[
A2 −a2
−aH2 α2 − θ

]
⪰ 0(n+1)×(n+1)

}
. (2.9)

Proof. It is enough that we consider the Lagrangian dual problem of (2.2) as follows:

λ∗ = max
λ

{λ : ∃γ1, γ2 ≥ 0, θ − γ1 (p1(x)− λp2(x)− θ)− γ2 (p3(x)− λp4(x)− θ) ≥ 0} .

Then, according to the Lemma 2.4 and Assumption 2.3, the proof is complete. □
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Therefore, as summarized in the following, the SDO relaxation scheme in two–step is employed to solve (P).

Algorithm 1 SDO relaxation scheme

Input: Parameters A1, A2, A3, A4 ∈ Hn, a1, a2, a3, a4 ∈ Cn and α1, α2, α3, α4 ∈ R
Output: λ∗

1: Solve problem (2.9) to find λ∗.
2: Solve problem (2.7) with λ = λ∗

Problem (2.7) can be solved by using the Dinkelbanch–type algorithm [7, 8]. Hence, the algorithm can be described
in the following way.

Algorithm 2 Dinkelbanch–type scheme

Input: Parameters A1, A2, A3, A4 ∈ Hn, a1, a2, a3, a4 ∈ Cn, α1, α2, α3, α4 ∈ R, kmax and x0 ∈ Cn

Output: λ∗

1: Initialize: k := 1, an accuracy parameter ϵ := 10−8 and λ1 := max
{

p1(x0)
p2(x0)

, p3(x0)
p4(x0)

}
2: while k ≤ kmax do
3: Solve SDO problem (2.7) with λ = λk and obtain the solution xk

4: if | F(λk) |≤ ϵ then
5: break
6: else

7: λk+1 := max
{

p1(xk)
p2(xk)

, p3(xk)
p4(xk)

}
8: end if
9: k := k + 1

10: end while
11: Return λ∗

It must be pointed out that the Dinkelbach–type algorithm converges superlinearly to the unique zero of F(λ) [12].

3. Numerical experiments

This section discusses preliminary numerical experiments that compare the proposed schemes for solving (P) on
random test problems with dimensions from 50 to 1000 and varying densities. The average of numerical experiments
for five times running is reported in Tables 1 and 2, which include λ∗ and computational time in seconds (time(s)).
Moreover, in these tables, “—” means the algorithm fails to solve the problem. The implementation is done in
MATLAB R2023a on a Core i7 with 8 GB of RAM, utilizing CVX [14] to solve SDO problems.

Example 3.1. Let n = 2 and

A =

[
3 1− 2i

1 + 2i 7

]
, b =

[
−10
4 + i

]
, L =

[
0.1
0.8

]
, ρ = 1.2.
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Figure 2. A two-dimensional instance and its contour.

Table 1. Numerical results for Example (3.2) with ρ = 0.9.

Dinkelbach−type scheme SDO relaxation scheme
n density λ∗ time(s) λ∗ time(s)
50 1 0.2375 3.4490 0.2375 1.2155
100 1 0.7316 11.9146 0.7316 3.2837
200 1 0.4213 67.9731 0.4213 14.6468
300 1 — — 0.4425 91.2869
400 1 — — 0.6207 164.5892
50 0.1 0.0952 3.3023 0.0952 1.1732
100 0.1 0.0878 11.5993 0.0878 3.0242
200 0.1 0.3665 56.7443 0.3665 13.3697
300 0.1 — — 0.1734 43.6905
400 0.1 — — 0.5216 154.2084
500 0.1 — — 0.4923 172.1121
50 0.01 0.0527 3.0943 0.0527 1.0197
100 0.01 0.0671 10.3875 0.0671 2.8308
200 0.01 0.9342 46.4289 0.9342 12.1792
300 0.01 0.9116 132.4162 0.9116 35.2379
400 0.01 — — 0.5312 148.9371
500 0.01 — — 0.7038 169.4605
600 0.01 — — 0.1557 201.2367
50 0.001 0.0068 2.8325 0.0068 0.7863
100 0.001 0.2657 9.6852 0.2657 2.2429
200 0.001 0.0650 40.1715 0.0650 14.6725
300 0.001 0.2435 104.5415 0.2435 26.5485
400 0.001 — — 0.3020 125.8908
500 0.001 — — 0.1894 153.2877
1000 0.001 — — 0.9311 263.0845
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Table 2. Numerical results for Example (3.2) with ρ = 1.2.

Dinkelbach−type scheme SDO relaxation scheme
n density λ∗ time(s) λ∗ time(s)
50 1 0.7825 24.0469 0.4825 1.8687
100 1 0.8967 74.3189 0.8967 3.3701
200 1 0.7272 132.1270 0.7272 16.7399
300 1 — — 0.3849 94.0207
400 1 — — 0.2651 172.3496
50 0.1 0.6240 23.8999 0.6240 1.3266
100 0.1 0.0428 72.5110 0.0428 3.1848
200 0.1 0.1643 125.8348 0.1643 12.2455
300 0.1 0.7273 219.2478 0.7273 91.3708
400 0.1 — — 0.2418 167.2565
500 0.1 — — 0.2835 194.2019
50 0.01 0.3045 20.1145 0.3045 1.1534
100 0.01 0.5960 70.9392 0.5960 2.6375
200 0.01 0.9004 116.2118 0.9004 11.6407
300 0.01 0.1583 194.3775 0.1583 87.9016
400 0.01 — — 0.4371 165.3372
500 0.01 — — 0.2532 191.0046
600 0.01 — — 0.0063 203.5967
50 0.001 0.2297 18.4506 0.2297 0.8564
100 0.001 0.3241 69.7169 0.3241 2.1937
200 0.001 0.5604 121.6146 0.5604 8.2216
300 0.001 0.0752 193.2874 0.0752 83.1193
400 0.001 — — 0.2468 159.3746
500 0.001 — — 0.1730 186.3492
1000 0.001 — — 0.2078 198.0107

Figure 2 shows the objective function (1.1) for this setting. The Dinkelbach–type scheme found the optimal value
λ∗ = 1.8727 in 16.9640 CPU seconds, while the SDO relaxation scheme achieved the same result in only 0.6221 seconds.

Example 3.2. Consider the following problem

min
x∈Cn

max

{
∥ARe(x)− b∥2

∥x∥2 + 1
, ρ∥Im(Lx)∥2

}
,

where A ∈ Hn, b ∈ Cn, L is the first–derivative operator implemented in the function get l(n, 1) [15] and ρ = 0.9 and
1.2. Matrices and vectors are generated using the following MATLAB code:

1. n =input(‘ enter the size of the matrix= ’);
2. density= input(‘ enter the density of the matrix= ’);
3. Q =sprandn(n,n,density)+i*sprandn(n,n,density);
4. A = (Q+Q′)/2;
5. b =complex(randn(n,1),randn(n,1));

The numerical experiments indicate that while the Dinkelbach–type scheme can solve some problems, it requires
more time for instances compared to the SDO relaxation scheme, which successfully resolves all instances in a reasonable
timeframe. Overall, the comparison shows that the SDO relaxation scheme uses less CPU time.
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4. Conclusions

This paper has presented a version of the SDO relaxation approach for attaining a global optimum in the complex
quadratic double–ratio minimax optimization problem. Furthermore, it has introduced an exact two–step SDO relax-
ation and Dinkelbach-type optimization schemes. Experimental results have shown that the SDO relaxation scheme
surpasses the other.
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