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Abstract
In recent years, various fractional-order basis functions have been constructed and used for solving different classes

of fractional problems. In this work, a new generalization of fractional-order Bernoulli wavelets is introduced.

These new basis functions are employed to give a numerical solution for Hammerstein type fractional integro-
differential equations with weakly singular kernel. To this aim, the Riemann-Liouville integral operator is applied

to the basis functions and the result is computed exactly by the analytic form of Bernoulli polynomials. Through

this process, key properties of the Riemann-Liouville integral and Caputo derivative are utilized to define two
remainders associated with the main problem. After that, using an appropriate set of collocation points, the

problem is converted to a system of algebraic equations. Due to the efficiency and high accuracy of this new

technique, we extend the method for solving fractional Fredholm-Volterra integro-differential equations. Then, an
upper bound of the error is discussed for the approximation of a function based on the fractional-order Bernoulli

wavelets. Finally, the method is utilized for solving some illustrative examples to check its performance.

Keywords. Weakly singular fractional integro-differential equations, Generalized fractional-order Bernoulli wavelets, Caputo derivative, Riemann-

Liouville integral.
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1. Introduction

Almost over the past three decades, it has been shown that mathematical modelling of various phenomena in science
and engineering leads to the use of fractional operators [1, 6, 13]. Among these models, fractional integro-differential
equations with weakly singular kernel play a crucial rule in the modelling of several physical problems. These equations
can be seen in the areas of heat conduction [20], elasticity and fracture mechanics [26], radiative equilibrium [7], etc.
Due to the importance of this class of equations, many researchers have studied existence and uniqueness of solutions
to such equations (see, e.g., [9, 10]). Since introducing exact solutions to fractional integro-differential equations is
impossible in most of the cases, different numerical methods have been developed and used for solving them. In this
research, we focus on the following fractional nonlinear Hammerstein type integro-differential equation with weakly
singular kernel

C
0 D

α
t y(t) = f(t, y(t)) +

∫ t

0

(t− s)−βg(s, y(s))ds, t ∈ [0, T ], (1.1)

subject to the initial conditions:

y(i)(0) = yi, i = 0, 1, . . . , dαe − 1, (1.2)

where f and g are linear or nonlinear functions of their arguments, α > 0, 0 ≤ β < 1, C0 D
α
t is the Caputo fractional

derivative operator of order α, yi (i = 0, . . . , dαe − 1) are known real constants, d·e is the ceiling function and y is
the unknown function to be determined. Here, we mention some of the existing numerical methods for solving this
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problem. In [24], piecewise polynomial collocation methods have been employed and analyzed for solving problem
(1.1)-(1.2) with f(t, y(t)) = q(t) + p(t)y(t), where q and p are bounded and continuous functions, and g(s, y) = y. An
operational matrix technique utilizing the second kind Chebyshev polynomials has been introduced for solving the
same linear problem in [12]. A linear class of fractional Volterra-Fredholm integro-differential equations with weakly
singular kernels has been solved using the CAS wavelet method in [22]. Also, Legendre and second kind Chebyshev
wavelet techniques have been presented to solve the same problem in [23] and [21], respectively. In [11], the quadratic
hat functions and their operational matrices have been employed for solving problem (1.1)-(1.2) in the case that
f(t, y(t)) = q(t) + p(t)y(t) and g(s, y) = ym, with m as a positive integer number. The same problem has been solved
in [19] using properties of the first kind Chebyshev polynomials. Moreover, a Tayor wavelet-based method has been
used to solve a special class of problem (1.1)-(1.2) in [3].

Fractional-order (FO) basis functions have been recently used as an effective tool by many researchers for solving
some classes of fractional models. For example, Sabermahani et al. [18] have employed FO Fibonacci-hybrid functions
to give an approximate solution of fractional delay differential equations. In [25], a numerical scheme based on the FO
hybrid Chebyshev functions has been proposed for fractional pantograph differential equations. Postavaru and Toma
[15] have solved fractional optimal control problems using the FO hybrid Bernoulli functions. In [14], a generalization of
FO hybrid Bernoulli functions has been considered for solving fractional delay differential equations. Also, multi-order
fractional differential equations in a general form have been solved by FO hybrid Jacobi functions in [2].

The main aim of this research is to introduce a new collocation method based on a generalization of FO Bernoulli
wavelets (GFOBWs) defined on an arbitrary interval [0, T ), for solving problem (1.1)-(1.2). Unlike the work done
in [16], where the operational matrix of fractional integration of the FOBWs, defined on [0, 1), has been introduced
and used for solving fractional differential equations, we compute here the Riemann-Liouville fractional integral of our
basis functions without any error. This result along with an appropriate set of collocation points convert the problem
under study to a system of algebraic equations. We also extend the method for solving the following fractional
integro-differential equations

C
0 D

α
t y(t) = f (t, y(t)) +

∫ t

0

(t− s)−βg (s, y(s)) ds+

∫ T

0

κ (t, s, y(s)) ds, t ∈ [0, T ], (1.3)

with the same initial conditions given by (1.2) and κ as a given linear or nonlinear continuous function on its arguments
defined on ([0, T ]× [0, T ]× R). Main advantages of the present work are listed below:

(a) Unlike the operational matrix technique which includes error in the computation of the Riemann-Liouville
integral of basis functions, the Riemann-Liouville fractional integral of the GFOBWs basis functions is given
by the analytic form of Bernoulli polynomials, exactly.

(b) We can improve the accuracy of the numerical solutions by looking for the most suitable fractional order of
the basis functions.

(c) In the case of equations whose solutions are non-smooth functions, the accuracy of the numerical approximation
of the solution can improve by increasing the level of resolution.

The paper is organized as follows: In section 2, some basic definitions on fractional calculus are presented. The
GFOBWs and their main properties are introduced in section 3. Section 4 is devoted to introducing our new method
for solving problem (1.1)-(1.2) which includes the computation of Riemann-Liouville fractional integral operator of the
GFOBWs basis functions. An extension of the method for solving (1.3) with initial conditions (1.2) is also proposed in
this section. In section 5, an error discussion is given. Then, the numerical results are reported in section 6. Finally,
we conclude the paper in section 7.

2. Preliminaries on fractional calculus

In this section, we recall two important definitions of fractional calculus which have been widely used due to their
applications in recent researches. These definitions include Riemann-Liouville fractional integral and Caputo fractional
derivative.
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Definition 2.1. Let y be a real valued continuous function defined on [0,∞) and α ∈ R (n− 1 < α ≤ n, n ∈ N). The
Caputo fractional derivative of order α of y is given by [8]:

C
0 D

α
t y(t) =


1

Γ(n− α)

∫ t
0
(t− s)n−α−1y(n)(s)ds, n− 1 < α < n,

y(n)(t), α = n,

where Γ(t) is the gamma function as

Γ(t) =

∫ ∞
0

st−1e−sds.

Definition 2.2. The left Riemann-Liouville fractional integral 0I
α
t of a function y is defined by [8]:

0I
α
t y(t) =

1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds, t > 0,

where α is a real positive number.

The following properties of the two above-mentioned operators have important rule in our numerical scheme.

0I
α
t t
ν =

Γ(ν + 1)

Γ(ν + α+ 1)
tν+α, α > 0, ν > −1, t > 0, (2.1)

0I
α
t (C0 D

α
t y(t)) = y(t)−

dαe−1∑
i=0

y(i)(0)
ti

i!
. (2.2)

3. Properties of the GFOBWs

This section is devoted to introducing properties of the GFOBWs defined on an arbitrary interval [0, T ).

3.1. Definition and function approximation. Before going to the main discussion, we review Bernoulli polyno-
mials.

Definition 3.1. The classical Bernoulli polynomial of order m is defined on the interval [0, 1] as

bm(t) =

m∑
r=0

(
m

r

)
bm−rt

r, (3.1)

where br := br(0), r = 1, . . . ,m, are Bernoulli numbers [17].

Bernoulli polynomials constitute a complete basis for the space L2[0, 1]. These polynomials satisfy the following
property [17]∫ 1

0

br(t)bs(t)dt = (−1)s−1 (r!)(s!)

(r + s)!
br+s, r, s ≥ 1. (3.2)

Definition 3.2. The GFOBWs, ψγn,m(t) := ψ(k, n,m, γ, t) have five arguments, k is the level of resolution and can

be any positive integer, n = 1, . . . , 2k−1, m is the degree of Bernoulli polynomials, γ is a real positive number and t
denotes time. These functions are defined on the interval [0, T ) as

ψγn,m(t) =


2
k−1
2 Bm

(
2k−1

Tγ t
γ − n+ 1

)
,
(
n−1
2k−1

) 1
γ T ≤ t <

(
n

2k−1

) 1
γ T,

0, otherwise,

(3.3)

where Bm(t) = δmbm(t), with δm as the normality factor given by

δm =


√

γ
Tγ , m = 0,√

γ
Tγ√

(−1)m−1(m!)2b2m
(2m)!

, m > 0.
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A function y ∈ L2[0, T ) can be expanded based on the GFOBWs as:

y(t) ' yk,M (t) =

2k−1∑
n=1

M∑
m=0

yn,mψ
γ
n,m(t) = Y TΨγ(t), (3.4)

where Y and Ψγ(t) are the coefficient vector and basis functions vector, respectively, given by

Y =
[
y1,0, y1,1, . . . , y1,M , . . . , y2k−1,0, y2k−1,1, . . . , y2k−1,M

]T
,

Ψγ(t) =
[
ψγ1,0(t), . . . , ψγ1,M (t), . . . , ψγ

2k−1,0
(t), . . . , ψγ

2k−1,M
(t)
]T
. (3.5)

The coefficient vector Y can be computed by the following formula

Y T = Ŷ TQ−1,

where Q is given by

Q = 〈Ψγ ,Ψγ〉 =

∫ T

0

tγ−1Ψγ(t)ΨγT (t)dt, (3.6)

and

Ŷ =
[
ŷ1,0, ŷ1,1, . . . , ŷ1,M , . . . , ŷ2k−1,0, ŷ2k−1,1, . . . , ŷ2k−1,M

]T
,

with

ŷn,m = 〈y, ψγn,m〉 =

∫ T

0

tγ−1y(t)ψγn,m(t)dt.

It should be noted that according to the properties of the GFOBWs, the matrix Q is a symmetric positive definite
matrix with all principal diagonal entries equal to 1. For example, with k = 2, M = 4, γ = 1

2 and T = 2, we have

Q =



1 0 0 0 0 0 0 0 0 0

0 1 0 −
√

7
10 0 0 0 0 0 0

0 0 1 0 −2
√

5
21 0 0 0 0 0

0 −
√

7
10 0 1 0 0 0 0 0 0

0 0 −2
√

5
21 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 −
√

7
10 0

0 0 0 0 0 0 0 1 0 −2
√

5
21

0 0 0 0 0 0 −
√

7
10 0 1 0

0 0 0 0 0 0 0 −2
√

5
21 0 1



.

Remark 3.3. Using property (3.2) and the definition of the GFOBWs in (3.3), it can be easily shown that by
considering M ≤ 2 and with every positive integer number k and every positive real number γ, the matrix Q given
by (3.6) is equal to the identity matrix of dimension 2k−1(M + 1)× 2k−1(M + 1). For M ≥ 3, the condition number
of Q becomes larger and larger as M increases. This makes the problem of approximating a given function in terms
of the Bernoulli polynomials and accordingly in terms of the GFOBWs an ill-posed problem. A way to overcome this
problem is to choose the value of M less than 3 and increasing the value of k to get more accurate approximations.
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4. Numerical method

This section is concerned on presenting a new numerical technique based on the GFOBWs for solving problem
(1.1)-(1.2). To this aim, we rewrite Equation (1.1) as follows:

C
0 D

α
t y(t) = f(t, y(t)) +

Γ(1− β)

Γ(1− β)

∫ t

0

(t− s)(1−β)−1g(s, y(s))ds.

By utilizing the definition of Riemann-Liouville integral in the above equation, it can be written as

C
0 D

α
t y(t) = f (t, y(t)) + Γ(1− β)0I

1−β
t h(t), (4.1)

where we have considered

h(t) = g(t, y(t)). (4.2)

Suppose that

C
0 D

α
t y(t) ' Y TΨγ(t), (4.3)

h(t) ' HTΨγ(t). (4.4)

Then, using the initial conditions given by (1.2) and property (2.2), we obtain

y(t) = Y T (0I
α
t Ψγ(t)) + s(t), (4.5)

with

s(t) =

dαe−1∑
i=0

yi
ti

i!
.

Now, we need to compute the Riemann-Liouville fractional integral of the vector Ψγ(t) given by (3.5). We set

0I
α
t Ψγ(t) = Ψ

γ
(t, α), (4.6)

where

Ψ
γ
(t, α) =

[
0I
α
t ψ

γ
1,0(t), . . . ,0 I

α
t ψ

γ
1,M (t), . . . ,0 I

α
t ψ

γ
2k−1,0

(t), . . . ,0 I
α
t ψ

γ
2k−1,M

(t)
]T
.

To compute 0I
α
t ψ

γ
n,m(t) (n = 1, . . . , 2k−1, m = 0, . . . ,M), first, we present the function ψγn,m, defined in (3.3), in the

following form

ψγn,m(t) = 2
k−1
2 δm

(
u

( n−1

2k−1 )
1
γ T

(t)− u
( n

2k−1 )
1
γ T

(t)

)
bm

(
2k−1

T γ
tγ − n+ 1

)
,

where ua is given by

ua(t) =

{
1, t ≥ a,
0, t < a.

Taking (3.1) into account, we get

ψγn,m(t) = 2
k−1
2 δm

(
u

( n−1

2k−1 )
1
γ T

(t)− u
( n

2k−1 )
1
γ T

(t)

) m∑
j=0

(
m

j

)
bm−j

(
2k−1

T γ
tγ − n+ 1

)j
. (4.7)

Using the binomial theorem in (4.7), we have

ψγn,m(t) = 2
k−1
2 δm

m∑
j=0

j∑
r=0

(
m

j

)(
j

r

)
bm−j

(
2k−1

T γ

)r
(1− n)j−rtγr

(
u

( n−1

2k−1 )
1
γ T

(t)− u
( n

2k−1 )
1
γ T

(t)

)
. (4.8)
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Applying the Riemann-Liouville integral operator of order α to both sides of (4.8) gives

0I
α
t ψ

γ
n,m(t) = 2

k−1
2 δm

m∑
j=0

j∑
r=0

(
m

j

)(
j

r

)
bm−j

(
2k−1

T γ

)r
(1− n)j−r×(

0I
α
t

(
tγru

( n−1

2k−1 )
1
γ T

(t)

)
− 0I

α
t

(
tγru

( n

2k−1 )
1
γ T

(t)

))
.

(4.9)

Let α, ν, a ≥ 0 be real numbers. Taking property (2.1) into account yields

0I
α
t (tνua(t)) =

1

Γ(α)

∫ t

0

(t− s)α−1sνua(s)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1sνds− 1

Γ(α)

∫ a

0

(t− s)α−1sνds

= 0I
α
t (tν)− tα−1

Γ(α)

∫ a

0

sν(1− s

t
)α−1ds

=
Γ(ν + 1)

Γ(ν + α+ 1)
tν+α − tν+α

Γ(α)
β
(a
t

; ν + 1, α
)

=

(
Γ(ν + 1)

Γ(ν + α+ 1)
−
β
(
a
t ; ν + 1, α

)
Γ(α)

)
tν+α.

(4.10)

In the above result, β(z; a, b) denotes the incomplete beta function given by

β(z; a, b) =

∫ z

0

sa−1(1− s)b−1ds.

Now, using (4.10) in (4.9), we obtain

0I
α
t ψ

γ
n,m(t) =



0, t <
(
n−1
2k−1

) 1
γ T,

Ω1(t),
(
n−1
2k−1

) 1
γ T ≤ t <

(
n

2k−1

) 1
γ T,

Ω2(t), t ≥
(

n
2k−1

) 1
γ T,

with

Ω1(t) = 2
k−1
2 δm

m∑
j=0

j∑
r=0

(
m

j

)(
j

r

)
bm−j

(
2k−1

T γ

)r
(1− n)j−r

×

 Γ(γr + 1)

Γ(γr + α+ 1)
−
β

(
( n−1

2k−1 )
1
γ T

t ; γr + 1, α

)
Γ(α)

 tγr+α,

Ω2(t) = 2
k−1
2 δm

m∑
j=0

j∑
r=0

(
m

j

)(
j

r

)
bm−j

(
2k−1

T γ

)r
(1− n)j−r

×


β

(
( n

2k−1 )
1
γ T

t ; γr + 1, α

)
Γ(α)

−
β

(
( n−1

2k−1 )
1
γ T

t ; γr + 1, α

)
Γ(α)

 tγr+α.
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After the above result for the computation of 0I
α
t ψ

γ
n,m(t), by substituting (4.6) into (4.5), an approximation of y(t) is

given by

y(t) ' Y TΨ
γ
(t, α) + s(t). (4.11)

Substituting approximations (4.3), (4.4), and (4.11) into (4.1) leads to

Y TΨγ(t) = f
(
t, Y TΨ

γ
(t, α) + s(t)

)
+ Γ(1− β)HTΨ

γ
(t, 1− β). (4.12)

The remainder corresponding to Equation (4.12) is defined as follows:

R1(t) = Y TΨγ(t)− f
(
t, Y TΨ

γ
(t, α) + s(t)

)
− Γ(1− β)HTΨ

γ
(t, 1− β). (4.13)

Moreover, using approximations (4.4) and (4.11) in (4.2), we define the second remainder function as

R2(t) = HTΨγ(t)− g
(
t, Y TΨ

γ
(t, α) + s(t)

)
. (4.14)

In this step, we consider the following collocation points

tn,m = T

[
1

2k

(
cos

(
(2m+ 1)π

2(M + 1)

)
+ 2n− 1

)] 1
γ

, n = 1, · · · , 2k−1, m = 0, · · · ,M, (4.15)

that are the shifted Chebyshev nodes distributed in the interval
((

n−1
2k−1

) 1
γ T,

(
n

2k−1

) 1
γ T
)

for every fixed value of

n. Finally, we set the remainders defined in (4.13) and (4.14) at the collocation points tn,m, n = 1, · · · , 2k−1,
m = 0, · · · ,M , equal to zero and get a system of 2k(M + 1) algebraic equations as follows:

R1(tn,m) = 0,

R2(tn,m) = 0.

By solving the obtained system and finding the elements of the vector Y , the numerical solution of problem (1.1)-(1.2)
is computed by (4.11).

Remark 4.1. In the case of linear fractional integro-differential equations, the remainder function R(t) to determine
the elements of Y is given by

R(t) = Y TΨγ(t)− f
(
t, Y TΨ

γ
(t, α) + s(t)

)
− Γ(1− β)

Y TΨ
γ
(t, 1− β + α) +

dαe−1∑
i=0

yi
ti+1−β

Γ(i+ 2− β)

 .

Now, we extend the above suggested method for solving Equation (1.3). To do this, first, using the change of
variable s = T

2 (τ + 1), we transform the interval [0, T ] to the interval [−1, 1] and obtain

C
0 D

α
t y(t) = f (t, y(t)) +

∫ t

0

(t− s)−βg (s, y(s)) ds+
T

2

∫ 1

−1

κ

(
t,
T

2
(τ + 1) , y

(
T

2
(τ + 1)

))
dτ.

Then, using the Gauss-Legendre quadrature formula, we get

C
0 D

α
t y(t) ' f (t, y(t)) +

∫ t

0

(t− s)−βg (s, y(s)) ds+
T

2

N∑
l=1

κ

(
t,
T

2
(τl + 1) , y

(
T

2
(τl + 1)

))
,

where τl, l = 1, . . . , N , are the zeros of Legendre polynomial of degree N and wl are the corresponding weights [5]. By
following a similar procedure introduced for solving problem (1.1)-(1.2) and considering the same remainder function
R2, we define R1 as follows:

R1(t) = Y TΨγ(t)− f
(
t, Y TΨ

γ
(t, α) + s(t)

)
− Γ(1− β)HTΨ

γ
(t, 1− β)

− T

2

N∑
l=1

κ

(
t,
T

2
(τl + 1) , Y TΨ

γ
(
T

2
(τl + 1) , α

)
+ s

(
T

2
(τl + 1)

))
.
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At last, we set the remainders R1 and R2 equal to zero at the collocation points given by (4.15), and find the
approximate solution by solving the obtained system.

5. Error estimate

This section focuses on presenting an estimation of the error for the approximation of a given function y ∈ L2[0, T )
based on the GFOBWs. To this aim, we define

wγ(t) = tγ−1,

In,γ =
[
tk,γn−1, t

k,γ
n

)
, n = 1, . . . , 2k−1,

where

tk,γn =
( n

2k−1

) 1
γ

T, n = 0, 1, . . . , 2k−1.

Let PM (In,γ), n = 1, 2, . . . , 2k−1, be the space of all polynomials of degree less than or equal to M on the subinterval
In,γ . Also, suppose that L2[0, T ) and L2(In,γ) are the spaces of all measurable functions that their square is Lebesgue
integrable with respect to the weight function wγ on [0, T ) and In,γ , respectively. These spaces are equipped with the
following norms

‖y‖L2[0,T ) =

(∫ T

0

wγ(t)|y(t)|2dt

) 1
2

,

‖y‖L2(In,γ) =

(∫ tk,γn

tk,γn−1

wγ(t)|y(t)|2dt

) 1
2

.

If y is a sufficiently smooth function on the subinterval In,γ and pn,M is its interpolant at (M + 1) points tn,m,
m = 0, 1, . . . ,M , defined by (4.15), then

y(t)− pn,M (t) =
y(M+1)(ξ)

(M + 1)!

M∏
m=0

(t− tn,m), ξ ∈ In,γ .

As a result, we have

|y(t)− pn,M (t)| ≤ 1

(M + 1)!
max
t∈In,γ

|y(M+1)(t)| max
t∈In,γ

M∏
m=0

|t− tn,m|

≤ 1

(M + 1)!
max
t∈In,γ

|y(M+1)(t)|

(( n

2k−1

) 1
γ

T −
(
n− 1

2k−1

) 1
γ

T

)M+1

=
TM+1

(M + 1)!
2−( k−1

γ )(M+1) max
t∈In,γ

|y(M+1)(t)|
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ .

(5.1)

The above result helps us to prove the following lemma.

Lemma 5.1. Let k be a positive integer number and yn : In,γ −→ R, n = 1, . . . , 2k−1, be a sufficiently smooth function.

Suppose that ỹn(t) =
∑M
m=0 yn,mψ

γ
n,m(t) denotes the approximation of yn based on the GFOBWs. Then

‖yn − ỹn‖L2(In,γ) ≤
TM+1+ γ

2

√
γ(M + 1)!

Λn,M2−(k−1)(M+1
γ + 1

2 )
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ ,

where

Λn,M = max
t∈In,γ

|y(M+1)
n (t)|.



CMDE Vol. *, No. *, *, pp. 1-18 9

Proof. We know that ỹn is the best approximation of yn in PM (In,γ). Therefore

‖yn − ỹn‖L2(In,γ) ≤ ‖yn − q‖L2(In,γ),

where q is any arbitrary polynomial in PM (In,γ). Hence for pn,M as the interpolating polynomial of yn at (M + 1)
points tn,m, defined by (4.15), we write

‖yn − ỹn‖L2(In,γ) ≤ ‖yn − pn,M‖L2(In,γ). (5.2)

Using (5.1) and (5.2), we obtain

‖yn − ỹn‖2L2(In,γ) ≤
∫ tk,γn

tk,γn−1

wγ(t)|yn − pn,M |2dt

≤

(
TM+1

(M + 1)!
Λn,M2−( k−1

γ )(M+1)
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ

)2

×
∫ tk,γn

tk,γn−1

tγ−1dt

=

(
TM+1

(M + 1)!
Λn,M2−( k−1

γ )(M+1)
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ

)2

T γ

γ2k−1
,

which leads to the desired result. �

Theorem 5.2. Let y be a continuous function defined on [0, T ) that has sufficiently smooth restrictions on each
subinterval In,γ . Assume that yn : In,γ −→ R, n = 1, . . . , 2k−1, be defined by yn(t) = y(t) for all t ∈ In,γ . If yk,M ,
given by (3.4), is the approximation of y in terms of the GFOBWs, then

‖y − yk,M‖L2[0,T ) ≤
TM+1+ γ

2

(M + 1)!
ΛM2−(k−1)(M+1

γ + 1
2 )

√
Θk,M

γ
, (5.3)

where ΛM = max1≤n≤2k−1 Λn,M and

Θk,M =

2k−1∑
n=1

(
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ

)2

.

Proof. Using the notations introduced in Lemma 5.1, we have

‖y − yk,M‖2L2[0,T ) =

∫ T

0

wγ(t)|y(t)− yk,M (t)|2dt

=

2k−1∑
n=1

∫ tk,γn

tk,γn−1

wγ(t)|yn(t)− ỹn(t)|2dt

=

2k−1∑
n=1

‖yn − ỹn‖2L2(In,γ)

≤
2k−1∑
n=1

(
TM+1+ γ

2

√
γ(M + 1)!

Λn,M2−(k−1)(M+1
γ + 1

2 )
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ

)2

≤
(

TM+1+ γ
2

√
γ(M + 1)!

ΛM2−(k−1)(M+1
γ + 1

2 )
)2

×
2k−1∑
n=1

(
M+1∑
i=0

(−1)i
(
M + 1

i

)
n
M+1−i

γ (n− 1)
i
γ

)2

,

which gives (5.3) by taking square root. �
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Remark 5.3. In many cases, solutions of fractional integro-differential equations suffer lack of regularity at origin.
Since no information is available on the analytical results, presenting an error discussion for the approximate solution
given by the proposed method is difficult. However, according to the numerical results obtained in the next section,
choosing a small value of M and increasing the level of resolution in the implementation of the method can be a
suggestion to give more accurate results in the case of equations with non-smooth solutions.

6. Numerical examples

In the current section, some examples are solved using the proposed method in this paper to illustrate its accuracy
and efficiency. Let y and ŷγk,M be, respectively, the exact and approximate solutions in each example. We define the
following notations to check the error of the method

εγk,M (t) = |y(t)− ŷγk,M (t)|,
ζγk,M = max

t∈[0,T ]
εγk,M (t).

In our simulation, we have used Mathematica software and in the computation of the Gauss-Legendre quadrature, we
have used N = 8.

Example 6.1. As the first example, consider Equation (1.1) with [3, 11]

α =
2

3
, β =

1

2
, f(t, y) =

3Γ( 1
2 )

4Γ( 11
6 )
t
5
6 − t 5

2 − 32

35
t
7
2 + ty, g(s, y) = y2, T = 1.

By having the initial condition y(0) = 0, the exact solution of this problem is y(t) = t
3
2 .

We have implemented the proposed method for solving this problem with different values of the parameters γ, k
and M to check the effect of each of these parameters in the accuracy of the method. Table 1 reports the absolute
error at some points obtained by the present method with k = 5, M = 3 and γ = 1

3 ,
1
2 ,

2
3 ,

5
6 , 1, method of [3] based on

the Taylor wavelet functions and also method of [11] based on the quadratic hat functions. These results show that
almost using a same number of basis functions, the present method gives more accurate results with γ = 5

6 . It should
be noted that the values of γ used in the implementation of our method have been chosen taking into account the
degrees of the power functions existing in the function f and the values of α and β. Moreover, plots of the absolute
error function εγk,M (t) are seen in Figure 1. Since we obtained the optimal results with γ = 5

6 , the method has been
employed with this value of γ and different values of k and M . First, we choose M = 4 and increase the value of k
and then by choosing k = 1, we increase the value of M . The numerical results of the maximum absolute error ζγk,M
in a logarithmic scale can be seen in Figure 2. By observing these results, one can find out the error decreases as the
value of k increases, but, as it was mentioned in Remark 3.3, the method loses stability for large values of M .

Table 1. Comparison of the absolute error at some points for Example 6.1.

Present method (k = 5, M = 3) Method of [3] Method of [11]
t γ = 1

3 γ = 1
2 γ = 2

3 γ = 5
6 γ = 1 r = 5, S = 4 n = 64

0.125 4.31e−10 5.84e−9 1.28e−7 7.01e−10 3.90e−6 5.22e−7 1.70e−5
0.250 5.751e−9 9.53e−9 1.13e−7 2.03e−9 3.27e−6 1.21e−7 1.49e−5
0.375 5.21e−8 1.31e−8 1.16e−7 3.37e−9 3.27e−6 4.83e−8 1.51e−5
0.500 6.81e−8 3.78e−8 1.31e−7 5.10e−9 3.66e−6 2.67e−8 1.69e−5
0.625 1.68e−7 5.24e−8 1.65e−7 7.50e−9 4.51e−6 1.45e−8 2.09e−5
0.750 4.84e−7 7.81e−8 2.31e−7 1.20e−8 6.12e−6 9.35e−9 2.83e−5
0.875 9.62e−7 1.52e−7 3.49e−7 1.93e−8 9.12e−6 6.57e−9 4.22e−5

Example 6.2. Consider problem (1.1)-(1.2) with [3, 11]:

α =
1

3
, β =

1

2
, f(t, y) =

6

Γ( 11
3 )
t
8
3 +

(
32

35
−

Γ
(

1
2

)
Γ
(

7
3

)
Γ
(

17
6

) )
t
11
6 + Γ

(
7

3

)
t− 32

35
t
1
2 y,

g(s, y) = y,
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Figure 1. (Example 6.1.) Plots of the absolute error function εγk,M (t) with k = 5, M = 3 and γ = 1
3 ,

1
2 ,

2
3 ,

5
6 .

Figure 2. (Example 6.1.) Numerical results of the maximum absolute error ζγk,M in logarithmic scale

with: M = 4, γ = 5
6 and different values of k (left), k = 1, γ = 5

6 and different values of M (right).

under the initial condition y(0) = 0. The exact solution is y(t) = t3 + t
4
3 .

Similar to the first example, first we have considered T = 1, k = 5, M = 3 and γ = 1
3 ,

1
2 ,

2
3 ,

5
6 , 1, and compared the

obtained results with the results of quadratic hat functions method [11] and Taylor wavelet functions method [3] in
Table 2. Moreover, the absolute error function εγk,M (t) is plotted in Figure 3. As it is seen from these results, among

all the tested values of γ, we obtain the best results with γ = 1. The results obtained for ζγk,M with this value of γ
and different values of k and M are displayed in Figure 4. From this figure, one can see that by increasing the value
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of k, the maximum absolute error decreases (left) and the method is not stable for large M (right). Furthermore, to
check the efficiency of the method for large intervals, we set T = 10, M = 1, γ = 1 and increased the value of k from
1 to 4. Plots of the approximate solutions together with the exact one are shown in Figure 5. It can be easily seen
that the numerical solutions converge to exact solution as k increases.

Table 2. Comparison of the absolute error at some points for Example 6.2.

Present method (k = 5, M = 3) Method of [3] Method of [11]
t γ = 1

3 γ = 1
2 γ = 2

3 γ = 5
6 γ = 1 r = 5, S = 4 n = 64

0.125 2.51e−8 3.60e−8 8.08e−8 6.96e−7 5.73e−9 6.91e−7 2.40e−6
0.250 2.13e−7 1.66e−8 9.84e−8 5.80e−7 1.10e−8 1.47e−7 2.43e−6
0.375 6.69e−7 8.02e−8 1.11e−7 5.91e−7 1.28e−8 6.25e−8 2.58e−6
0.500 3.54e−7 1.21e−7 1.17e−7 6.21e−7 1.42e−8 3.82e−8 2.76e−6
0.625 7.12e−7 1.20e−7 9.21e−8 6.66e−7 1.56e−8 2.91e−8 2.99e−6
0.750 1.89e−6 2.63e−7 1.59e−7 7.09e−7 1.71e−8 2.55e−8 3.22e−6
0.875 1.97e−6 1.72e−7 9.69e−8 7.69e−7 1.85e−8 2.41e−8 3.48e−6

Figure 3. (Example 6.2.) Plots of the absolute error function εγk,M (t) with k = 5, M = 3 and γ = 1
2 ,

2
3 ,

5
6 , 1.

Example 6.3. Consider problem (1.1)-(1.2) with [3, 12]:

0 < α ≤ 1, β =
1

2
, f(t, y) = 2t− 16

15
t
1
2 y, g(s, y) = y, T = 1, y(0) = 0,

which has the exact solution y(t) = t2 when α = 1.
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Figure 4. (Example 6.2.) Numerical results of the maximum absolute error ζγk,M in logarithmic scale

with: M = 4, γ = 1 and different values of k (left), k = 1, γ = 1 and different values of M (right).

Figure 5. (Example 6.2.) Plots of the exact solution together with the approximate solutions ob-
tained by M = 1, γ = 1 and k = 1, 2, 3, 4 on the interval [0, 10].

In the implementation of our method, by considering k = 1, M = 1, γ = 1 and α = 1, we set:

C
0 D

1
t y(t) = Y TΨ1(t),

where

Y = [y1,0, y1,1]T , Ψ1(t) = [1,
√

3(2t− 1)]T .

Taking the initial condition into account, we get

y(t) = Y TΨ
1
(t, 1),

with

Ψ
1
(t, 1) = [t,

√
3(t2 − t)]T .
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We also need to compute Ψ
1 (
t, 3

2

)
to obtain the remainder function. This vector is given by

Ψ
1
(
t,

3

2

)
=

[
4

3
√
π
t3/2,

4

5
√

3π
t3/2(4t− 5)

]T
.

By utilizing the aforementioned approximations in the main problem, we have

R(t) =

(
1− 4t3/2

15

)
y1,0 +

(
4t3/2 + 30t− 15

)
5
√

3
y1,1 − 2t = 0.

To give the final system, we use the following collocation points in the above equation

t1,0 =
2 +
√

2

4
, t1,1 =

2−
√

2

4
.

After solving the obtained system, we have

y1,0 = 1, y1,1 =

√
3

3
,

which gives the exact solution.
To check the effect of the parameter γ, the method has been applied to solve this problem with k = 1, M = 2,

α = 1 and γ = 0.1, 0.2, 0.3, 0.4, 0.5 and the results have been displayed in Figure 6 (left). We note here that by testing
different values of γ, it is seen the method gives the exact solution with every γ ≥ 0.5 and only three basis functions.
We also implemented the method with k = 2, M = 2, γ = 1 and different values of α. The numerical solutions are
plotted in Figure 6 (right) along with the exact solution of the case α = 1. These results show that the numerical
solutions converge to the exact one as α −→ 1.

Figure 6. (Example 6.3.) Plots of the exact solution together with the approximate solutions ob-
tained by k = 1, M = 2, α = 1 and different values of γ (left) and k = 2, M = 2, γ = 1 and different
values of α (right).

Example 6.4. In this example, we consider Equation (1.3) with [4, 22]:

α =
1

4
, β =

1

2
, f(t, y) =

32

231Γ
(

3
4

) (12t+ 11)t7/4 − 8

105
(6t+ 7)t5/2 − 7

36
t+

3

20
,

g(s, y) =
1

2
y, κ(t, s, y) =

1

3
(t− s)y, T = 1.

The exact solution subject to the initial condition y(0) = 0 is y(t) = t2 + t3.
This problem has been solved using the present method with k = 4, M = 2 (2k−1(M +1) basis functions) and some

selected values of γ and the results obtained for the maximum absolute error have been compared with the results of
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Figure 7. (Example 6.4.) Numerical results of the maximum absolute error ζγk,M in logarithmic scale

with: M = 4, γ = 1
2 and different values of k (left), k = 1, γ = 1

2 and different values of M (right).

CAS wavelet method (2k(2M+1) basis functions) in Table 3. Also, with k = 1, M = 12, a comparison of the obtained
results with the results given by Jacobi collocation method [4] (N + 1 basis functions) is seen in Table 3. From this
table, it can be found out our method gives more accurate results comparing to the two other methods with a same
number of basis functions. Moreover, the results obtained for ζγk,M with γ = 1

2 and different values of k and M are
displayed in Figure 7.

Table 3. Comparison of the maximum absolute error for Example 6.4.

Method Maximum absolute error
CAS wavelet method [22]
k = 3, M = 1 9.73e−2
Present method
k = 4, M = 2, γ = 1

2 5.45e−4
k = 4, M = 2, γ = 2

3 1.67e−4
k = 4, M = 2, γ = 5

6 5.63e−5
k = 4, M = 2, γ = 1 3.24e−5
Jacobi collocation method [4]
N = 12 2.73e−5
Present method
k = 1, M = 12, γ = 1

2 1.97e−8
k = 1, M = 12, γ = 2

3 3.03e−7
k = 1, M = 12, γ = 5

6 6.78e−7
k = 1, M = 12, γ = 1 6.69e−6

Example 6.5. Consider Equation (1.3) with [4, 23]

0 < α ≤ 1, β =
1

2
, f(t, y) = −2048t13/2

3003
+ 3t2 − t

8
,

g(s, y) = y2, κ(t, s, y) = tsy2, T = 1,

and with the initial condition y(0) = 0. The exact solution of this problem when α = 1 is y(t) = t3. By choosing
γ = 1, α = 1, k = 1 and different values of M , we plotted the absolute error functions with M = 2, 3, 4, 5 in Figure 8.
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Figure 8. (Example 6.5.) Plots of the absolute error function εγk,M (t) with α = 1, γ = 1, k = 1 and
M = 2, 3, 4, 5.

Figure 9. (Example 6.5.) Numerical results of the maximum absolute error ζγk,M in logarithmic scale
with: M = 4, γ = 1 and different values of k.

The method results to the exact solution with M = 6 (seven basis functions) while the method based on the Jacobi
polynomials [4] with the Jacobi parameters equal to zero and N = 11 (twelve basis functions) leads to a numerical
solution with the maximum absolute error equal to 1.07× 10−11. Also, to see the effect of increasing the value of k in
the accuracy of the method, we plotted the maximum absolute error in a logarithmic scale with M = 4 and different
values of k in Figure 9.
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7. Conclusion

In this work, a new numerical technique based on a generalization of fractional-order Bernoulli wavelets has been
proposed for solving two kinds of integro-differential equations. These equations include fractional Volterra weakly
singular integro-differential equations of Hammerstein type and fractional Volterra-Fredholm integro-differential equa-
tions. The main novelty of the proposed method is to compute the Riemann-Liouville integral of the basis functions
without any error that makes this method more accurate than the methods based on the operational matrix of frac-
tional integration. Both problems under study have been easily reduced to systems of algebraic equations using a
suitable set of collocation points. An upper error bound has been presented for the approximation of a given function
based on our new basis functions. Finally, some examples taken from other existing works have been solved using
the new scheme and the obtained results have been reported in some figures and tables. These results show that
the method works very well and gives more accurate solutions comparing to the other methods with a same number
of basis functions. It has been also noted that with a fixed level of resolution (k) the method will lose the stability
with large number of Bernoulli polynomials (M). As a result, taking a small number of Bernoulli polynomials and
increasing the level of resolution is a solution to overcome this problem. We insist that the proposed method can
be very effective and accurate for solving many practical problems. Therefore, a direction of future research can be
applying this method to nonlinear fractional-order partial differential equations appearing in physics and engineering.
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