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Abstract
This study explores an SEIR epidemic model, aiming to achieve rapid stabilization of infectious disease dynamics.
The dynamic behavior of the model is analyzed with an emphasis on both local and global stability of equilibria

using a Lyapunov function. The existence and uniqueness of the model are confirmed. The theoretical findings

are validated, and the effectiveness of the controller is illustrated through numerical simulations conducted in
MATLAB/Simulink.

Keywords. SEIR model, Next generation method, Existence and uniqueness, Numerical simulations, Theoretical results.

2010 Mathematics Subject Classification. 65L05, 34K06, 34K28.

1. Introduction

Mathematical models are essential for developing preventive and control measures against epidemics. Research
conducted by numerous scholars has established a robust scientific foundation for mitigating disease transmission
through various protective measures, such as timely vaccination, mask-wearing [13], avoiding crowded areas [31], and
voluntary quarantine [10]. By enhancing social awareness and decreasing individual infectivity, the spread of diseases
can be significantly reduced. For example, Julien Arino and colleagues have developed a novel SEIAR model for
influenza control through vaccination and antiviral treatment [4]. Similarly, Abbasi et al. introduced a prototype of
SQEIAR models that focus on disease reduction through quarantine and optimal treatment of infected individuals,
assuming balanced birth and death rates [1].

While complex models can correctly foretell the progression of an epidemic, simpler models are often more effective
for forecasting the early stages of an epidemic. Nonetheless, all these models depend on predetermined factors related
to infectivity during the latent period. In fact, factors like temperature and individual variations introduce random
disturbances [18, 19, 32], which must be considered in disease spread prediction and control. Therefore, applying
fractional order analysis to epidemic models is of significant practical importance. Some researchers have developed
adequate conditions for the existence of global positive solutions by forming suitable Lyapunov functions [9].

This paper mainly aims to define local and global stability at equilibrium points and control the spread of epidemics
under certain conditions. In section 1, a SEIR model is formulated as a fractional-order SEIR model. Section 2 explores
the existence and uniqueness of positive solutions. Section 3 addresses the positivity of the invariant region. Section
4 defines local equilibrium stability and explains the basic reproductive number using the next-generation method.
Section 5 explores global equilibrium stability through the construction of Lyapunov functions. Section 6 delves into
parameter sensitivity. Section 7 explores the PRCC test for parameters. Section 8 outlines numerical schemes and
simulations using MATLAB. The paper concludes with a summary and references.
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2. Background Material

Definition 2.1. The fractional integral of order B for a function Z (t) in Atangan-Baleanu-Caputo (ABC) sense is
detailed as [3]:

ABCD−B
t (Z (t)) =

1−B

φ(B)
Z (t) +

[
1

Γ(B)φ(B)

]
B

∫ t

0

(t− g)B−1Z (g)dg. (2.1)

Definition 2.2. The fractional derivative of order B for a function Z (t) in Atangan-Baleanu-Caputo sense is detailed
as [3]:

ABCDB
t (Z (t)) =

[
1

1−B

]
φ(B)

∫ t

0

[
− BEB

1−B

]
(t− g)BZ ′(g)dg. (2.2)

Consider B in the semi open interval (0, 1], t in the range t ≥ 0, and t < ∞, and let Z be a differentiable function

on [0,∞) such that Z ′ ∈ L1(0,∞). The Mittag-Leffler function EB is defined as EB(t) =
∑∞
s=0

ts

Γ(sB+1) . The

normalization function φ(B) satisfies φ(0) = φ(1) = 1.

Definition 2.3. When applying the Laplace transform to the derivative of a function N (t) in the Atangana-Baleanu-
Caputo (ABC) sense, it is expressed as follows [3]:

L
[
ABCDD

t (N (t))

]
= (sD(1−D) + D)−1[φ(D)sDL[N (t)]− φ(D)sD−1N (0)]. (2.3)

3. Formulation of Model

Assuming lifelong immunity following vaccination and that infected individuals initially transition into a less in-
fectious inactive phase [1, 4, 23] our focus is exclusively on addressing the model, excluding asymptomatic cases.
The epidemiological model is defined as A(t) = {S(t), E(t), I(t),R(t)}, where S(t), E(t), I(t) and R(t) are susceptible,
exposed, infected and recovered respectively. The model is detailed below:

Ṡ(t) = −S(t)[ςξE(t) + (1− d)I(t)ς − (n1 + σ)] + Π,

Ė(t) = [ςξS(t)− (σ + q1 + n2)]E(t) + S(t)I(t)(1− d)ς,

İ(t) = −(σ + Θ + q2)I(t) + q1E(t),

Ṙ(t) = −σR(t) + n1S(t) + n2E(t) + q2I(t).

(3.1)

4. ABC derivative for SEIR model

This segment is used to transform the non-linear mathematical model (3.1) into an ABC fractional derivative
model. This involves employing the AtanganaBaleanu fractional operator in the Caputo sense to examine the fractional
dynamics of model (3.1):

ABCDη
t S(t) = −S(t)[ςξE(t) + (1− d)I(t)ς − (n1 + σ)] + Π,

ABCDη
t E(t) = [ςξS(t)− (σ + q1 + n2)]E(t) + S(t)I(t)(1− d)ς,

ABCDη
t I(t) = −(σ + Θ + q2)I(t) + q1E(t),

ABCDη
tR(t) = −σR(t) + n1S(t) + n2E(t) + q2I(t).

(4.1)

To begin with, in order to validate the biological relevance of model (4.1), we will first verify the existence and
uniqueness of the solution. Additionally, we will explore the positively invariant region and ensure that the solution
remains non-negative within R4

+.

ζ := {(S, E , I,R) ∈ R4
+|S, E , I,R ≥ 0}. (4.2)

We will utilize this condition in the following three sections.
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Table 1. Explanation of the parameters specified in model (3.1).

Parameters Overview

S(0) Total susceptible persons at initial point
E(0) Total exposed persons at initial point
I(0) Total infection persons at initial point
R(0) Total recovered persons at initial point

Π Population growth rate
σ Pace of mortality due to natural causes
Θ Coefficient for disease-induced mortality
n1 Vaccination pace for susceptible persons
n2 Pace of vaccination for exposed persons
ς The average rate of contact during infection
ξ Factor reducing the rate of inactive infection
d Decrease in infectivity due to quarantine, isolation, and other interventions

ξE(t) + (1− d)I(t) Count of currently infectious individuals
q1 Transition pace from the inactive state to the infectious state
q2 Transition pace from the infectious state to the recovered state

5. Non linear fractional DE’s including Mittag-Leffler (M-L) non-singular kernels

Let’s examine a fractional initial-value problem (IVP) described as follows [6]:{
ABCDη

t u(t) = V (t, u(t)), 0 < t <∞, 0 < T <∞, t < T,

u(0) = u0.
(5.1)

Given 0 < η < 1, and ABCDη
t u(t) represents the Atangana-Baleanu-Caputo fractional derivative of u(t) represented in

Equation (2.2). Next, we will formulate the existence and uniqueness of solutions for the new fractional differential
equation.

5.1. Existence and Uniqueness. In this section, we will explore the ”existence and uniqueness of the model” defined
by system (4.1). The theorem outlined below will play a crucial role in this analysis.

Theorem 5.1. A distinctive solution for a time-fractional differential equation over R4
+ is attainable by using the

inverse Laplace transform and the convolution theorem [27],i.e.

ABCDη
t ω(t) = δ(t), (5.2)

is stated as

ω(t) = (φ(η))−1

[
(1− η)δ(t) + η(Γ(η))−1

∫ t

0

δ(l)(t− l)η−1dl

]
. (5.3)

Subsequently, we utilize Theorem 5.1 to derive the Volterra-type integral equation corresponding to (4.1):

−S(0) + S(t) = 1
φ(η) (1− η)(F1(t,S)) + η

[
1

Γ(η)φ(η)

] ∫ t

0
F1(l,S)(t− l)η−1 dl,

−E(0) + E(t) = 1
φ(η) (1− η)(F2(t, E)) + η

[
1

Γ(η)φ(η)

] ∫ t

0
F2(l, E)(t− l)η−1 dl,

−I(0) + I(t) = 1
φ(η) (1− η)(F3(t, I)) + η

[
1

Γ(η)φ(η)

] ∫ t

0
F3(l, I)(t− l)η−1 dl,

−R(0) +R(t) = 1
φ(η) (1− η)(F4(t,R)) + η

[
1

Γ(η)φ(η)

] ∫ t

0
F4(l,R)(t− l)η−1 dl,

(5.4)
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where

F1(t,S) =− S(t)[ςξE(t) + (1− d)I(t)ς − (n1 + σ)] + Π,

F2(t, E) =[ςξS(t)− (σ + q1 + n2)]E(t) + S(t)I(t)(1− d)ς,

F3(t, I) =− (σ + Θ + q2)I(t) + q1E(t),

F4(t,R) =− σR(t) + n1S(t) + n2E(t) + q2I(t).

(5.5)

We will demonstrate that the kernels Fc, c = 1, 2, 3, 4 meet the Lipschitz condition. Let S,S , E,E , I,I ,
and R,R be bounded functions in a manner such that

max{S,S , E ,E , I,I ,R,R} < ∆.

For F1(t,S) and F1(t,S ), the following inequality is satisfied:

||F1(t,S)− F1(t,S )|| =|| − ς(ξE + (1− d)I)(S −S )− (σ + n1)(S −S )||
≤|| − ς(ξE + (1− d)(S −S ))||+ || − (σ + n1)(S −S )||
=ς(ξ||E||∞ + (1− d)||I||∞)||S −S ||
=∆1||S −S ||,

(5.6)

where ∆1 = ς(ξ||E||∞ + (1 − d)||I||∞), ||E||∞ = sup |E|, and ||I||∞ = sup |I|. Therefore, we will demonstrate that
F1(t,S) meets the Lipschitz condition as stated in Theorem 5.1. The general Lipschitz condition is described in
Assumption 1 of [7]. Using a similar approach, we will examine the following inequalities to establish this:

||F2(t, E)− F2(t,E )|| ≤∆2||E − E ||,
||F3(t, I)− F3(t,I )|| =∆3||I −I ||,
||F4(t,R)− F4(t,R)|| =∆4||R −R||.

(5.7)

Here ∆2 = ||S||∞ςξ + σ + q1 + n2, ∆3 = σ + γ + q2, and ∆4 = σ. Therefore, the Lipschitz condition is also fulfilled
by the kernel Fc for c = 2, 3, 4. In addition, Fc for c = 2, 3, 4 are reduced if 0 ≤ ∆c < 1, c = 2, 3, 4. Additionally, the
existence of a solution to (4.1) is examined using the fixed-point theorem. The recursive form of (5.4) is represented
by the following formulas:

Sp(t) =
1

φ(η)
(1− η)(F1(t,Sp−1)) + η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1F1(l,Sp−1)dl,

Ep(t) =
1

φ(η)
(1− η)(F2(t, Ep−1)) + η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1F2(l, Ep−1)dl,

Ip(t) =
1

φ(η)
(1− η)(F3(t, Ip−1)) + η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1F3(l, Ip−1)dl,

Rp(t) =
1

φ(η)
(1− η)(F4(t,Rp−1)) + η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1F4(l,Rp−1)dl,

(5.8)
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The initial conditions for (5.8) are given by S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), and R0(t) = R(0). The
succeeding terms in (5.8) can be expressed as follows:

Φ1,p(t) = −Sp−1(t) + Sp(t) =
1

φ(η)
(1− η) (F1(t,Sp−1)− F1(t,Sp−2))

+ η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1(F1(l,Sp−1)− F1(l,Sp−2))dl,

Φ2,p(t) = −Ep−1(t) + Ep(t) =
1

φ(η)
(1− η)(F2(t, Ep−1)− F2(t, Ep−2))

+ η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1(F2(l, Ep−1)− F2(l, Ep−2))dl, (5.9)

Φ3,p(t) = −Ip−1(t) + Ip(t) =
1

φ(η)
(1− η)(F3(t, Ip−1)− F3(t, Ip−2))

+ η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1(F3(l, Ip−1)− F3(l, Ip−2))dl,

Φ4,p(t) = −Rp−1(t) +Rp(t) =
1

φ(η)
(1− η)(F4(t,Rp−1)− F4(t,Rp−2))

+ η

[
1

φ(η)Γ(η)

] ∫ t

0

(t− l)η−1(F4(l,Rp−1)− F4(l,Rp−2))dl,

and thus, we have

Sp(t) =

p∑
i=1

Φ1,c(t), Ep(t) =

p∑
c=1

Φ2,c(t),

Ip(t) =

p∑
c=1

Φ3,c(t), Rp(t) =

p∑
c=1

Φ4,c(t).

(5.10)

To find the norm of both sides of (5.9), we employ (5.6) and (5.7), yielding the following results:

||Φ1,p(t)|| ≤(1− η)
1

φ(η)
∆1||Φ1,p−1||+ η

[
1

φ(η)Γ(η)

]
∆1

∫ t

0

||Φ1,p−1(l)||(t− l)η−1dl,

||Φ2,p(t)|| ≤(1− η)
1

φ(η)
∆2||Φ2,p−1||+ η

[
1

φ(η)Γ(η)

]
∆2

∫ t

0

||Φ2,p−1(l)||(t− l)η−1dl,

||Φ3,p(t)|| ≤(1− η)
1

φ(η)
∆3||Φ3,p−1||+ η

[
1

φ(η)Γ(η)

]
∆3

∫ t

0

||Φ3,p−1(l)||(t− l)η−1dl,

||Φ4,p(t)|| ≤(1− η)
1

φ(η)
∆4||Φ4,p−1||+ η

[
1

φ(η)Γ(η)

]
∆4

∫ t

0

||Φ4,p−1(l)||(t− l)η−1dl.

Next, we will introduce the following theorem:

Theorem 5.2. Model (4.1) possesses a sole outcome if there exists a tmax such that

(1− η)
∆1

φ(η)
+ tηmax

∆c

φ(η)Γ(η)
< 1, c = 1, 2, 3, 4. (5.11)

Proof. Assume that S(t), E(t), I(t), and R(t) are bounded functions. From the previous proof, these functions meet
the Lipschitz condition. Given (5.11) and using the principle of successive approximations, the following inequalities
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hold:

|Φ1,p(t)|| ≤||S0||
(

(1− η)∆1

φ(a)
+

tη∆1

φ(η)Γ(η)

)p
,

||Φ2,p(t)|| ≤||E0||
(

(1− η)∆2

φ(η)
+

tη∆2

φ(η)Γ(η)

)p
,

||Φ3,p(t)|| ≤||I0||
(

(1− η)∆3

φ(η)
+

tη∆3

φ(η)Γ(η)

)p
,

||Φ4,p(t)|| ≤||R0||
(

(1− η)∆4

φ(η)
+

tη∆4

φ(η)Γ(η)

)p
.

(5.12)

To establish that (5.4) represents the solution of (4.1), we have demonstrated the existence and smoothness of (5.10)
by ensuring that |Φi,p(t)| approches to zero for c = 1, 2, . . . , 7 as t→ tmax. Let us proceed with the assumption that

−S(0) + S(t) =−Y1,p(t) + Sp(t),
−E(0) + E(t) =−Y2,p(t) + Ep(t),
−I(0) + I(t) =−Y3,p(t) + Ip(t),
−R(0) +R(t) =−Y4,p(t) + Ip(t).

(5.13)

In this context, Yc,p(t) for c = 1, 2, 3, 4 denotes the residual expressions of the series solutions. Each residual expression
Yc,p(t) is associated with a norm defined as:

||Y1,n(t)|| ≤1− η
φ(η)

||F1(t,S)− F1(t,Sp−1)||+
[

1

φ(η)Γ(η)

]
η

∫ t

0

||F1(l,S)− F1(l, Sn−1)||(t− l)η−1dl

≤||S − Sn−1||
(

1− η +
tη

Γ(η)

)
∆1

φ(η)
.

(5.14)

By applying an iterative approach to inequality (5.14), at t = tmax, we achieve

||Y1,n(t)|| ≤
(

1− η +
tηmax
Γ(η)

)
∆n+1

1 M

φ(η)
. (5.15)

We establish that ||Y1,n(t)|| tends to zero as n approches to ∞. By employing a nearly identical method, we also find
that ||Yi,n(t)|| tends to 0 for i = 2, 3, 4. Therefore, functions that gratify (5.4) are solutions to (4.1), confirming the
uniqueness of the solution for model (4.1). Let S(t), E(t), I(t) and R(t) represent another set of solutions for model
(4.1). Then, the following equation holds:

−S∗(t) + S(t) =
1− η
φ(η)

(−F1(t,S∗) + F1(t,S) +
η

φ(η)Γ(η)

∫ t

0

(t− l)η−1(−F1(t,S∗) + F1(t,S)dl. (5.16)

Applying the ||.|| to both sides of (5.16) using the same method as in (5.10) and (5.12), we obtain(
1− (1− η)∆1

φ(η)
− tη∆1

φ(η)Γ(η)

)
|| − S∗(t) + S(t)|| ≤ 0. (5.17)

We confirm that for t = tmax, we have(
1− (1− η)∆1

φ(η)
− tη∆1

φ(η)Γ(η)

)
≥ 0.

According to this theorem, ||−S∗(t)+S(t)|| = 0, which gives that S(t) = S∗(t). Similarly, by following this procedure,
which gives us E(t) = E∗(t), I(t) = I∗(t), and R(t) = R∗(t). This concludes the proof of the existence and uniqueness
of the solution (4.1). �
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6. Region of positivity invariance

In this section, our goal is to examine the boundary values of solutions A = (S, E , I,R) for the set of equations in
(4.1) under non-decreasing preliminary conditions. We will show the existence of a positively invariant feasible region
in R4

+ concerning model (4.1). To achieve this, we introduce the subsequent theorem:

Theorem 6.1. Let us assume that

F(t) = E(t) + I(t) +R(t) + S(t),

ζ =

{
A(t) ∈ R4

+ : 0 < N ≤ Π

σ + n1

}
.

Then the set ζ is a closed, and positively invariant set for (4.1).

Proof. We have verified that F(t) represents the total population. Computing fractional derivative in ABC sense at
η ∈ (0, 1], we acquire:

ABCDη
t F(t) = Π− σF(t)−ΘI(t). (6.1)

Implementing Laplace transform [8] to mathematical expression (6.1), the following outcomes are derived:

L[ ABCDη
t (F(t))] = L[Π− σF(t)−ΘI(t)]

≤ L[Π− σF(t)],

φ(η)sηF(s)

sη(1− η) + η
+ σF(s) ≤ Π

s
+
φ(η)sη−1F(0)

sη(1− η) + η
. (6.2)

Rewriting (6.2) about F(s), which is the Laplace transform of {F(t)(s)} and where F(0) denotes preliminary condition,
leads us to the following expression:

F(s) ≤ Πs−1[sη − η(sη − 1)] + φ(η)sη−1F(0)

σ[sη − η(sη − 1)] + sηφ(η)
.

Therefore,

F(s) ≤ Πs−1[sη − η(sη − 1)]

[φ(η) + u − ησ]sη + ησ
+

φ(η)sη−1F(0)

[φ(η) + u − ησ]sη + ησ

=

(
−ηΠ + Π + φ(η)F(0)

φ(η)− ησ + σ

)[
sη−1

sη + ησ
φ(η)−ησ+σ

]

+

(
ηΠ

φ(η)− ησ + σ

)[
sη−(η+1)

sη + ησ
φ(η)−ησ+σ

]
.

Employ the L−1 to each side of the above equation, We derive the subsequent set of inequalities:

F(s) ≤
(

Π− ηΠ + φ(η)F(0)

φ(η) + σ − ησ

)
Eη,1

(
−ησtη

φ(η) + σ − ησ

)
+

(
ηΠ

φ(η) + σ − ησ

)
Eη,η+1

(
−ησtη

φ(η) + σ − ησ

)
.

(6.3)

The Mittag-Leffler function with two variables, where G > 0 and H > 0, is characterized by the following definition:

EG,H(Y ) =

∞∑
j=0

Y j

Gj +H
.

Laplace transform of this function is

L[tH−1EG,F (±νtG)] =
sG−H

sη ∓ ν
.
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Given that s > |ν| 1G . Mittag-Leffler function is described by [11] as follows:

EG,H(Y ) =
1

Y

[
EG,H−G(Y )Γ(H− G)− 1

Γ(H− G)

]
. (6.4)

The publication [16] outlines the asymptotic characteristics of the Mittag-Leffler function as follows:

EH,H+1(Y ) ≈
i∑

j=1

Y −j

H+ (H+ 1)j
+O(|Y |−1−i), |Y | → ∞, Hπ

2
< |argY | ≤ π. (6.5)

Referring to Equations (6.3) and (6.4), and considering the convergence behavior outlined by the Mittag-Leffler
equation (6.5), as t approaches infinity, it becomes apparent that N (t) is bounded above by Π

x . Consequently, the set
ζ can be regarded as positively invariant within the context of system (4.1). �

6.1. Stability characteristics of stable points. Here, we are going to to examine the local stability of the stable
points, referencing appropriate sources [15, 20, 24] for stability analysis. To evaluate the stability characteristics of the
stable points, we first need to identify these stable points. The model (4.1) presents two stable points: the infection-free
stable point (IFSP) and the endemic stable point (ESP).

6.2. Infection-free stable point. Setting the R.H.S. of the mathematical expressions given in (4.1) equal to zero,
we obtain the infection-free stable point (Df ), written as follows:

Df = (Sf , Ef , If ,Rf ) =

(
Π

x
, 0, 0,

Π

σx

)
,

where x = σ+ n1. By applying the next-generation matrix method [12], we calculated the basic reproductive number
Br for the system defined by the equations in (4.1) as follows:

FDf
=

−[ςξE + (1− d)ςI] −ςSE −ςS + ςSd
ςξE + (1− d)Iς ςSE ςS(1− d)

0 0 0

 ,
VDf

=

σ + n1 0 0
0 σ + q1 + n2 0
0 −q1 σ + Θ + q2

 ,
V −1
Df

=

 1
σ+n1

0 0

0 1
σ+q1+n2

0

0 q1
(σ+q1+n2)(σ+Θ+q2)

1
σ+Θ+q2

 ,
(6.6)

Br is stated as the maximum eigenvalue of the matrix (FDf
V −1
Df

) and is obtained when

Br =
ςΠ(ξy + q1(1− d))

xyz
,

where

x = σ + n1, y = σ + Θ + q2, z = σ + q1 + n2.

Lemma 6.2. The infection-free stable point (Df ) exhibits local stability when R0 < 1; otherwise, Df is unstable.

Proof. Configuring the L.H.S. of the mathematical expression in system (4.1) as

a′ =− S(t)[ςξE(t) + (1− d)I(t)ς − (n1 + σ)] + Π,

b′ =[ςξS(t)− (σ + q1 + n2)]E(t) + S(t)I(t)(1− d)ς,

c′ =− (σ + Θ + q2)I(t) + q1E(t).
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The Jacobian matrix evaluated at Df is expressed as

JDf
=

−(σ + n1) − Πςξ
σ+n1

−Πς(1−d)
σ+n1

0 Πςξ
σ+n1

− (σ + q1 + n2) Πς(1−d)
σ+n1

0 q1 −(σ + Θ + q2)

 ,
or

JDf
=

−x −Πςξ
x −Πς(1−d)

x

0 Πςξ
x − z

Πς(1−d)
x

0 q1 −y

 .
Let x = σ + n1, y = σ + Θ + q2, and z = σ + q1 + n2. To find the eigenvalues, we solve det(λI − JDf

) = 0. It is
evident that λ1 = −x < 0. The remaining two eigenvalues of the system can be determined by solving det(λI − J∗Df

),

as detailed below:

det(λ− J∗Df
) = det

λ− (Πςξ
x − z

)
−Πς(1−d)

x

−q1 λ+ y

 .
The characteristic equation for J∗Df

can be expressed as:

λ2 +K1λ+K0 = 0,

where

K1 =y + z − Πςξ

x
,

K0 =yz +
Πςq1d

x
− Πς

x
(q1 + ξy).

Based on the Routh-Hurwitz criteria (R-H.C) , if K1 > 0 and K0 > 0, then all eigenvalues will possess negative
real parts. Consequently, with K1 > 0 and K0 > 0, we can ascertain that the infection-free stable point is locally
asymptotically stable when Br < 1, and not stable when Br > 1. This finding concludes the proof. �

6.3. Endemic stable point. If Br > 1, then there will be found an endemic stable point Dp such as Dp =
(Sp, Ep, Ip,Rp), where

Sp =
Π

xBr
,

Ep =
Π

z

(
1− 1

Br

)
,

Ip =
Πq1

yz

(
1− 1

Br

)
,

Rp =
Π

σ

[
n1

xBr
+

1

z

(
n2 +

q1

y

)(
1− 1

Br

)]
.

Lemma 6.3. The system represented by Dp reveals local asymptotic stability whether Br > 1 and not stable if Br < 1.

Proof. The Jacobian matrix computed at Dp is formulated as:

JDp
=

−xyzBr

Π − x − Πςξ
xBr

− (1−d)Πς
xBr

xyzBr

Π
Πςξ
xBr
− z (1−d)Πς

xBr

0 q1 −y

 ,
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or

JDp
=

−J1 − J2 −J3 −J4

J1 J3 − J5 J4

0 J6 −J7

 ,
where

J1 =
xyzBr

Π
, J2 = x, J3 =

Πςξ

xBr
, J4 =

(1− d)Πς

xBr
, J5 = z, J6 = q1, J7 = y.

To determine the eigenvalues, we solve the characteristic equation det(JDp − λI) = 0, with JDp representing the
Jacobian matrix. Hence,

λ3 + C2λ
2 + C1λ+ C0 = 0,

where

C2 =
xyzBr

Π
+

Πςξ

xBr
+ x+ y + z,

C1 = xy + yz + xz +
xy2zBr

Π
+
xyz2Br

Π
+

Π2ς2ξd

a2Br
2 +

Πςz

xBr
+

Πςq1

xBr
− Πςξy

xBr
− Πςξ

Br
− Π2ς2ξ

x2Br
2 −

Πςdz

xR0
− Πςq1

xBr
,

C0 =
xy2z2Br

Π
+ 2ςq1dyz + xyz − Πςξy

Br
(y + q1)− 2ςq1yz.

Using the R-H.C, when C1 > 0, C0 > 0, and C1C2 > C0, all eigenvalues exhibit negative real parts. With these
conditions satisfied, if Br > 1, then the endemic stable point is deemed locally asymptotically stable, while if Br < 1,
it is unstable. This completes the proof. �

6.4. Global stability.

Lemma 6.4. If Br ≤ 1, then the infection-free stable point Df is globally asymptotically stable.

Proof. Taking into account the Lyapunov function [5] defined in R4
+, it is expressed as follows:

LDf
(S, E , I,R) = Sf

(
S
Sf
− ln

(
S
Sf

)
− 1

)
+ E +

z

q1
I. (6.7)

By implementing the ABC fractional time derivative on each side of mathematical expression (6.7) yields

ABCDη
t (LDf

) =

(
1− Sf

S

)
ABCDη

t (S) + ABCDη
t (E) +

z

q1

ABCDη
t (I).

Utilize (4.1), we have

ABCDη
t (LDf

) =Π− xS − Sf
S

[Π− ςS(ξE + (1− d)I)− xS]− yz

q1
I

=− xS − ΠSf
S

+ ςSf (ξE + (1− d)I)− yz

q1
I

=− xS − ΠSf
S

+ xyz

(
Sf
S

)
Br −

yz

q1
I

≤ − xS − ΠSf
S

+Br −
yz

q1
I.

It is evident that ABCDη
t (LDf

) ≤ 0. We conclude that the infection-free stable point Df is globally asymptotically
stable. �

Lemma 6.5. If Br ≥ 1, then the endemic stable point Dp is globally asymptotically stable.
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Proof. Let’s examine the Lyapunov function defined on R4
+:

LDp
=ρ1

(
S − Sp − Sp ln

S
Sp

)
+ ρ2

(
E − Ep − Ep ln

E
Ep

)
+ ρ3

(
I − If − If ln

I
If

)
+ρ4

(
R−Rf −Rf ln

R
Rf

)
,

(6.8)

where

ρ1 =
1

x
, ρ2 =

Br − 1

z
, ρ3 =

1

y
, ρ4 =

1

σ
.

The ABC fractional time derivative of (6.8) derived as:

ABCDη
t (LDp) = ρ1

(
1− Sp

S

)
ABCDη

t (S) + ρ2

(
1− Ep

E

)
ABCDη

t (E)

+ ρ3

(
1− Ip

I

)
ABCDη

t (I)

+ ρ4

(
1− Rp

R

)
ABCDη

t (R)

= ρ1

(
1− Sp

S

)
(Π− ςS(ξE + (1− d)I − xS))

+ ρ2

(
1− Ep

E

)
(ςS(ξE + (1− d)I − zE))

+ ρ3

(
1− Ip

I

)
(q1E − yI)

+ ρ4

(
1− Rp

R

)
(n1S + n2E + q2I − σR).

(6.9)

Exerting the endemic conditions as

Π− ςSp(ξEp + (1− d)Ip) = xSp,
ςSp(ξEp + (1− d)Ip) = zEp,
q1Ep = yIp,
n1Sp + n2Ep + q2Ip = σRp.

Therefore, (6.9) becomes

ABCDη
t (LDp) ≤ 1

x

(
1− Sp

S

)
(xSp − xS) +

(
Br − 1

z

)
(zEp − zE)

+
1

y

(
1− Ep

E

)
(yIp − yI) +

1

σ

(
1− Rp

R

)
(σRp − σR)

=− (S − Sp)2

S
− (E − Ep)2

E
(Br − 1)− (I − Ip)2

I
− (R−Rp)2

R
.

Clearly, ABCDη
t (LDp

) ≤ 0. Therefore, endemic stable point Dp is globally asymptotically stable. �

7. Sensitivity analysis

Conducting sensitivity analysis is crucial for assessing how the variable Br responds to changes in model parameters.
This analysis helps pinpoint which parameters of Br significantly influence observed outcomes.
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Table 2. Sensitivity Results.

Parameters S.index Values Parameters S.index Values
ς Sς 0.9984525824 Π SΠ 0.9999999990
ξ Sξ 0.005231744158 σ Sσ -1.740577486
Θ SΘ -0.01408450704 q1 Sq1 0.7179594473
q2 Sq2 -0.3508133672 d Sd -0.9947682551
n1 Sn1 -0.6158277582 n2 Sn2 0

7.1. Definition (Normalized forward sensitivity index). The normalized forward sensitivity index of Br regards
to the defined parameter Π is given by [? ],

SΠ =

(
∂Br
∂Π

)(
Π

Br

)
.

In order to assess sensitivity indices, various methodologies can be employed, including the linearization method,
Latin hypercube sampling, and direct differentiation method. The outcomes from each approach can be analyzed to
understand the system’s sensitivity. In this study, we specifically employed the direct differentiation method. These
sensitivity indices offer insights about which parameters positively or negatively impact the system, which in turn helps
in formulating effective disease management policies. In Table 1, it is observed that ς,Π, ξ, and q1 positively influence
Br, as indicated. Conversely, σ,Θ, q2, d, n1, and n2 have a negative impact on Br. Changes in these parameter values
lead to either an increase or decrease in Br. For instance, a 10% increase in these parameters results in approximately
9.99%, 10%, 0.0523%, 7.1795% increase in Br, as shown in Table 1. Conversely, there is an approximate decrease
of 17.4058%, 0.1408%, 3.5081%, 9.948%, 6.1582%, 10% in the value of Br if adjustments are made to the indices for
parameters SΘ, Sn1

, Sn2
, Sd, Sq2 , Sσ.

8. PRCC Test

To explore the relationships among the parameters of (4.1), Latin hypercube sampling (LHS) is utilized, a method
for creating random parameter sets that comprehensively sample the variable space [2, 22, 28]. We analyzed the
uncertainty in model parameters using LHS sampling in conjunction with partial rank correlation coefficients (PRCCs)
[25]. Each uncertain variable is assumed to follow a uniform distribution inside a certain range, usually 30% of its
reference point. A LHS analysis was performed by drawing 1000 random samples from these parameter distributions.
Afterwards, PRCCs were computed for each of the specified parameters (Π, ξ, ς, σ, γ, d, q1, q2, n1, n2) in relation to the
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(a) (b)

Figure 1. (a)Behaviour of Br against q1 and q2, (b) Behaviour of Br against n2 and Θ.

(a) (b)

Figure 2. (a)Behaviour of Br against q2 and n2, (b) Behaviour of Br against Θ and Π.

outcome variable, the (Br). The direction of the PRCCs signifies whether changes in the input parameters have a
positive or negative impact on the related output variable. The most significant variables are those with PRCC results
satisfying |PRCC| > 0.4, with a negative sign indicating an inverse relationship. A correlation between the output
variable and the input variables is considered moderate if 0.2 < |PRCC| < 0.4, and weak otherwise [26]. Figure (7)
highlight that the parameters ”Π, ς, n1, q1, n2, q2” have the major consequence on the outcome function, specifically
the reproduction number (Br).
Conversely, the parameters ”ξ, d, σ,Θ” demonstrate an insignificant impact on Br. Contagion rate (ς) are principal
factors that contribute to inflation in Br. Variables that result in a decrease in Br include the proportion of exposed
individuals developing infections (ξ), the restoration frequency of infectious individuals (q2), the death frequency of
infectious individuals (σ), q2 is the rate of transmission moved from infectious position to the recovered position and
vaccination rate for susceptible and exposed are (n1) and (n2), respectively.
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(a) (b)

Figure 3. (a)Behaviour of Br against d and ς, (b)Behaviour of Br against n2 and q1.

(a) (b)

Figure 4. (a) Behaviour of Br against d and q2, (b)Behaviour of Br against q2 and ξ.

9. Numerical Scheme for the SEIR Model using Atangana-Baleanu-Caputo derivative

Let us now examine the scheme utilizing the Atangana-Baleanu-Caputo derivative (Atangana Toufik method)[27].
We will use this scheme for simulating our SEIR fractional derivative model (4.1) as follows:

Sp+1 = S0 +
1− η
ABC(η)

ψ1(tp, A(tp))

+
η

ABC(η)

k∑
r=0

[
hηψ1(tr, Ar)

Γ(η + 2)
((η − r + k + 2)(1− r + k)η − (2η − r + 2 + k)(−r + k)η)

− hηψ1(tr−1, Ar−1)

Γ(η + 2)
(−(−r + k)η(η − r + 1 + k) + (1− r + k)η+1)

]
,
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(a) (b)

Figure 5. (a) Behaviour of Br against Θ and ξ, (b)Behaviour of Br against q2 and ς.

(a) (b)

Figure 6. (a)Behaviour of Br against n2 and ς, (b)Behaviour of Br against q1 and ς.

Ep+1 = E0 +
1− η
ABC(η)

ψ2(tp, A(tp))

+
η

ABC(η)

k∑
r=0

[
hηψ2(tr, Ar)

Γ(η + 2)
((η − r + k + 2)(1− r + k)η − (2η − r + 2 + k)(−r + k)η)

− hηψ2(tr−1, Ar−1)

Γ(η + 2)
(−(−r + k)η(η − r + 1 + k) + (1− r + k)η+1)

]
,
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Figure 7. PRCCs test results, demonstrates how the model parameters influence the dependence of Br.

Table 3. Realistic Values of Parameters.

Variables Values variables Values
σ [DFE: 0.9, EE: 0.001] ς 0.0139
ξ 0.001 Π 500
d 0.5 n1 0.5
n2 0.5 Θ 0.02
q1 0.54 q2 0.5

Ip+1 = I0 +
1− η
ABC(η)

ψ3(tp, A(tp))

+
η

ABC(η)

k∑
r=0

[
hηψ3(tr, Ar)

Γ(η + 2)
((η − r + k + 2)(1− r + k)η − (2η − r + 2 + k)(−r + k)η)

− hηψ3(tr−1, Ar−1)

Γ(η + 2)
(−(−r + k)η(η − r + 1 + k) + (1− r + k)η+1)

]
,

Rp+1 = R0 +
1− η
ABC(a)

ψ4(tp, Ap))

+
η

ABC(η)

k∑
r=0

[
haψ4(tr, Ar)

Γ(η + 2)
((η − r + k + 2)(1− r + k)η − (2η − r + 2 + k)(−r + k)η) (9.1)

− hηψ4(tr−1, Ar−1)

Γ(η + 2)
(−(−r + k)η(η − r + 1 + k) + (1− r + k)η+1)

]
.

10. Conclusions

This research investigates the utilization of fractional-order derivatives employing the ABC operator, where the
fractional order is confined within the range 0 < η ≤ 1, applied to the SEIR model. We computed the approximate
values of Br as 0.4891 in the case of infection-free scenario and 6.9193 for the endemic scenario. Global stability of
stable points was demonstrated by constructing a Lyapunov function. We established the existence and uniqueness of
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Figure 8. Numerical solutions of the system (4.1) using fractional order ABC derivative with Sf =
357.1429,Sp = 144.2357. Left: The susceptible profile S(t) for Df is shown on the left side using the
ABC fractional derivative, while the susceptible profile S(t) for Dp is displayed on the right side using
the ABC fractional derivative.

Figure 9. Numerical solutions of system (4.1) utilizing fractional order ABC derivative, with Ef = 0
and Ep = 410.8914. Left: The exposed profile E(t) for Df is depicted on the left side, employing the
ABC fractional derivative, while the exposed profile E(t) for Dp is presented on the right side using
the ABC fractional derivative.

Figure 10. Numeric solutions for system (4.1) are obtained using a fractional order ABC derivative
with If = 0 and Ip = 425.8759. On the left, the infected profile I(t) for Df is shown utilizing the
ABC fractional derivative, while on the right, the infected profile I(t) for Dp is depicted using the
ABC fractional derivative.
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Figure 11. Numerical solutions for system (4.1) are obtained using a fractional-order ABC derivative
with Rf = 198.4127 and Rp = 4.9050 ∗ 105. On the left, the recovered profile R(t) for Df is
depicted utilizing the ABC fractional derivative, while on the right, the recovered profile R(t) for Dp

is illustrated using the ABC fractional derivative.

global positive solutions. Specifically, we verified both local and global infection-free stable points for Br < 1, and the
condition for an endemic stable point is Br > 1. The utilization of fractional-order derivatives in modeling provides
improved efficiency compared to integer-order derivatives, attributed to the flexibility in selecting derivative orders
that offer an additional degree of freedom.
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