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Abstract
In the present work, the generalized fractional kinetic equations (FKE) incorporating the composition of Multi-

Index Bessel function and Srivastava polynomial are expressed with their fractional derivatives. Moreover, by

employing the idea of the Laplace transform, solutions are obtained in terms of the Mittag-Leffler function.
Finally, a numerical and graphical interpretation of the outcome is displayed.
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1. Introduction

The importance of special functions as a tool for mathematical analysis is widely acknowledged by physicists and
engineers (see [26]). Various special functions are used to describe the solution of many real-world problems with the
involvement of differential equations of different orders. Many researchers have used a variety of special functions in
defining the problems of various domains as well as identifying the solutions of a variety of differential equations of
integer order [1, 4, 7, 8, 27] and fractional order [14, 25, 31, 34, 35]. Fractional order calculus (FOC), which involves the
integration and differentiation under an arbitrary order, emerges in different realms of engineering, management, and
applied sciences. During the past few decades, fractional differential equations (FDE) have received more attention
and importance and have been demonstrated to be significant tools in the modeling of various types of phenomena
in different areas like economy, electrochemistry, viscoelasticity, porous media, electromagnetic, engineering, physics,
etc. Therefore, it is significant to study the differential equations of integer/fractional order to enhance the research
visibility and the applications in the relevant areas. In this order, the current manuscript contains a study on a specific
fractional differential equation, the fractional kinetic equation.

2. Fractional Kinetic Equation

The kinetic equation is a system of differential equations where the rate of change of the chemical composition of
a star is defined for all orders in terms of the reaction rates for production and destruction. Due to its significance
in the realm of applied science such as dynamical systems, mathematical physics, control theory, astrophysics, and
various engineering problems, fractional kinetic equations [FKE] and their solution have received more attention from
several researchers. The extension and generalization of FKE containing a variety of special functions have been found
in various works ([3, 6, 9, 12, 13, 17, 19]).
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To the enormous significance of kinetic equations and to explore their applications in mathematics and science,
Haubold and Mathai [11] established a fractional generalization of the kinetic equation involving the rate of change of
reaction ς = ςt, rate of destruction Q = Q(ς) and rate of production P = P (ς) as follows:

dς

dt
= −Q(ςt) + P (ςt), (2.1)

where ς = (ςt) represent a function, explained by ςt(t
∗) = ς(t− t∗), t∗ > 0.

By neglecting the spatial fluctuations and inhomogeneities in the amount ςt, authors have taken the particular case
of (2.1) which is represented in the form of the differential equation such as:

dςi
dt

= −ciςi(t), (2.2)

with the initial condition ςi(t = 0) = ς0, the number of density of a species i at the time t = 0 and ci > 0.
By leaving the index i and solving (2.2), they got

ς(t)− ς = −c 0D
−1
t ς(t). (2.3)

where c is a constant.
The operator 0D

−1
t is the specific case of Riemann-Liouville fractional integral operator 0D

−v
t ς(t), which is defined

as

0D
−v
t f(x) =

1

Γ(v)

∫ t

0

(t− u)vf(u)du, x > 0,<(v) > 0. (2.4)

For more details, one may refer [18].
The generalized form of (2.3) was expressed in the following way

ς(t)− ς0 = −cv0D
−v
t ς(t), (2.5)

and, its solution was given as

ς(t) = ς0

∞∑
j=0

(−1)j

Γ(νj + 1)
(ct)νj . (2.6)

Furthermore, the most generalized form of FKE given by Saxena and Kalla [28] as

ς(t)− ς0f(t) = −cv 0D
−v
t ς(t), <(v) > 0, c > 0, (2.7)

where c is constant and f(t) ∈ L(0,∞).
For the present work, the following functions and results are required.

(a)The Srivastava Polynomial [24] is mentioned as

spw(ξ) =

[w/p]∑
r=0

(−w)pr
r!

Aw,r(ξ)
r, p ∈ N, w ∈ N0, (2.8)

where N0 = N ∪ {0} and the coefficients Aw,r(w, r ∈ N0) are arbitrary real or complex constants.
(b) The Multi-Index Bessel function [5] is defined as:

=(τi)m,α
(ζi)m,k

(z) =

∞∑
µ=0

(α)µk∏m
i=1 Γ(τiµ+ ζi + 1)µ!

(−z)µ, m ∈ N. (2.9)

where τi, ζi (i = 1, 2, ,m); α ∈ C, <(α) > 0, <(ζ) > −1,
∑m
i=1<(ζi) > max{0;<(k)− 1}, k > 0.

Here, the pochhammer symbol (α)n is expressed as:

(α)n =

{
1, n = 0,
α(α+ 1)...(α+ n+ 1), n ∈ N. (2.10)

(c) Fractional Derivative of Multi-Index Bessel function
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The fractional order derivative [20] of order λ of the function f(t) = tβ is defined as:

0D
λ
t t
β =

Γ(β + 1)

Γ(β − λ+ 1)
tβ−λ; <(β) > −1, 0 < <(λ) < 1, t > 0. (2.11)

So, in view of (2.9), we have

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(t)
)

=

∞∑
µ=0

(−1)µ(α)µkΓ(µ+ 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ! Γ(µ− λ+ 1)

(t)µ−λ. (2.12)

(d) Fractional Derivative of the composition of Multi-Index Bessel function and Srivastava Polynomial
Using the definition of the fractional derivatives, we have

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(t)spw(t)

)
=

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ! Γ(µ+ r − λ+ 1)

Aw,r(t)
µ+r−λ. (2.13)

Using the Laplace Transform ([29]) on (2.13), we have

L
[

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(t)spw(t)

)]
=

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(µ+r−λ+1). (2.14)

Various authors proposed many FKEs involving variety of special functions ([2, 15, 21, 23, 30, 32, 37]) and these
equations are of great importance according to the concerned function involved therein in the related application
domain.
In the present work, we proffer a generalized form of FKE involving the composition of Srivastava polynomial [24] and
multi index Bessel function [10, 16, 22, 33, 38, 39] with their fractional derivatives for the dominance and concernment
of the kinetic equation in several problems of astrophysics and obtain a solution by the approach of Laplace transform.
As the Srivastava polynomial is a generalized polynomial and can be reduced in various classical orthogonal poly-
nomials and generalized hypergeometric polynomials (such as Hermite polynomial, Jacobi polynomials, Gagenbauer
polynomials, Legendre polynomials, Tchebycheff polynomials, Laguerre polynomials, Bessel polynomials, Gould Hop-
per polynomials etc.). the application work of these polynomials in various domains can be seen in the related literature
evidently. Specifically, the application of Bessel’s function can be seen in wave propogation, cylinderical coordinate
systems, rotational flows, heat conduction, vibration theory, diffusion problems etc. Therefore, it is evident that the
composition of the duo (Srivastava polynomial and Bessel’s function) may lead to many known and new applications
through the FKEs in several domains of science, engineering and applied mathematics.

3. Main Results

In this section, some new FKEs involving the composition of multi-index Bessel function and the Srivastava poly-
nomial are demonstrated and their solutions are calculated by the application of Laplace transform [29]. Further, the
results are interpreted numerically and graphically by using various appropriate assignments of parametric values.

Theorem 3.1. If c > 0, v > 0, p ∈ N, Aw,r(w, r ∈ N0), N0 = N∪ {0}, τi, ζi (i = 1, 2, ...,m),m ∈ N; α ∈ C, <(α) >
0,<(ζ) > −1,

∑m
i=1<(ζi) > max{0;<(k)− 1}, k > 0, then the solution of the FKE

ς(t)− ς0
{
=(τi)m,α

(ζi)m,k
(t)spw(t)

}
= −cv 0D

−v
t ς(t), (3.1)

is provided by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
µ+rEv,µ+r+1(−cvtv), (3.2)

where Ev,µ+r+1(.) is the Mittag-Leffler function [40].
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Proof. By employing the Laplace transform on (3.1), we get

ς(s) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(µ+r+1)(1 + cvs−v)−1

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(µ+r+1)

∞∑
n=0

(−cvs−v)n

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r

∞∑
n=0

(−cv)n(s)−(µ+r+1+vn). (3.3)

Now taking the inverse Laplace transform of (3.3), we have

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
µ+r

∞∑
n=0

(−cvtv)n

Γ(vn+ µ+ r + 1)

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
µ+rEv,µ+r+1(−cvtv).

�

Theorem 3.2. If c > 0, v > 0, p ∈ N, Aw,r(w, r ∈ N0), N0 = N∪ {0}, τi, ζi (i = 1, 2, ...,m), m ∈ N, α ∈ C,<(α) >
0,<(ζ) > −1,

∑m
i=1<(ζi) > max{0;<(k)− 1}, k > 0, then the solution of the FKE

ς(t)− ς0
{
=(τi)m,α

(ζi)m,k
(cvtv)spw(cvtv)

}
= −dv 0D

−v
t ς(t), (3.4)

is given as

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)Ev,(v(µ+r)+1)(−dvtv). (3.5)

Proof. By employing the Laplace transform on (3.4), we get

ς(s) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(v(µ+r)+1)(c)v(µ+r)(1 + dvs−v)−1

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(c)
v(µ+r)

∞∑
n=0

(−dvs−v)n(s)−(v(µ+r)+1)

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(c)
v(µ+r)

∞∑
n=0

(−dv)n(s)−(v(µ+r)+1+vn).

Now, taking inverse Laplace transform, we obtain

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(c)
v(µ+r)

∞∑
n=0

(−dv)n(t)v(µ+r)+vn

Γ(v(µ+ r) + vn+ 1)

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)Ev,(v(µ+r)+1)(−dvtv).

�
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Theorem 3.3. If c > 0, v > 0, p ∈ N, Aw,r (w, r ∈ N0), N0 = N∪{0}, τi, ζi (i = 1, 2, ...,m), m ∈ N, α ∈ C, <(α) >
0,<(ζ) > −1,

∑m
i=1<(ζi) > max{0;<(k)− 1}, k > 0, then the solution of FKE

ς(t)− ς0
(

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(t)spw(t)

))
= −cv 0D

−v
t ς(t). (3.6)

is given by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
µ+r−λEv,µ+r−λ+1(−cvtv). (3.7)

Proof. By employing the Laplace transform on (3.6), we get

ς(s) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(µ+r−λ+1)(1 + cvs−v)−1.

By applying the similar procedure and calculation as we have used in Theorem 3.1 and 3.2, and taking the inverse
Laplace transform, we get

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(µ+ r + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
µ+r−λEv,µ+r−λ+1(−cvtv).

�

Theorem 3.4. If c > 0, v > 0, p ∈ N, Aw,r(w, r ∈ N0), N0 = N∪{0}, τi, ζi (i = 1, 2, ...,m), m ∈ N, α ∈ C,<(α) >
0,<(ζ) > −1,

∑m
i=1<(ζi) > max{0;<(k)− 1}, k > 0, then the solution of the FKE

ς(t)− ς0
{

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(cvtv)spw(cvtv)

)}
= −dv 0D

−v
t ς(t), (3.8)

is given by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)t−λEv,v(µ+r)−λ+1(−dvtv). (3.9)

Proof. By employing the Laplace transform on Equation (3.8), we get

ς(s) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(v(µ+r)−λ+1)(c)v(µ+r)(1 + dvs−v)−1

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(s)
−(v(µ+r)−λ+1)(c)v(µ+r)

∞∑
n=0

(−dvs−v)n

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(c)
v(µ+r)

∞∑
n=0

(−dv)n(s)−(v(µ+r)−λ+1+vn).

Now, taking inverse Laplace transform, and simplifying, we get

= ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)t−λEv,v(µ+r)−λ+1(−dvtv).

�
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4. Particular Cases

(1) Putting d = c in Theorem 3.2, the FKE is reduced into the following form

ς(t)− ς0
{
=(τi)m,α

(ζi)m,k
(cvtv)spw(cvtv)

}
= −cv 0D

−v
t ς(t), (4.1)

and its solution is given by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)Ev,(v(µ+r)+1)(−cvtv). (4.2)

(2) Putting c = 1 in Theorem 3.2, the FKE is reduced into the following form

ς(t)− ς0
{
=(τi)m,α

(ζi)m,k
(tv)spw(tv)

}
= −dv 0D

−v
t ς(t), (4.3)

and its solution is given by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
µ=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
v(µ+r)Ev,(v(µ+r)+1)(−dvtv). (4.4)

(3) Putting d = c in Theorem 3.4, the FKE is reduced into the following form

ς(t)− ς0
{

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(cvtv)spw(cvtv)

)}
= −cv 0D

−v
t ς(t), (4.5)

and its solution is given by

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(ct)
v(µ+r)t−λEv,v(µ+r)−λ+1(−cvtv). (4.6)

(4) Substituting c = 1 in Theorem 3.4, the FKE is reduced into the following form

ς(t)− ς0
{

0D
λ
t

(
=(τi)m,α

(ζi)m,k
(tv)spw(tv)

)}
= −dv 0D

−v
t ς(t), (4.7)

and the solution is obtained as

ς(t) = ς0

∞∑
µ=0

[w/p]∑
r=0

(−w)pr
r!

(−1)µ(α)µkΓ(v(µ+ r) + 1)∏m
i=1 Γ(τiµ+ ζi + 1)µ!

Aw,r(t)
v(µ+r)−λEv,v(µ+r)−λ+1(−dvtv). (4.8)

(5) If we put k = 0, τ = m = 1, ζ = v, z = t2

4 in (2.9), then the Multi-index Bessel function reduced in well-known
Bessel function [26] as

=1,α
v,0

( t2
4

)
=
(2

t

)v
=v(t); t, v ∈ C, t 6= 0,<(v) > −1, (4.9)

where =v(t) is the well known Bessel function

=v(t) =

∞∑
ρ=0

(−1)ρ

ρ! Γ(v + ρ+ 1)

( t
2

)v+2ρ

, (4.10)

Hence

=1,α
v,0 (t) =

∞∑
ρ=0

(−1)ρ

ρ! Γ(v + ρ+ 1)
(t)ρ. (4.11)

Further, using (4.11), in Theorem 3.1-3.4, we get the results as
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Corollary 4.1. From Theorem 3.1, the FKE is reduced as

ς(t)− ς0
(
=1,α
v,0 (t)spw(t)

)
= −cv 0D

−v
t ς(t), (4.12)

and its solution is

ς(t) = ς0

[w/p]∑
r=0

(−w)pr
r!

∞∑
ρ=0

(−1)ρΓ(ρ+ r + 1)

ρ!Γ(v + ρ+ 1)
(t)ρ+rEv,ρ+r+1(−cvtv). (4.13)

Corollary 4.2. From Theorem 3.2, the FKE is reduced as

ς(t)− ς0
(
=1,α
v,0 (cvtv)spw(cvtv)

)
= −dv 0D

−v
t ς(t), (4.14)

and its solution is

ς(t) = ς0

[w/p]∑
r=0

(−w)pr
r!

∞∑
ρ=0

(−1)ρΓ(v(ρ+ r) + 1)

ρ!Γ(v + ρ+ 1)
(ct)v(ρ+r)Ev,v(ρ+r)+1(−dvtv). (4.15)

Corollary 4.3. From Theorem 3.3, the FKE is reduced as

ς(t)− ς0 0D
λ
t

(
=1,α
v,0 (t)spw(t)

)
= −cv 0D

−v
t ς(t), (4.16)

and its solution is

ς(t) = ς0

[w/p]∑
r=0

(−w)pr
r!

∞∑
ρ=0

(−1)ρΓ(ρ+ r + 1)

ρ!Γ(v + ρ+ 1)
(t)ρ+r−λEv,ρ+r−λ+1(−cvtv). (4.17)

Corollary 4.4. From Theorem 3.4, the FKE is reduced as

ς(t)− ς0 0D
λ
t

(
=1,α
v,0 (cvtv)spw(cvtv)

)
= −dv 0D

−v
t ς(t), (4.18)

and its solution is

ς(t) = ς0

[w/p]∑
r=0

(−w)pr
r!

∞∑
ρ=0

(−1)ρΓ(v(ρ+ r) + 1)

ρ!Γ(v + ρ+ 1)
(ct)v(ρ+r)(t)−λEv,v(ρ+r)−λ+1(−dvtv). (4.19)

(6) By using suitable parametric values, the Srivastava polynomial spw(.) reduces to unity, then, the reduced result
is comparable with the known result due to Suthar et al. [36].

More certain cases of the outcomes stated in Theorems 3.1-3.4 may be obtained by suitable parametric values, but
we don’t put them down here due to lack of space.

5. Numerical and Graphical Interpretation of Results

For different assignments of parametric values, the numerical results for Theorem 3.1-3.4 are exhibited in Table
1-4. Further, the behaviour of the results is presented by the 2D & 3D graphs related to the theorems in Figure 1-4
respectively.

6. Conclusion

The concept of fractional calculus extends the concept of integer order calculus in a deeper way to understand various
phenomenon of real world problems and several basic concepts of science. Recently research related to the area of
fractional calculus has played a crucial role in numerous disciplines, including control systems, elasticity, electric
drives, circuit systems, continuum mechanics, heat transfer, quantum mechanics, fluid mechanics, signal analysis,
biomathematics, biomedicine, social systems and bioengineering.
In this work, four new fractional kinetic equations (FKEs) are proferred and their solutions are obtained by the most
popular transform, the Laplace transform. The importance of the Kinetic equations are very well-known in the science
fraternity. In this sequence, the application of these equations can be applied in the gas laws (like Boyle’s law, Charle’s
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Figure 1. 3D & 2D graphs for ζ(t).

Figure 2. 3D & 2D graphs for ζ(t).

Figure 3. 3D & 2D graphs for ζ(t).
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Table 1. ς(t) for t and v.

Fix v = 0.5 Fix v = 0.9 Fix v = 1.3 Fix v = 1.7
t ς(t) ς(t) ς(t) ς(t)

3.0 4.37732E-80 -5.2813E-78 9.05974E-79 -1.1677E-79
3.2 1.23784E-79 -9.07797E-78 1.45437E-78 -1.82549E-79
3.4 3.25493E-79 -1.52669E-77 2.3028E-78 -2.82574E-79
3.6 8.04131E-79 -2.5197E-77 3.60506E-78 -4.3396E-79
3.8 1.88199E-78 -4.09138E-77 5.59123E-78 -6.62256E-79
4.0 4.20083E-78 -6.54977E-77 8.605E-78 -1.0056E-78
4.2 8.99268E-78 -1.03554E-76 1.31591E-77 -1.52088E-78
4.4 1.85476E-77 -1.61926E-76 2.00172E-77 -2.29301E-78
4.6 3.70016E-77 -2.50715E-76 3.03152E-77 -3.44862E-78
4.8 7.16352E-77 -3.84749E-76 4.57396E-77 -5.17654E-78
5.0 1.3497E-76 -5.8565E-76 6.87892E-77 -7.75835E-78
5.2 2.4809E-76 -8.84768E-76 1.03158E-76 -1.16137E-77
5.4 4.45832E-76 -1.32727E-75 1.54292E-76 -1.73676E-77
5.6 7.84735E-76 -1.97785E-75 2.30197E-76 -2.59508E-77
5.8 1.3551E-75 -2.92856E-75 3.42603E-76 -3.87476E-77
6.0 2.29902E-75 -4.30961E-75 5.08634E-76 -5.78152E-77
6.2 3.83693E-75 -6.30402E-75 7.53192E-76 -8.6207E-77
6.4 6.3065E-75 -9.1675E-75 1.11234E-75 -1.28449E-76
6.6 1.02186E-74 -1.32551E-74 1.63806E-75 -1.91237E-76
6.8 1.63378E-74 -1.90567E-74 2.40498E-75 -2.84459E-76
7.0 2.57953E-74 -2.72446E-74 3.51969E-75 -4.22686E-76

Figure 4. 3D & 2D graphs for ζ(t).

law, and Gay-Lussac’s law), behaviour of gases, molecule energy, hydrodynamics, plasma physics, semiconductors,
flying of airplanes, windmills and hydropower plants etc.
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Table 2. ς(t) for ct and v.

Fix v = 0.5 Fix v = 0.9 Fix v = 1.3 Fix v = 1.7
t ς(t) ς(t) ς(t) ς(t)

3.0 -1.275E-100 3.68761E-93 -1.24267E-92 6.61107E-93
3.2 -2.3605E-100 5.71453E-93 -1.95195E-92 1.04929E-92
3.4 -4.305E-100 8.65624E-93 -2.99223E-92 1.62369E-92
3.6 -7.6711E-100 1.28516E-92 -4.48958E-92 2.45712E-92
3.8 -1.3316E-99 1.87435E-92 -6.60957E-92 3.64563E-92
4.0 -2.2511E-99 2.69055E-92 -9.56756E-92 5.31479E-92
4.2 -3.7104E-99 3.80755E-92 -1.36416E-91 7.62732E-92
4.4 -5.9728E-99 5.31964E-92 -1.91881E-91 1.07926E-91
4.6 -9.4068E-99 7.34666E-92 -2.66612E-91 1.50782E-91
4.8 -1.45208E-98 1.00401E-91 -3.6637E-91 2.08243E-91
5.0 -2.20065E-98 1.35909E-91 -4.9842E-91 2.84611E-91
5.2 -3.27941E-98 1.82382E-91 -6.71897E-91 3.85307E-91
5.4 -4.81201E-98 2.42812E-91 -8.98238E-91 5.17128E-91
5.6 -6.96129E-98 3.20924E-91 -1.19173E-90 6.88577E-91
5.8 -9.9397E-98 4.21347E-91 -1.57014E-90 9.10254E-91
6.0 -1.40222E-97 5.49819E-91 -2.05557E-90 1.19534E-90
6.2 -1.95618E-97 7.13432E-91 -2.67539E-90 1.5602E-90
6.4 -2.70087E-97 9.20938E-91 -3.46347E-90 2.02507E-90
6.6 -3.69333E-97 1.18311E-90 -4.46162E-90 2.61501E-90
6.8 -5.0054E-97 1.51319E-90 -5.72145E-90 3.36091E-90
7.0 -6.72701E-97 1.92742E-90 -7.30648E-90 4.30085E-90
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Table 3. ς(t) for t and v.

Fix v = 0.5 Fix v = 0.9 Fix v = 1.3 Fix v = 1.7
t ς(t) ς(t) ς(t) ς(t)

3.0 -4.77098E-98 2.54316E-93 -2.43061E-93 1.0537E-93
3.2 -1.4655E-97 4.15714E-93 -3.78085E-93 1.60708E-93
3.4 -4.12126E-97 6.68562E-93 -5.82836E-93 2.43786E-93
3.6 -1.0748E-96 1.06028E-92 -8.92008E-93 3.68283E-93
3.8 -2.62752E-96 1.66131E-92 -1.3573E-92 5.54605E-93
4.0 -6.07431E-96 2.57564E-92 -2.05566E-92 8.33194E-93
4.2 -1.33752E-95 3.95586E-92 -3.1015E-92 1.24945E-92
4.4 -2.8218E-95 6.02464E-92 -4.66462E-92 1.87107E-92
4.6 -5.73197E-95 9.10478E-92 -6.99655E-92 2.799E-92
4.8 -1.1257E-94 1.36614E-91 -1.0469E-91 4.18368E-92
5.0 -2.14485E-94 2.03606E-91 -1.56298E-91 6.24925E-92
5.2 -3.97661E-94 3.01498E-91 -2.32839E-91 9.32937E-92
5.4 -7.19241E-94 4.4368E-91 -3.46094E-91 1.39204E-91
5.6 -1.27185E-93 6.48954E-91 -5.13248E-91 2.07601E-91
5.8 -2.20307E-93 9.43546E-91 -7.59256E-91 3.09433E-91
6.0 -3.74432E-93 1.3638E-90 -1.12019E-90 4.60925E-91
6.2 -6.25326E-93 1.95977E-90 -1.64797E-90 6.86079E-91
6.4 -1.02752E-92 2.79992E-90 -2.41692E-90 1.02033E-90
6.6 -1.6631E-92 3.97735E-90 -3.53293E-90 1.51585E-90
6.8 -2.65421E-92 5.61785E-90 -5.14603E-90 2.24928E-90
7.0 -4.18056E-92 7.89037E-90 -7.46774E-90 3.33289E-90
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Table 4. ς(t) for t and v.

Fix v = 0.5 Fix v = 0.9 Fix v = 1.3 Fix v = 1.7
t ς(t) ς(t) ς(t) ς(t)

3.0 -1.19912E-86 8.05353E-83 -4.25093E-83 4.06887E-84
3.2 -2.04285E-86 1.3078E-82 -6.74102E-83 6.3153E-84
3.4 -3.39262E-86 2.09108E-82 -1.0546E-82 9.67822E-84
3.6 -5.50809E-86 3.29959E-82 -1.63157E-82 1.4679E-83
3.8 -8.76304E-86 5.14752E-82 -2.50115E-82 2.20772E-83
4.0 -1.36881E-85 7.95063E-82 -3.80537E-82 3.29792E-83
4.2 -2.10269E-85 1.21716E-81 -5.75392E-82 4.89969E-83
4.4 -3.18093E-85 1.84844E-81 -8.65595E-82 7.24804E-83
4.6 -4.74451E-85 2.78638E-81 -1.29668E-81 1.06856E-82
4.8 -6.9845E-85 4.17113E-81 -1.93563E-81 1.57123E-82
5.0 -1.01572E-84 6.20278E-81 -2.88081E-81 2.30576E-82
5.2 -1.46031E-84 9.16503E-81 -4.27637E-81 3.37866E-82
5.4 -2.07711E-84 1.34574E-80 -6.33313E-81 4.94547E-82
5.6 -2.92472E-84 1.96388E-80 -9.3586E-81 7.23339E-82
5.8 -4.07913E-84 2.84852E-80 -1.38E-80 1.05742E-81
6.0 -5.63807E-84 4.10675E-80 -2.03055E-80 1.54527E-81
6.2 -7.72639E-84 5.88531E-80 -2.98117E-80 2.25763E-81
6.4 -1.05025E-83 8.38393E-80 -4.36658E-80 3.29779E-81
6.6 -1.41661E-83 1.18728E-79 -6.37989E-80 4.81632E-81
6.8 -1.89673E-83 1.67149E-79 -9.29664E-80 7.03263E-81
7.0 -2.52179E-83 8.05353E-83 -1.35083E-79 1.0266E-80
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