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Abstract

Branch crack subjected to a remote stress in a half-plane elasticity is modeled into a singular integral equations

(SIE) using the distributed dislocation and complex potential method. Numerical solution to the obtained SIE
is discovered using the appropriate quadrature formulas. Numerical works exhibit the nature of stress intensity

factors (SIF) for each branch are displayed.
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1. Introduction

The appearance of branch cracks, either due to earthquakes, or collisions, or aging structures, may weaken the
strength and life cycles of structures or materials. The analysis of cracks may assists the engineers and scientists
in assessing the structural integrity, design and maintenance the mechanical parts. This helps prevent accidents
and failures that could cause injury or damage. Hence, many researchers have focused their works on investigating
the various cracks problems. Isida and Nishino [14] solved the bent crack problem by proposing the body forced
method where a force doublet is positioned at the crack center. Chatterjee [1] formulated the branch crack problem
of kinked or bent into integral equations by utilizing the Kolosov - Muskhelishvili stress function. Lo [18] used the
Kolosov–Muskhelishvili representation and Green’s function to formulate the two-dimensional crack problems into a
complex SIE, and solved the obtained equation numerically for symmetrical, asymmetrical and doubly symmetrical
branched cracks by applying different integration schemes to different branches. Kitigawa and Yuuki [16] and Hasebe
et al. [12] used a series approximation and rational approximation of mapping function for solving a kinked crack
and branched crack, respectively. Theocaris [29] expanded the works of Kitigawa and Yuuki [16], and added some
dislocation distributions to solve the branch crack problem. Ghorbanpoor et al. [9] formulated an unequal branches of
branch crack in an infinite plane into SIEs. They proceeded further to investigate the stability and convergence of the
method used. Chen and Cheung [2] used the Chebyshev integration rule to solve an integral equation with logarithmic
kernel for cracks in a half-plane. Mogilevskaya [20] formulated the piecewise homogeneous cracks in a half-plane into
the complex hypersingular integral equations. Complex Lagrange polynomials were used to approximate the unknown
functions, and straight segments and circular arcs for the boundaries. Elfakhakhre et al. [6–8] obtained SIEs for curve
cracks in a half-plane employing a complex potential technique and distributed dislocation density function. Lin and
Keep [17] investigated two- and three-dimensional multiple edges crack using the distributed dislocation method and
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the weight function. The induced Cauchy integral is assessed by recursion relations. Jin and Noda [15] formulated the
SIE for an edge crack problem in a non-homogeneous half-plane subjected to steady heat flux. The Fourier transform
method was adopted for solving the obtained equation. Seed [27] applied the distributed dislocation method onto a
half-pane surface-breaking crack subjected to different loadings and crack configurations. Monfared et al. [21, 22]
solved the crack problem with non-uniform edge dislocation in a functionally graded orthotropic half-plane subjected
to mixed loading using a system of SIEs.

Hamzah et al. [11] investigated the problem of an unequal length of slanted cracks subjected to various stresses
in bonded planes using hypersingular integral equations. The curved length method is taken into account for solving
the obtained equations. Hamzah et al. [10] solved numerically the thermally insulated cracks problem in bonded
materials, in which the problem is formulated into hypersingular integral equations; the solutions can be archieved
straitforwardly. Nourazar et al. [25] considered the mixed mode cracked piezoelectric plane with a general in-plane
thermal load. The problem is formulated into singular integral equations, and the Fourier transform method was used
to determine the unknown density of the distributed thermo-mechanical dislocations.

In solving the obtained equations for the crack problem, many researchers (eq. Chen and Cheung [2],Elfakhakhre
et al. [6] ) used the curved length method to transform the obtained singular integral equations (Elfakhakhre et
al. [7, 8]) or hypersingular integral equations ( Nik Long and Eshkuvatov [24] and Husin et al. [13]) for the curved
or inclined crack problems into the singular integral equations or hypersingular integral equations for the straight
line. This transformation process ensure less collocation points used in the numerical computation and hence faster
convergence is archived.

In this work, we consider the branch crack problem in an elastic half-plane subjected to shear stress. In section
2, some fundamental equations are provided. In section 3, we formulate the problem of branch crack in an elastic
half-plane. In section 4, we present a strategy to numerically solve the obtained SIE. In section 5 we discuss some
numerical examples, and lastly in section 6 we give the conclusion.

2. Complex variable function method

The fundamentals of complex variable function method are briefly introduced. The stresses (δx, δy, δxy), the resul-
tant forces function (X,Y ), and the displacements vector (u, v) are given as

δx + δy = 4ReΦ(z), (2.1)

δy − δx + 2iδxy = 2[z̄Φ́(z) + Ψ́(z)], (2.2)

F = −Y + iX = ϕ(z) + zΦ(z) + Ψ(z) + c, (2.3)

2G(u+ iv) = Λϕ(z)− zΦ(z)−Ψ(z), (2.4)

where ϕ(z) and ψ(z) are complex potentials, Φ(z) = ϕ́(z), Ψ(z) = ψ́(z), G is the shear modulus for plane elasticity,

Λ =
3− %
1 + %

and Λ = 3− 4% , in the plane stress and in the plane strain problems, respectively, % is the Poisson’s ratio,

z is a complex variable, and X conjugates of X [23].
Let f(z) and g(z) be two analytic functions. We define [3]:

d

dz

{
f(z)g(z)

}
= ´f(z)g(z) + f(z) ´g(z)

dz

dz
. (2.5)

It is also obtainable that, Eqs. (2.3) and (2.4) yield

J1

(
z, z̄,

dz̄

dz

)
=

d

dz
{−Y + iX} = N + iT

= Φ(z) + Φ(z) +
dz̄

dz
(z ´Φ(z) + Ψ(z)), (2.6)

J2(z, z̄,
dz̄

dz
) = (κ+ 1)Φ(z)− J1 = 2G

d

dz
{u+ iv}

= κΦ(z)− Φ(z)− dz̄

dz
(z ´Φ(z) + Ψ(z)). (2.7)
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3. Branch crack in a half-plane elasticity

Consider a branch crack subjected to the remote stress σ∞x = ρ. Along boundary of a half-plane, the traction
free condition is employed, see Figure 3.1(a). In formulating this problem, we proceed as follows: Figure 3.1(a) is
a superposition of a remote stress and a half-plane elasticity, Fig. 3.1(b), and an opposite and equivalent loading
magnitude imposed on a branch crack, Figure 3.1(c). In addition, the problem shown in Figure 3.1(c) is broke down
further into a branch crack in an infinite plane, Figure 3.1(d), and a regular stress field in Figure 3.1(e). The germane
complex potentials for the problems in Figures 3.1(d) and 3.1(e) are denoted by Φp(z), Ψp(z) and Φc(z) and Ψc(z),
respectively. Applying the superposition principle, the modified complex potentials are expressed by

Figure 3.1. (a) The original problem, σ∞x = p, (b) An elastic half-plane, σ∞x = p, (c) A branch
crack with the applied loading, (d) A branch crack in an infinite plate, (e) The upper half-plane’s
regular solution.

Φ(z) = Φp(z) + Φc(z), Ψ(z) = Ψp(z) + Ψc(z), (3.1)

where p and c denote the principal and the complementary parts, respectively. z is a complex variable. Along the
boundary Lb, the traction free condition reads

(N + iT )Lb
= Φp(z) + Φp(z) + zΦ́p(z) + Ψp(z)

+ Φc(z) + Φc(z) + zΦ́c(z) + Ψc(z) = 0, (3.2)

where Φp(z) and Ψp(z) are acquired from the complex potential for a crack in an infinite plate.
The suitable complex potentials for the focus distribution functions ϕp1 (z) , ψp1 (z) with intensity H = H1 + iH2

are [5]

ϕp1 (z) =
H

2π
log z, ψp1 (z) =

H̄

2π
log z. (3.3)

Whereas for the distributed dislocation functions ϕp2 (z) , ψp2 (z) with density −ǵ (t) (0 < t < a), enforce at each arm
of the branch crack reads

ϕp2 (z) =
−1

2π
eiα
∫ a

0

ǵ(t) log(z∗ − t)dt,

ψp2 (z) =
−1

2π
e−iα

{∫ a

0

ǵ(t) log(z∗ − t)dt−
∫ a

0

tǵ(t)dt

t− z∗

}
, (3.4)
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where ´g(t) is the distributed dislocation function defined as

´g(t) =
−2Gi

κ+ 1

d ((u(t) + iv(t))+ − (u(t) + iv(t))−)

dt
, (3.5)

(u(t) + iv(t))+ and (u(t) + iv(t))− denote the displacements of the upper and lower faces of crack L, respectively. In
(3.4), z∗ = ze−iα. Applying the essential rule of superposition to Eqs. (3.3) and (3.4), the complex potential for the
problem in Figure 3.1(d) is obtainable as

ϕp (z) = ϕp1 (z) + ϕp2 (z) =
H

2π
log z − 1

2π

N∑
j=1

eiαj

∫ aj

0

´gj(t) log(zj − t)dt,

ψp (z) = ψp1 (z) + ψp2 (z) =
H

2π
log z − 1

2π

N∑
j=1

e−iαj

{∫ aj

0

´gj(t) log(zj − t)dt
}

− 1

2π

N∑
j=1

e−iαj

{∫ aj

0

t ´gj(t)dt

t− zj

}
, (zj = ze−iαj ). (3.6)

Differentiating Eqs. (3.6) with respect to z yields

Φp (z) =
H

2πz
+

1

2π

N∑
j=1

eiαj

∫ aj

0

´gj(t)dt

t− zj
,

Ψp (z) =
H

2πz
+

1

2π

N∑
j=1

e−iαj

{∫ aj

0

´gj(t)dt

t− zj
−
∫ aj

0

t ´gj(t)dt

(t− zj)2

}
, (3.7)

From Eq. (3.2), we obtain Φc(z) and Ψc(z) as

Φc(z) = −Φp(z)− zΦ́p(z)−Ψp(z), (3.8)

Ψc(z) = 3zΦ́p(z) + z2
´́

Φp(z) + Ψp(z) + zΨ́p(z). (3.9)

In Eqs. (3.8) and (3.9), Φ̄c(z) is analytic, Φp(z) = Φp(z̄), and Ψp(z) = Ψp(z̄). Consequently, φc(z) and ψc(z) are
derivable, and perform the differentiation with respect to z, we have

Φc (z) =
−H
2πz
− 1

2π

N∑
j=1

eiαj

∫ aj

0

´gj(t)dt

t− zj
+

1

2π

N∑
j=1

e−iαj

∫ aj

0

(t− t) ´gj(t)dt

(t− zj)2
,

Ψc (z) =
−H
2πz

+
1

2π

N∑
j=1

eiαj

∫ aj

0

(
t

(t− zj)2
) ´gj(t)dt

+
1

2π

N∑
j=1

e−iαj

∫ aj

0

{
3t0 − t

(t− zj)2
+

2t0(t0 − t)
(t− zj)3

}
´gj(t)dt (zj = ze−iαj ).

(3.10)

The φp(z) and ψp(z) are the complex potentials for the crack problem in the infinite region exterior to the crack faces.
They may possess a singular point along the arms of branch crack, and may generate some tractions on the boundary
of a half-plane, whereas φc(z) and ψc(z) define the complex potential functions for a crack problem in a half-plane,
and eliminate tractions along the boundary of half-plane produced by φp(z) and ψp(z).

The single valuedness condition is

N∑
j=1

eiαj

∫ aj

0

gj(t)dt = H (H = H1 + iH2). (3.11)
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Substituting Eq. (3.7) into Eq. (2.6), let z approaches t±0 , (t±0 ∈ L±), changing
dz̄

dz
by

dt̄0
dt0

, and the formulas stated

in Appendix A, the traction (N + iT )p on the kth arm of branch crack reads:

1

π

∫ ak

0

ǵk(t)dt

t− tk0
+

1

π

Ń∑
j=1

∫ aj

0

[
Kjk(tj , tk0)ǵj(tj) + Ljk(tj , tk0)ǵj(tj)

]
dtj +

H

πtk0
e−iαk

= (Nk(tk0) + iTk(tk0))p, 0 < tk0 < ak (k = 1, 2, . . . , N), (3.12)

where tk0 ∈ Lk and Lk is kth arm of branch crack. The first integral is singular. The kernels for the regular integrals
are given by

Kjk(tj , tk0) =
1

2

(
1

tj − tk0ei(αk−αj)
+ e[2i(αj−αk)]

1

tj − tk0ei(αk−αj)

)
, (3.13)

and

Ljk(tj , tk0) =
1

2

 1

tj − tk0ei(αk−αj)
− e[2i(αj−αk)]

tj − tk0ei(αk−αj)(
tj −

{
tk0ei(αk−αj)

})2
 . (3.14)

Note that the kernels Kjk(tj , tk0) and Ljk(tj , tk0) depend on t and t0, and also on αj and αk. They are the ”two
points−two directions” functions [4].

Similarly, substituting Eq. (3.10) into Eq. (2.6), we obtain the traction (N + iT )c influence along the kth arm of
branch crack

1

2π

Ń∑
j=1

∫ aj

0

D1(tj , tk0)ǵj(tj)dtj +
1

2π

Ń∑
j=1

∫ aj

0

D2(tj , tk0)ǵj(tj)d̄tj

+
1

2π

Ń∑
j=1

∫ aj

0

D3(tj , tk0)ǵj(tj)dtj +
1

2π

Ń∑
j=1

∫ aj

0

D4(tj , tk0)ǵj(tj)dtj −
H

πtk0
e−iαk

= (Nk(tk0) + iTk(tk0))c, 0 < tk0 < ak (k = 1, 2, . . . , N), (3.15)

where

D1(tj , tk0) =
−1

t̄j − tk0
+

t̄j − tj
(t̄j − tk0)2

,

D2(tj , tk0) =
−1

tj − ¯tk0
+

tj − t̄j
(t̄j − tk0)2

,

D3(tj , tk0) =
d ¯tk0
dtk0

(
2tk0(t̄j − tj)
(tj − ¯tk0)3

+
(3 ¯tk0 − t̄j)
(tj − ¯tk0)2

+
2 ¯tk0( ¯tk0 − t̄j)

(tj − ¯tk0)3

)
,

D4(tj , tk0) =
d ¯tk0
dtk0

tj − tk0
(tj − ¯tk0)2

. (3.16)

For the curved crack, Figure 3.1(c), the boundary condition reads:

N(tk0) + iT (tk0) = Ñ(tk0) + iT̃ (tk0), (tk0 ∈ Lk), (3.17)

where the right-hand term is obtained as

Ñ(tk0) + iT̃ (tk0) = −p(sin2 γ + i sin γ cos γ), with σ∞x = p, (3.18)

and γ is the inclined angle.
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Decomposing N + iT into its principle and complementary parts, Eq. (3.17) gives

(Nk(tk0) + iTk(tk0))p + (Nk(tk0) + iTk(tk0))c = Ñk(tk0) + iT̃k(tk0). (3.19)

Due to Eqs. (3.12), (3.15), and Eq. (3.19) yields

1

π

∫ ak

0

ǵk(t)dt

t− tk0
+

1

π

∑́N

j=1

∫ aj

0

Kjk(tj , tk0)ǵj(tj)dtj

+
1

π

∑́N

j=1

∫ aj

0

Ljk(tj , tk0)ǵj(tj)dtj +
1

2π

∑́N

j=1

∫ aj

0

D1(tj , tk0)ǵj(tj)dtj

+
1

2π

∑́N

j=1

∫ aj

0

D2(tj , tk0)ǵj(tj)dtj +
1

2π

∑́N

j=1

∫ aj

0

D3(tj , tk0)ǵj(tj)dtj

+
1

2π

∑́N

j=1

∫ aj

0

D4(tj , tk0)ǵj(tj)dtj = Ñ(tk0) + iT̃ (tk0), (3.20)

0 < tk0 < ak (k = 1, 2, . . . , N),

where Σ́ means the terms corresponding to j = k are omitted. The three leading integrals in Eq. (3.20) means the
aftermath of dislocation on the crack k itself, whilst the remaining integrals represent the aftermath on the crack j,
for j = 1, 2, 3, . . . , n, j 6= k. The theoretical analysis of the solution of Eq. (3.20), which includes the stability and
convergence of solution can be found in the work of Ghorbanpoor et al. [9].

4. Curved length coordinate method

For solving Eq. (3.20) subjected to Eq. (3.11), each of branch cracks is mapped into a real axis s, and sk is in the
interval [0, ak], k = 1, 2, . . . , n. The mapping functions are

ǵk(tk)tk=tk(sk) =

√
sk

ak − sk
Hk (sk) , 0 < sk < ak,

Hk (sk) = Hk1 (sk) + iHk2 (sk) . (4.1)

Using (4.1) into Eqs. (3.20) and (3.11) result, respectively,

Ik1(sk0) + Ik2(sk0) + Ik3(sk0) + ´ΣNj=1 {Ik4(sk0) + Ik5(sk0) + Ik6(sk0) + Ik7(sk0)}
= Nk(sk0) + iTk(sk0), 0 < sk0 < ak, (4.2)

Ik8(s, s0)−H = 0, (H = H1 + iH2) , (4.3)

where

Ik1(sk0) =
1

π

∫ ak

0

√
sk

ak − sk
1

sk − sk0
Ak (sk, sk0) dsk,

Ik2(sk0) =
1

π

∫ al

0

√
sl

al − sl
Bk (sl, sk0) dsl,

Ik3(sk0) =
1

π

∫ al

0

√
sl

al − sl
Ck (sl, sk0) dsl,

Ik4(sk0) =
1

π

∫ al

0

√
sl

al − sl
Ek (sl, sk0) dsl,

Ik5(sk0) =
1

π

∫ al

0

√
sl

al − sl
Gk (sl, sk0) dsl,

Ik6(sk0) =
1

π

∫ al

0

√
sl

al − sl
Mk (sl, sk0) dsl,

Ik7(sk0) =
1

π

∫ al

0

√
sl

al − sl
Nk (sl, sk0) dsl,
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Ik8(s, sk0) =
N∑
j=1

eiαj

∫ aj

0

√
sk

ak − sk
Yk (s, sk0) ds−H = 0,

and

Ak (sk, sk0) =
sk − s0k
tk − t0k

dtk
dsk

Hk (sk) ,

Bk (sl, sk0) = Klk(tl, tk)
dtl
dsl

Hl (sl) ,

Ck (sl, sk0) = Llk(tl, tk)
dtl
dsl

Hl (sl) ,

Ek (sl, sk0) = D1(tl, tk)
dtl
dsl

Hl (sl) ,

Gk (sl, sk0) = D2(tl, tk)
dtl
dsl

Hl (sl) ,

Mk (sl, sk0) = D3(tl, tk)
dtl
dsl

Hl (sl) ,

Nk (sl, sk0) = D4(tl, tk)
dtl
dsl

Hl (sl) ,

Yk (s, s0) = Hj (s)
dt

ds
.

In evaluating the integrals in Eqs. (4.2) and (4.2), the following formulas are adopted [19]∫ a

0

Q(t)

t− t0

√
t

a− t
dt =

R∑
r=1

ArQ (tr)

tr − t0
,

∫ a

0

P (t)

√
t

a− t
dt =

R∑
r=1

ArP (tr) , (4.4)

where

Ar =
πa

R
sin2 rπ

2R
(r = 1, 2, . . . , R− 1) , AR =

πa

2R
,

tr = a sin2 rπ

2R
(r = 1, 2, . . . , R) ,

tr0 = a sin2 (r − 0.5)π

2R
(r = 1, 2, . . . , R) .

The stress intensity factors at each of crack tips is computed as

(K1 − iK2)j = −
√

2π lim
sj→aj

√
aj − sj ǵj (sj)

= −
√

2πajHj (aj) (j = 1, 2, . . . , N) . (4.5)

5. Numerical examples

In order to algorithmically approach this problem, we formally assume the traction free condition subjected to
σx = p. To do so, we establish complex initial functions with the principal and the complementary parts which are
denoted as Eq. (3.1). The process of the used algorithm is the following:

Step 1: Assume KCT = 1 where KCT represents remote loading condition, and MT = 4 which MT is the number
arms of branch crack.
Step 2: Consider MP (J) as the number of terms used in integration, AP (J) as the half length of branch crack and
HQ(J) as the inclined angle in terms of degree for J-crack when J = 1 to MT.
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Step 3: Convert the angles of arms in terms of radian using HP (J) = HQ(J) ∗ PAI/180.D0.
Step 4: Define MUA as the sum of MPs for all arms of branch crack and calculateMUB = 2∗MUA, MUC = MUB+1,
MUD = MUB + 2, MUE = MUB + 3.
Step 5: Consider matrix DA with MUE*MUE arrays.
Step 6: Consider k constant and j variable. For each k and j, compute the mutual influence matrix from integral
equation which is derived from the kernel Kjk and Ljk of equations after Eq. (3.15) and call it ST.
Step 7: Consider k constant, for each k, applying influence of H1 and H2(H = H1 + iH2) is stored in matrix KL which
obtained from the part exp(−iαk)H/πsk of equation Eq. (3.15).
Step 8: For each j which varied from J = 1 : MT , single-valuedness condition of displacement (CSD) is calculated
from Eq. (3.9) and is formed in MN.
Step 9: Assemble matrices ST, KL, and MN into their appropriate locations within DA. The following two sentences
also belong to CSD. DA(MUC,MUC) = −1.D0, DA(MUD,MUD) = −1.D0
Step 10: Based on the value of KCT, KCT (= 1, 2, 3, or4), the right hand term of algebraic equation is calculated
using the hand right of Eq. (3.15) and assembled in DA.
Step 11: Finally, the matrix DA is solved by GAUS elimination process, and solution is stored in the MUE-column
(last column) of DA.
Step 12: Consider TRA = 2.D0 ∗ 0.5D0 and then S1 = −TRA ∗ DA(K1G,MUE), S2 = TRA ∗ DA(K1H,MUE)
which K1G and K1H are the even and odd rows respectively, so we have SIF (K, 1) = S1, SIF (K, 2) = S2.
Using this algorithm we can solve the problems step by step.

Example 5.1. To validate our results, we first look at a perpendicular crack problem in a half-plane with traction
free subjected to σx = p (see Figure 5.1)). Table 1 indicates our approache converges faster, and comply well with
Chen and Cheung[2] and Tada et al.[28].

Figure 5.1. perpendicular crack in a half-plane subjected to σx = ρ.

Example 5.2. Consider a branch crack problem subjected to σ∞x = p in a half-plane elasticity (see Figure 5.2).
Table 2 shows F1A increases as c/b increases, which means the plane becomes more vulnerable as the size of crack
grows. Table 3 displays that, for c/b = 0.7, F1A and F2A decrease as the number of arms increases. We note that
F1A = F1B = F1C = F1D = F1E = F1G = F1H = F1L.

Example 5.3. Consider a branch crack problem as shown in Figure 5.3. OA = OB = OC = OD = ON = OP =
OQ = a and OE = OG = OH = OL = OM = c. In the evaluation, we have used

MA = MB = MC = MD = MN = MP = MQ = Mmax = 29,

ME = MG = MH = ML = MM = MA ∗
√

(c/a).

At the end tips of A,B, . . . , Q, the SIFs are given by

K1D = F1D (n, c/a) p
√
πa,
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Table 1. Non-dimensional SIF, F1E(c/b) and F1D(c/b) for a perpendicular crack problem in an
elastic half-plane (Figure 5.1).

M c/b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1Evalues
6 * 1.0026 1.0112 1.0272 1.0528 1.0914 1.1495 1.2401 1.3970 1.7492
10 * 1.0026 1.0113 1.0272 1.0528 1.0913 1.1490 1.2379 1.3881 1.7161
13 * 1.0027 1.0112 1.0272 1.0528 1.0913 1.1490 1.2379 1.3876 1.7095
17 * 1.0026 1.0112 1.0272 1.0528 1.0913 1.1490 1.2379 1.3875 1.7079
25 * 1.0026 1.0112 1.0272 1.0528 1.0913 1.1490 1.2379 1.3875 1.7079
17 ** 1.0153 1.0240 1.0403 1.0664 1.1058 1.1649 1.2563 1.4108 1.7470
—– *** —– —– 1.033 1.052 1.094 1.148 1.243 1.385 1.688

F1Dvalues
6 * 1.0024 1.0092 1.0201 1.0349 1.0539 1.0775 1.1071 1.1459 1.2056
10 * 1.0024 1.0092 1.0201 1.0349 1.0539 1.0776 1.1074 1.1463 1.2034
13 * 1.0024 1.0092 1.0201 1.0349 1.0539 1.0776 1.1074 1.1464 1.2039
17 * 1.0024 1.0092 1.0201 1.0349 1.0539 1.0776 1.1074 1.1464 1.2038
25 * 1.0024 1.0092 1.0201 1.0349 1.0539 1.0776 1.1074 1.1464 1.2038
17 ** 1.0150 1.0219 1.0328 1.0477 1.0667 1.0904 1.1201 1.1588 1.2157
—– *** —– —– 1.018 1.031 1.050 1.072 1.106 1.135 1.194

CPU time – – – – – – – 0.646521 – –

* Present study ** Chen and Cheung[2] *** Tada et.al[28]

Figure 5.2. A branch crack problem in a half-plane elasticity.

K1H = F1H (n, c/a) p
√
πa,

K1B = K1Q = F1B (n, c/a) p
√
πa,−K2B = K2Q = −F2B (n, c/a) p

√
πa,

K1C = K1P = F1C (n, c/a) p
√
πa,−K2C = K2P = −F2C (n, c/a) p

√
πa,

K1A = K1N = F1A (n, c/a) p
√
πa,−K2A = K2N = −F2A (n, c/a) p

√
πa,
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Table 2. Non-dimensional SIF, F1A(c/b) for a branch crack problem in a half-plane, Figure (5.2).

M c/b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1Avalues
7 * 0.3308 0.3342 0.3392 0.3453 0.3521 0.3594 0.3671 0.3751 0.3835
13 * 0.3308 0.3342 0.3392 0.3453 0.3521 0.3594 0.3671 0.3751 0.3832
17 * 0.3308 0.3342 0.3392 0.3453 0.3521 0.3594 0.3671 0.3751 0.3832
CPU time – – – – – – – 16.325454 – –

Table 3. Non-dimensional SIF, F1(c/b) for a various number of arms , at c/b = 0.7.

Arm 2 3 4 5 6 7 8 9 10 11

F1A 0 0.7244 0.9083 0.7589 0.5981 0.4669 0.3671 0.2928 0.2369 0.1944
F2A 0 0.4656 0 -0.3684 -0.5873 -0.7285 -0.8318 -0.9406 -1.1157 -1.4617

K1E = K1M = F1E (n, c/a) p
√
πa,−K2E = K2M = −F2E (n, c/a) p

√
πa,

K1G = K1L = F1G (n, c/a) p
√
πa, −K2G = K2L = −F2G (n, c/a) p

√
πa.

Figures 5.4(a) and 5.4(b) exhibit F1 and F2 versus c/b, respectively. It is detect that, for the symmetric arms,
F1A = F1N , F1B = F1Q, F1C = F1P , F1E = F1M , F1G = F1L whereas, F2 has the inverse value, F2A = −F2N , F2B =
−F2Q, F2C = −F2P ,−F2E = F2M ,−F2G = F2L. For the arm OD, F1D ascends smoothly, and for the arm OH, F1H

descends drastically and then oscillates with smaller magnitude. Similar behavior can be seen for F1G and F1L, and
F2D = F2H = 0. It is also observed that F1 for a longer arm is higher than a short arm. The total run time for this
example is 0.765622.

Figure 5.3. A long and short arms branch crack subjected to σ∞x = ℘ in a half-plane.

6. Conclusion

In this paper, we have formulated a problem of a branch crack subjected to a remote stress in a half-plane elasticity
into a singular integral equations. The length coordinate method and semi-open Gauss quadrature rules are employed
to secure the numerical outcome. For a perpendicular crack in a half-plane, our results comply well with the previous
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Figure 5.4. Non-dimensional SIFs for a branch crack with long and short arms in a half-plane
(Figure 5.3).

reported results. The increment of SIF lean on the size of a crack, the distance between center of a branch crack and
the boundary of a half-plane. The SIF decreases as the number of arms of the branch crack increases.

Appendix A. Limit values of some functions

For obtaining the integral equation for the branch crack problem, the following functions are necessary:

F (z) =
1

2πi

∫
f(t)dt

t− z
,

G(z) =
1

2πi

∫
f(t)dt

t− z
,

H(z, z̄) =
1

2πi

∫
t̄− z̄

(t− z)2
h(t)dt. (A.1)

We suppose that the functions F (z), G(z), and H(z) satisfy the Holder condition [23]. Obviously, the first two integrals
are analytic and the third is not analytic.
The functions F (z), G(z), and H(z, z̄) are defined in the region exterior to the branch in Figure 3.1. Generally
speaking, the integrals in Eqs. (A.1) take the different values when z → t+0 or z → t−0 . The limit value of functions
(A.1) when we are on the upper side (+) or lower side (-), reads as follows (see [26]):

F±(t0) = ±f(t0)

2
+

1

2πi

∫
L

f(t)dt

t− t0
,

G±(t0) = ±g(t0)

2

dt0
dt0

+
1

2πi

∫
L

g(t)dt

t− t0
,

H±(t, t̄0) = ±h(t0)

2

dt0
dt0

+
1

2πi

∫
t− t0

(t− t0)2
h(t)dt.

References

[1] S. N. Chatterjee, The stress field in the neighborhood of a branched crack in an infinite elastic sheet, Int. J. Solids
Structures, 11 (1975), 521–538.

[2] Y. Z. Chen and Y. K. Cheung, New integral equation approach for the crack problem in elastic half-plane, Int. J.
Fract., 46 (1990), 57–69.

[3] Y. Z. Chen, N. Hasebe, and K. Y. Lee, Multiple Crack Problems in Elasticity, WIT Press, Southampton, 2003.



Unco
rre

cte
d Pro

of

12 REFERENCES

[4] Y. Z. Chen and X. Y. Lin, Complex potentials and integral equations for curved crack and curved rigid line
problems in plane elasticity, Acta Mech., 182 (2006), 211–229.

[5] Y. Z. Chen and N. Hasebe, New integration scheme for the branch crack problem, Eng. Fract. Mech., 52 (1995),
791–801.

[6] N. R. F. Elfakhakhre, N. M. A. Nik long, and Z. K. Eshkuvatov, Stress intensity factor for an elastic half-plane
weakened by multiple curved cracks, Appl. Math. Model., 60 (2018), 540–551.

[7] N. R. F. Elfakhakhre, N. M. A. Nik long, Z. K. Eshkuvatov, and N. Senu, Numerical solution for circular arc
cracks in half-plane elasticity, ASM Sc. J., 12(1) (2019), 82–91.

[8] N. R. F. Elfakhakhre, N. M. A. Nik Long, and Z. K. Eshkuvatov, Numerical solutions for cracks in an elastic
half plane, Acta Mechanica Sinica, 35 (2019), 212–227.

[9] R. Ghorbanpoor, J. Saberi-Nadjafi, N. M. A. Nik Long, and M. Erfanian, Stability and convergence analysis of
singular integral equations for unequal arms branch crack problems in plane elasticity, Appl. Math. Model, 103
(2022), 731–749.

[10] K. B. Hamzah, N. M. A. Nik Long, N. Senu, and Z. K. Eshkuvatov, Numerical solutions for the thermally insulated
cracks in bonded dissimilar materials using hypersingular integral equations, Applied Mathematical Modelling, 91
(2021), 358–373.

[11] K. B. Hamzah and N. M. A. Nik Long, Effect of Mechanical Loading on Two Unequal Slanted Cracks Length in
Bi-Materials Plate, Malaysian Journal of Mathematical Sciences, 16(2) (2022), 185–197.

[12] N. Hasebe, K. Tamai, and T. Nakamura, Analysis of kinked crack under uniform heat flow, J. Engng. Mech, 112
(1986), 31–46.

[13] N. H. Husin, N. M. A. Nik Long, and N. Senu, Hypersingular Integral Equation for Triple Circular Arc Cracks in
an Elastic Half-Plane, Malaysian Journal of Mathematical Sciences, 15(3) (2021), 387–396.

[14] M. Isida and T. Nishino, Formulae of stress intensity factors of bent cracks in plane problems, Trans, Japan Soc.
Mech. Engng., 48 (1982), 729–738.

[15] Z. H. Jin and N. Noda, Edge crack in a nonhomogeneous half-plane under thermal loading, J. Therm. Stresses,
17(4) (2007), 591–599.

[16] H. Kitagawa and R. Yuuki, Analysis of branched cracks under biaxial stresses, Int. Fracture 1977, Taplin, D. M.
R., University of Waterloo, Canada, 3 (1977), 201–211.

[17] X. Lin and L. M. Keep, Solution of multiple edge cracks in an elastic half-plane, Int. J. Fract., 137 (2006), 121–137.
[18] K. K. Lo, Analysis of branched crack problem, J. appl. Mech., 45 (1978), 797–803.
[19] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, 2003.
[20] S. G. Mogilevskaya, Complex hypersingular integral equation for the piece-wise homogeneous half-plane with cracks,

Int. J. Fract., 102 (2000), 177–204 .
[21] M. M. Monfared, M. Ayatollahi, and S. M. Mousavi, The mixed-mode analysis of a functionally graded orthotropic

half-plane weakened by multiple curved cracks, Arch. Appl. Mech., 86 (2016), 713–728 .
[22] M. M. Monfared, R. Sourki, and R. Yaghoubi, Analysis of multiple Yoffe-type moving cracks in an orthotropic

half-plane under mixed mode loading condition, Iranian Journal of Mechanical Engineering, 18(2) (2017), 39–62.
[23] N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953.
[24] N. M. A. Nik Long and Z. K. Eshkuvatov, Hypersingular integral equations for multiple curved cracks in plane

elasticity, Int. J. Solids Structures, 46 (2009), 2611–2617.
[25] M. Nourazar, W. L. Yang, and Z. T. Chen, Fracture analysis of a curved crack in a piezoelectric plane under

general thermal loading, Eng. Frac. Mech, 284 (2023), 109208.
[26] M. P. Savruk, Two Dimensional Problem of Elasticity for Body with Crack, Naukova Dumka, Kiev (in Russian),

1981.
[27] G. M. Seed, Stress intensity factors for a surface-breaking crack in a half-plane subject to contact loading, Fatigue

Fract. Eng. Mater. Struct., 24(1) (2001), 69–79.
[28] H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks, Third Edition, ASME Press, 2000.
[29] P. S. Theocaris and N. Ioakimidis, The symmetrically branched crack in an infinite elastic medium, J. Appl. Math.

Phys, (ZAMP), 27 (1976), 801–814.


	1. Introduction
	2. Complex variable function method
	3. Branch crack in a half-plane elasticity
	4. Curved length coordinate method
	5. Numerical examples
	6. Conclusion
	Appendix A. Limit values of some functions
	References



