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Abstract

The present study focuses on numerical solutions of linear and nonlinear Schrödinger equation subject to initial

and boundary conditions employing shifted Chebyshev spectral collocation method (SCSCM). In the solution
procedure, unknown function and its space derivatives have been approximated employing shifted Chebyshev

polynomials and their derivatives, respectively, together with Chebyshev-Gauss-Lobatto points. The present

collocation method transforms Schrödinger equation into a system of ordinary differential equations (ODEs).
Thereafter, obtained system has been solved employing fourth order Runge-Kutta scheme. In order to demonstrate

accuracy and efficiency of the present method, a comparison of present numerical solutions of different examples

of Schrödinger equation with exact and approximate solutions available in literature has been discussed. The
SCSCM can be implemented to solve second and higher order linear and nonlinear partial differential equations

(PDEs) arising in physics, mechanics and biophysics.
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1. Introduction

The Schrödinger equation is a PDE that depicts the wave function of a quantum-mechanical system. Schrödinger
equation is quantum analogous to Newton’s law in classical physics. In order to make predictions and to understand
quantum mechanical systems, the Schrödinger equation is essential, in the same way as Newton’s law is important
to predict the motion of a physical system with given initial conditions. This equation occurs in a variety of forms,
including linear, nonlinear, time-dependent and time-independent.

Consider the important nonlinear one-dimensional time-dependent Schrödinger equation [33] with cubic nonlinear
term |w|2w defined as:

iwt + φwxx + µ|w|2w + δw = 0, t ∈ (0, T ], (1.1)

subject to initial condition

w(x, 0) = g(x), x ∈ [α, β], (1.2)

and Dirichlet boundary conditions

w(α, t) = f0(t), w(β, t) = f1(t), (1.3)

where, i =
√
−1, w(x, t) is complex-valued function, T is final time, φ, µ and δ are constant parameters. Equation

(1.1) becomes linear for µ = 0.
Numerous researchers over the past few decades have been working to solve linear and nonlinear PDEs like

Schrödinger equation because of widespread use of these equations to describe natural phenomena, and it is still
an active area of study currently. Analytical solutions of Schrödinger equations are usually extremely challenging and
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perhaps impossible. The initial condition also affects the solution of a time-dependent Schrödinger equation. For many
generic initial conditions, the analytical solutions of nonlinear Schrödinger equation are unknown. Various numerical
techniques have been applied by researchers to solve nonlinear Schrödinger equation with different types of initial
and boundary conditions numerically because of non-availability of its analytical solutions. It includes the spline
collocation method [26], finite difference schemes (FDS) [9], quadratic B-spline finite element method [10], quartic
spline finite difference method [30], split-step finite difference method [35], time-space pseudo-spectral method [12],
Pade scheme [31], quintic B-spline finite element method [28], multi-quadrics (MQ) quasi-interpolation technique [14],
Jacobi-Gauss-Lobatto collocation (J-GL-C) method [13], Haar wavelet collocation method (HWCM) [23], Legendre
spectral element method [18], HWCM [24], hybrid method involving finite difference and Haar wavelets [3], Haar
wavelet finite difference hybrid method [19], Crank-Nicolson method [16].

Numerical solutions of nonlinear PDEs [5, 21, 22, 25] are important from numerical perspectives and researchers
adopted various numerical methods for obtaining numerical solutions for such equations. During last few decades, the
spectral collocation method, one of the most effective methods, has been used to obtain the numerical solutions of
different nonlinear PDEs with boundary and initial conditions [6, 7, 11, 38]. This powerful method has been chosen
because of its higher convergence rate [8, 34] and this method produces excellent accuracy even with small number of
collocation points. The formulation of Chebyshev polynomials based spectral collocation method is simple, requires
minimum human effort and nevertheless maintains accuracy for the numerical solutions. Therefore, various researchers
have applied Chebyshev collocation methods (CCM) for solving various types of differential equations numerically.
Sharma et al. [29] employed CCM to study the frequencies of vibrations of polar orthotropic annular plates. Zarebnia
and Jalili [37] obtained numerical solutions of different nonlinear PDEs such as Huxley, Burger’s Huxley, generalized
Burger’s Fisher and Fisher’s equations by employing Chebyshev spectral collocation method. Ashrafi et al. [4] solved
Gardner and Huxley equation using spectral collocation method. Jaiswal et al. [15] applied Shifted Chebyshev
polynomials operational matrix method for solving nonlinear PDEs like Burgers, Fisher, Huxley, Burgers-Huxley and
Burgers-Fisher equation. Aghdam et al. [2] employed CCM of the third kind for solving space fractional diffusion
equation. Mesgarani et al. [20] obtained numerical solutions of fractional Black-Scholes equation employing CCM
involving second kind shifted Chebyshev polynomials. Aghdam et al. [1] solved space fractional diffusion equation by
employing CCM of fourth kind. CCM of fourth kind has been employed by Safdari et al. [27] for obtaining numerical
solution of space time fractional advection diffusion equation. Wang et al. [36] solved Emden-Fowler equation using
Picard iteration and CCM.

Although numerous work has been done for solving Schrödinger equation but to the best of authors’ knowledge,
SCSCM has not yet been applied to solve Schrödinger equation. In the present paper, SCSCM has been applied
with fourth order Runge-Kutta scheme to obtain approximate solution of linear and nonlinear Schrödinger equation.
SCSCM employs Chebyshev polynomials for collocation purpose, which have minimax property among polynomials
family with the property of orthogonality. Because of this property, the SCSCM is a significant technique for obtaining
highly accurate approximate solutions of Schrödinger equation among other existing numerical techniques. In solution
procedure, Chebyshev polynomials have been applied to approximate the unknown functions and its space derivatives
in Schrödinger equation. These approximations give rise to a system of nonlinear ODEs. Also, the selection of
collocation points is crucial for convergence and efficiency of the present method. Here, Chebyshev-Gauss-Lobatto
points have been chosen to be collocation points. Thereafter, Runge-Kutta scheme of order four is applied to solve the
resulting system of nonlinear ODEs. The solutions of linear and nonlinear Schrödinger equations are complex valued
functions. The present method has been employed for seven examples of linear and nonlinear Schrödinger equation
and L∞ and L2 error norms in numerical solutions for different number of collocation points N have been presented
to validate the accuracy and efficiency of the present method. The obtained numerical results of these examples are
compared with exact and approximate solutions obtained by other numerical techniques and are shown via graphical
and tabular form. It is observed that error norms get decreased by increasing the value of N and highly accurate
solutions are obtained mostly for N=10. Further, the error norms for present method have been compared with
error norms for other numerical methods such as HWCM, MQ quasi-interpolation technique and J-GL-C method. In
comparison to these approaches, the present method provides better accuracy for smaller number of collocation points.
Thus, it consumes less processing time and computer memory for obtaining higher accuracies in numerical solutions.
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It is revealed from Example 5.7 that both the error norms are smaller for 4t=0.0001 and they reduce to order of
10−15 taking N = 10. Therefore, present method is an efficient, accurate, effective and useful method to obtain the
approximate solutions of linear and nonlinear Schrödinger equations. It will be helpful for the researchers and analysts
who are engaged in numerical study of modelling of different linear and nonlinear physical and engineering problems.
The SCSCM can be extended for solving coupled and higher dimensional linear and nonlinear Schrödinger equation.

This paper is organised as follows. Basic preliminaries of Chebyshev polynomials and shifted Chebyshev polynomials
are given in section 2. Application of SCSCM for solution of Schrödinger equation is described in section 3. Section 4
presents some examples of Schrödinger equation and their numerical solutions. At last, the conclusions are discussed
in section 5.

2. Chebyshev polynomials preliminaries

2.1. Chebyshev polynomials of first kind. The Chebyshev polynomials Tm(p) on [−1, 1] are given as

Tm(p) = cos(mcos−1p). (2.1)

Alternatively, these Chebyshev polynomials can also be obtained by using the following recurrence relation

Tm(p) = 2pTm−1(p)− Tm−2(p), m = 2, 3, . . . ; (2.2)

with T0(p) = 1, T1(p) = p.
The Chebyshev polynomials are orthogonal and their inner products are given as

〈Tm(p), Tn(p)〉 =

∫ 1

−1

Tm(p)Tn(p)√
1− p2

dp =


0, m 6= n,

π, m = n = 0,

π/2, m = n 6= 0.

(2.3)

where, 1√
1−p2

is the weight function.

2.2. Shifted Chebyshev polynomials of first kind. The Chebyshev polynomials Tm(p) are defined on [−1, 1].
Chebyshev polynomials T ∗m(x) can be used for general interval [α, β] by transforming this interval to the applicability
range [−1, 1] using the transformation

p =
2x− (α+ β)

β − α
. (2.4)

Thus, shifted Chebyshev polynomials of first kind denoted by T ∗m(x) are given by

T ∗m(x) = Tm

(
2x− (α+ β)

β − α

)
. (2.5)

These polynomials can be constructed using the recurrence relation

T ∗m(x) = 2

(
2x− (α+ β)

β − α

)
T ∗m−1(x)− T ∗m−2(x), m = 2, 3, . . . (2.6)

with T ∗0 (x) = 1, T ∗1 (x) = 2x−(α+β)
β−α .

These polynomials also satisfy the orthogonality condition and all the properties of first kind Chebyshev polynomials.

2.3. Derivative of shifted Chebyshev polynomials. The first order derivative of shifted Chebyshev polynomials
is given by

T ∗m
′(x) = 2mγ

m−1∑
j=0, (j+m) odd

ajT
∗
j (x), (2.7)
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where, γ = 2
β−α and

aj =

{
1, 1 ≤ j ≤ N − 1;
1
2 , j = 0, N.

(2.8)

3. Solution of Schrödinger equation by shifted Chebyshev spectral collocation method

The Schrödinger Equation (1.1) can be rewritten as

wt − iφwxx − iµ|w|2w − iδw = 0, t ∈ (0, T ], (3.1)

with initial condition

w(x, 0) = g(x), x ∈ [α, β], (3.2)

and Dirichlet boundary conditions

w(α, t) = f0(t), w(β, t) = f1(t). (3.3)

To solve the Schrödinger Equation (3.1) with given conditions (3.2) and (3.3), approximate the solution function
w(x, t) using shifted Chebyshev polynomials as

w(x, t) =
N∑
m=0

′′

cmT
∗
m(x). (3.4)

where, T ∗m(x) indicates the mth shifted Chebyshev polynomial of first kind and coefficients cm are given by [17]

cm =
2

N

N∑
k=0

′′

T ∗m(xk)w(xk, t). (3.5)

Here, the addition of first and end terms halved has been denoted by summation with double qutoes. The
Chebyshev-Gauss-Lobatto collocation points xk are defined as

xk =
1

2

(
(α+ β)− (β − α)cos

(
πk

N

))
, k = 0, 1, . . . , N. (3.6)

By differentiating Equation (3.4), the derivative wx(x, t) is approximated as

wx(x, t) =
N∑
m=0

′′

cmT
∗
m
′(x) =

N∑
k=0

′′  2

N

N∑
m=0

′′

T ∗m
′(x)T ∗m(xk)

w(xk, t).

Now, the derivative wx(x, t)at collocation point xj is given by

wx(xj , t) =
N∑
k=0

′′  2

N

N∑
m=0

′′

T ∗m
′(xj)T

∗
m(xk)

w(xk, t) =
N∑
k=0

[Px]jkw(xk, t), (3.7)

where,

[Px]jk =
2aj
M

N∑
m=0

′′

T ∗m
′(xj)T

∗
m(xk), j, k = 0, 1, . . . , N,

and T ∗m
′(xj) and aj are given by Equations (2.7) and (2.8) respectively.
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Further, by differentiating Equation (3.7), the second order derivative at collocation point xj , wxx(xj , t) can be
approximated as

wxx(xj , t) =
N∑
k=0

[Px]jkwx(xk, t)

=
N∑
k=0

[Px]jk

(
N∑
l=0

[Px]klw(xl, t)

)

=
N∑
l=0

(
N∑
k=0

[Px]jk[Px]kl

)
w(xl, t)

=
N∑
l=0

[Qx]jlw(xl, t),

(3.8)

where, [Qx]jl =
N∑
k=0

[Px]jk[Px]kl, j, l = 0, 1, . . . , N.

Now, by using boundary conditions (3.3), Equation (3.8) can be rewritten as

wxx(xj , t) = Dj(t) +
N−1∑
l=1

[Qx]jlw(xl, t), (3.9)

where, Dj(t) = [Qx]j0f0(t) + [Qx]jNf1(t).
Now, discretizing the Equation (3.1) at internal collocation points xj ; j = 1, 2, . . . , N − 1, it becomes

wt(xj , t)− iφwxx(xj , t)− iµ|w(xj , t)|2w(xj , t)− iδw(xj , t) = 0, j = 1, 2, . . . , N − 1. (3.10)

Substituting expression (3.9) into Equation (3.10) and denoting w(xj , t) and wt(xj , t) by wj(t) and ẇj(t) respectively,
leads to

ẇj(t)− iφ
N−1∑
l=1

[Qx]jlwl(t)− iφDj(t)− iµ|wj(t)|2wj(t)− iδwj(t) = 0, j = 1, 2, . . . , N − 1, (3.11)

along with the initial conditions

wj(0) = w(xj , 0) = g(xj), j = 1, 2, . . . , N − 1. (3.12)

The system of ODEs (3.11) and initial conditions (3.12) can be expressed as{
ẇ(t) = Ψ(t, w(t)),

and w(0) = w0,
(3.13)

where,

w(t) = [w1(t), w2(t), . . . , wN−1(t)]T ,

ẇ(t) = [ẇ1(t), ẇ2(t), . . . , ẇN−1(t)]T ,

w0 = [w1(0), w2(0), . . . , wN−1(0)]T ,

Ψ(t, w(t)) = [Ψ1(t, w(t)),Ψ2(t, w(t)), . . . ,ΨN−1(t, w(t))]T ,

and

Ψj(t, w(t)) = iφ
N−1∑
l=1

[Qx]jlwl(t) + iφDj(t) + iµ|wj(t)|2wj(t) + iδwj(t), j = 1, 2, . . . , N − 1.
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The system of Equations (3.13) is a system of first order simultaneous ODEs. The solution of this system at (i+1)th

time level w(ti+1), when solution at ith time level w(ti) is known, can be obtained using fourth order Runge-Kutta
scheme. This is an explicit scheme, which provides very accurate solutions. The solution w(ti+1) of system of ODEs
(3.13) employing fourth order Runge-Kutta scheme is given as

w(ti+1) = w(ti) +
∆t

6
[Ψ(ti, w(ti)) + 2Ψ

(
ti +

∆t

2
, w(1)

)
+ 2Ψ

(
ti +

∆t

2
, w(2)

)
+ Ψ(ti + ∆t, w(3))], (3.14)

where,

w(1) = w(ti) +
1

2
∆tΨ(ti, w(ti)),

w(2) = w(ti) +
1

2
∆tΨ

(
ti +

∆t

2
, w(1)

)
,

w(3) = w(ti) + ∆tΨ

(
ti +

∆t

2
, w(2)

)
.

3.1. Algorithm for Numerical Computation. The algorithm for shifted Chebyshev spectral collocation method
is as follows:
Input: Declare N (No. of collocation points), T (final time), and 4t (step length).
Step 1 Compute collocation points.
Step 2 Compute shifted Chebyshev polynomials.
Step 3 Compute derivatives of shifted Chebyshev polynomials.
Step 4 Compute first order and second order derivatives of function in terms of shifted Chebyshev polynomials and
their derivatives.
Step 5 Discretize Schrödinger equation at collocation points.
Step 6 Substitute second order derivative of unknown function in discretized Schrödinger equation.
Step 7 Formulate the system of ODEs.
Step 8 Solve the system of ODEs using the fourth-order Runge-Kutta scheme.
Output: The approximate solution w(x, t) of Schrödinger equation is obtained.

4. Convergence analysis

In order to examine the convergence of SCSCM, the following convergence theorems are discussed.

Theorem 4.1. The polynomials 2−(2m−1)T ∗m(x) have the smallest norm among all mth degree monic polynomials
defined on the interval [α, β] i.e.,

‖2−(2m−1)T ∗m(x)‖ = 2−(2m−1).

Proof. It can be proved following Chebyshev’s theorem (See ref. [32]). �

Theorem 4.2. If w(x) ∈ L2[a, b] is approximated in the form of a series of shifted Chebyshev polynomials. Then this
series is strongly convergent.

Proof. Let w(x) be approximated in the form of a series of shifted Chebyshev polynomials T ∗m(x) as

w(x) =
∞∑
m=0

cmT
∗
m(x), (4.1)

where,

T ∗m(x) = am((x− α)(β − x))
1
2
dm

dxm
((x− α)(β − x))m−

1
2 . (4.2)

The polynomials T ∗m(x) are orthogonal w.r.t. the weight function

W (x) = ((x− α)(β − x))−
1
2 .
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In Equation (4.1), the coefficients cm are given by

cm =

∫ β
α

((x− α)(β − x))−
1
2w(x)T ∗m(x)dx∫ β

α
((x− α)(β − x))−

1
2T ∗m(x)T ∗m(x)dx

, (4.3)

Substituting value of T ∗m(x) from Equation (4.2) and integrating the numerator and denominator, the coefficient

cm =

∫ β
α

((x− α)(β − x))m−
1
2w(m)(x)dx

m!γm
∫ β
α

((x− α)(β − x))m−
1
2 dx

=

∫ β
α
Wm(x)w(m)(x)dx

m!γm
∫ β
α
Wm(x)dx

, (4.4)

where, γm = 22m−1.
The value of coefficient cm is not more than a weighted mean with non-negative weight function, therefore

cm =
w(m)(ϕ)

m!γm
, (α ≤ ϕ ≤ β). (4.5)

Now, writing Equation (4.1) as

w(x) =
N−1∑
m=0

cmT
∗
m(x) + EN , (4.6)

where,

EN =

∞∑
m=N

cmT
∗
m(x). (4.7)

Now, sup
α≤x≤β

|T ∗m(x)| = 1. Therefore, using Chebyshev truncation theorem, the bound on error

|EN | ≤
∞∑

m=N

|cm| ≈ |cN |. (4.8)

Now, substitution of Equation (4.5) in Equation (4.8) yields

|EN | ≤
∣∣∣∣w(N)(ϕ)

(N)!γN

∣∣∣∣ =

∣∣∣∣ w(N)(ϕ)

(N)!22N−1

∣∣∣∣ , (4.9)

which shows that, |EN | → 0 as N → ∞. Therefore, the accuracy in approximation using shifted Chebyshev polyno-
mials gets improved as the value of N is increased. This shows that the series for w(x) is strongly convergent. �

5. Numerical Examples

To demonstrate the accuracy, applicability and efficiency of the SCSCM, seven examples of linear and nonlinear
Schrödinger equations are considered. “MATLAB R2015a” software has been used for numerical simulation on the
laptop with 1.30 GHz Intel Core i5 processor, 16GB RAM and 64-bit operating system. Approximate solutions
obtained by present method are compared with solutions obtained by other methods given in literature and exact
solutions. The solution w(x, t) of linear and nonlinear Schrödinger equations are complex valued functions. Therefore,
to verify the accuracy of SCSCM, maximum absolute error norm L∞ and L2 error norm have been calculated using
following expressions
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Table 1. L∞ and L2 error norms in approximate solutions of Example 5.1 at t = 1 taking ∆t = 0.001.

N L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w) CPU time
(Seconds)

4 1.6249e-04 7.3766e-04 7.5535e-04 2.2980e-04 1.0432e-03 1.0682e-03 12.6
6 2.0265e-06 5.5469e-07 2.0271e-06 2.8759e-06 7.8744e-07 2.9818e-06 15.4
8 3.3057e-09 2.7962e-09 4.3297e-09 5.8447e-09 5.4788e-09 8.0111e-09 18.0
10 1.4285e-09 1.6898e-10 1.4384e-09 2.0551e-09 2.6274e-10 2.0718e-09 20.5

L∞(R(w)) = max
i
|real(wexacti )− real(wi)|,

L∞(I(w)) = max
i
|imaginary(wexacti )− imaginary(wi)|,

L∞(w) = max
i
|wexacti − wi|,

L2(R(w)) =

√√√√ N∑
i=1

|real(wexacti )− real(wi)|2,

L2(I(w)) =

√√√√ N∑
i=1

|imaginary(wexacti )− imaginary(wi)|2,

L2(w) =

√√√√ N∑
i=1

|wexacti − wi|2,

where, wexacti and wi represent the exact and approximate solutions of Schrödinger equation at collocation points xi.

Example 5.1. Consider linear diffusion form of Schrödinger equation taking φ = −1, µ = 0 and δ = 0, i.e.

iwt − wxx = 0,

subject to Dirichlet boundary conditions

w(α, t) = eitsin(α), w(β, t) = eitsin(β),

and initial condition

w(x, 0) = sin(x).

The exact solution is given by

w(x, t) = eitsin(x).

The numerical solutions are depicted in tabular and graphical form for domain [α, β] = [−1, 1]. Table 1 shows error
norms and CPU time for obtaining the solutions at t = 1 taking ∆t = 0.001 and different number of collocation points
N . It is found that the errors decrease by increasing the value of N . Further, the error norms reduce to order 10−9 for
N = 10. Table 2 shows the comparison of L∞ error norms in approximate solutions by present method and existing
solutions by HWCM [3] for different values of t taking ∆t = 0.001. It is seen that in case of HWCM, the error is of
order 10−5 for N = 32, whereas, for present method it is of order 10−9 fixing N = 10. This shows the efficiency as well
as accuracy of the SCSCM for linear Schrödinger equation. The real parts of approximate and exact solutions have
been depicted in Figure 1, while, Figure 2 presents the imaginary parts of exact and approximate solutions of Example
5.1. The graphs of real and imaginary parts of exact and approximate solutions are almost same which demonstrates
the accuracy of the present method.
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Table 2. Comparison of L∞ error norms in approximate solutions of Example 5.1 taking ∆t = 0.001.

t L∞(R(w)) L∞(I(w)) L∞(w)

HWCM Present Method HWCM Present Method HWCM Present Method
(N = 32) (N = 10) (N = 32) (N = 10) (N = 32) (N = 10)

1 2.670e-05 1.429e-09 6.011e-05 1.690e-10 6.578 e-05 1.438e-09
2 1.766e-05 2.427e-10 3.018e-05 2.205e-09 3.431 e-05 2.218e-09
4 4.698e-05 3.690e-10 3.105e-05 1.345e-09 5.632 e-05 1.395e-09
6 3.632e-05 5.232e-10 4.901 e-05 1.075e-09 6.100 e-05 1.196e-09
8 3.975e-05 1.111e-10 2.896 e-05 1.874e-09 4.919 e-05 1.878e-09
10 1.095e-05 7.118e-10 2.522 e-05 3.374e-10 2.708 e-05 7.878e-10
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Figure 1. The real parts of exact and approximate solutions of Example 5.1 for N = 10.
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Figure 2. The imaginary parts of exact and approximate solutions of Example 5.1 for N = 10.
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Table 3. L∞ and L2 error norms in approximate solutions of Example 5.2 taking different values of
N and ∆t = 0.001.

N L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w) CPU time
(Seconds)

2 7.7094e-02 5.4671e-03 7.7288e-02 7.7094e-02 5.4671e-03 7.7288e-02 8.0
4 6.8733e-04 1.1642e-04 6.9712e-04 8.2278e-04 8.3271e-04 1.2825e-04 10.6
6 7.0289e-07 1.2094e-07 7.0430e-07 1.1378e-06 1.4107e-07 1.1465e-06 13.9
8 1.6648e-09 1.4016e-09 2.1762e-09 2.0897e-09 2.7022e-09 3.4159e-09 17.3
10 1.1697e-10 4.8213e-10 4.9612e-10 1.8348e-10 6.8986e-10 7.1384e-10 20.8

Table 4. L∞ and L2 error norms in approximate solutions of Example 5.2 taking N = 10 and
∆t = 0.001.

t L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w)
1 1.1697e-10 4.8213e-10 4.9612e-10 1.8348e-10 6.8986e-10 7.1384e-10
2 7.3427e-10 4.7906e-10 8.7672e-10 1.0640e-09 6.9519e-10 1.2710e-09
4 8.1581e-10 1.0251e-09 1.3101e-09 1.1841e-09 1.4851e-09 1.8993e-09
6 9.8081e-10 7.9837e-10 1.2647e-09 1.4205e-09 1.1601e-09 1.8340e-09
8 4.3350e-10 7.8667e-10 8.9820e-10 6.3282e-10 1.1388e-09 1.3028e-09
10 5.7780e-10 1.1235e-10 5.8862e-10 8.3661e-10 1.6059e-10 8.5189e-10

Example 5.2. Consider linear diffusion form of Schrödinger Equation (1.1), where φ = −1, µ = 0 and δ = 0

iwt − wxx = 0,

subject to Dirichlet boundary conditions

w(α, t) = eitcos(α), w(β, t) = eitcos(β),

and initial condition

w(x, 0) = cos(x).

The exact solution is given by

w(x, t) = eitcos(x).

The numerical solutions obtained by present method are shown in Tables 3-5 and Figures 3 and 4 for domain
[α, β] = [−1, 1]. Table 3 presents error norms and CPU time for obtaining approximate solutions of linear Schrödinger
equation at t = 1 by taking different values of N and ∆t = 0.001. It is observed that the approximate solutions
converge by increasing value of N and the error norms reduce to order 10−10 for N = 10. Table 4 exhibits L∞ and L2

error norms in solutions obtained by present method for distinct values of t taking N = 10 and ∆t = 0.001. Table 5
shows the comparison of L∞ error norms in solutions at t = 1 by present method and HWCM [3]. It is observed that
in comparison to HWCM, the present method provides better accuracy in approximate solutions for smaller number
of collocation points. The real and imaginary parts of exact and approximate solutions for various values of x and t
have been depicted graphically in Figures 3 and 4.
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Table 5. Comparison of L∞ error norms in approximate solutions at t = 1 of Example 5.2 taking
∆t = 0.001.

Error norm HWCM(N=32) Present Method(N=10)
L∞(R(w)) 8.56e-05 1.17e-10
L∞(I(w)) 5.38e-04 4.82e-10
L∞(w) 5.45e-04 4.96e-10
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Figure 3. The real parts of exact and approximate solutions of Example 5.2 for N = 10.
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Figure 4. The imaginary parts of exact and approximate solutions of Example 5.2 for N = 10.

Example 5.3. The linear reaction-diffusion form of Equation (1.1) with variable coefficients by taking φ = 1, µ = 0
and δ = 1− 2

x2 is given as

iwt + wxx + (1− 2

x2
)w = 0,

subject to Dirichlet boundary conditions

w(α, t) = α2eit, w(β, t) = β2eit,



Unco
rre

cte
d Pro

of

12 N. PRABHAKAR AND S. SHARMA

Table 6. Comparison of L∞ error norms in numerical solutions of Example 5.3 for ∆t = 0.001.

L∞(w) CPU time

t MQ quasi- MQ quasi- HWCM Present Method (seconds)
interpolation technique interpolation technique (N = 32) (N = 10)

(deg=9)(N = 50) (deg=5)(N = 50)
0.05 0.0133 0.0135 7.808e-05 1.314e-07 3.4
0.10 0.0561 0.0568 1.336e-04 1.312e-07 4.6
0.15 0.1287 0.1392 1.920e-04 1.314e-07 6.1
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Figure 5. The real parts of exact and approximate solutions of Example 5.3 for N = 10.

and initial condition

w(x, 0) = x2.

The exact solution is given by

w(x, t) = x2eit.

The numerical solutions of this example are presented in Table 6 and Figures 5-6 for domain [α, β] = [1, 2]. Table
6 shows CPU time for obtaining approximate solutions and comparison of maximum absolute error in solutions
obtained by present method and solutions obtained by MQ quasi-interpolation technique [14] and HWCM [3] for
different values of t taking ∆t = 0.001. It is observed that the present method provides lesser error in comparison to
MQ quasi-interpolation technique as well as HWCM for smaller number of collocation points. The real and imaginary
parts of the exact and approximate solutions of Example 5.3 are shown in Figures 5 and 6. It is revealed that graphical
representation of both exact and approximate solutions are same.

Example 5.4. Consider nonlinear case of Equation (1.1) by taking φ = 1, µ = −2 and δ = 0

iwt + wxx − 2|w|2w = 0,

subject to Dirichlet boundary conditions

w(α, t) = ei(α−3t), w(β, t) = ei(β−3t),

and initial condition

w(x, 0) = eix.
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Figure 6. The imaginary parts of exact and approximate solutions of Example 5.3 for N = 10.

Table 7. Comparison of L∞ error norms in approximate solutions of Example 5.4 at t = 1 taking
∆t = 0.001.

N J-GL-C method Present method
L∞(w) L∞(R(w)) L∞(I(w)) L∞(w) L∞(R(w)) L∞(I(w))

2 2.43e-01 2.69e-01 3.23e-01 3.6365e-02 2.2695e-02 2.8414e-02
6 6.00e-05 5.68e-05 6.41e-05 4.0588e-06 1.4868e-06 4.0560e-06
10 2.26e-07 1.70e-07 2.35e-07 3.0109e-08 1.0951e-08 2.9838e-08

Table 8. L∞ and L2 error norms in approximate solutions of Example 5.4 taking ∆t = 0.001 and
N = 10.

t L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w) CPU time
(Seconds)

1 1.0951e-08 2.9838e-08 3.0109e-08 1.1994e-08 3.2966e-08 3.5080e-08 24.6
2 1.3344e-08 1.0141e-08 1.5384e-08 1.5942e-08 1.3037e-08 2.0593e-08 37.3
3 2.2416e-08 2.0384e-08 2.6434e-08 2.2822e-08 2.5273e-08 3.4053e-08 52.5
4 1.0007e-08 1.8217e-09 1.0007e-08 1.0267e-08 1.8407e-09 1.0431e-08 68.4
5 1.3471e-08 1.8294e-08 2.2437e-08 1.9140e-08 2.0376e-08 2.7956e-08 86.6

The exact solution is given by

w(x, t) = ei(x−3t).

The numerical results of Example 5.4 have been obtained for domain [α, β] = [−1, 1] and are presented in tabular
and graphical form. Table 7 depicts the comparative study of L∞ error norms in approximate solutions at t = 1
obtained by present method and J-GL-C method [13]. A better performance of the present method over J-GL-C
method is observed from this table. Table 8 shows the error norms and CPU time in obtaining approximate solutions
of Example 5.4 for different values of t taking N = 10. Further, Figures 7 and 8 depict the real and imaginary parts
of exact and approximate solutions of Example 5.4 in graphical form.



Unco
rre

cte
d Pro

of

14 N. PRABHAKAR AND S. SHARMA

1

0.5

0

x

-0.5

-10

0.2

0.4

t

0.6

0.8

-1

-0.5

0

0.5

1

1

R
(w

)

1

0.5

0

x

-0.5

-10

0.2

0.4

t

0.6

0.8

-1

-0.5

0

0.5

1

1

R
(w

e
x
a
c
t )

Figure 7. The real parts of exact and approximate solutions of Example 5.4 for N = 10.
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Figure 8. The imaginary parts of exact and approximate solutions of Example 5.4 for N = 10.

Example 5.5. Consider nonlinear case of Equation (1.1) by taking φ = 1, µ = 2 and δ = 0

iwt + wxx + 2|w|2w = 0,

subject to Dirichlet boundary conditions

w(α, t) = ei(α+t), w(β, t) = ei(β+t),

and initial condition

w(x, 0) = eix.

The exact solution is w(x, t) = ei(x+t).
The approximate solutions of this problem have been obtained for two domains (i) [α, β] = [0, 1] and (ii) [α, β] =

[−1, 1] . Table 9 shows the error norms and CPU time for obtaining approximate solutions of Example 5.5 at t = 1
for [α, β] = [0, 1] taking ∆t = 0.001. It is observed that the error norms decrease by increasing the value of N . The
errors reduce to the order of 10−9 for N = 8. Table 10 depicts the comparison of L∞ error norms in approximate
solutions at t = 1 obtained by present method and HWCM [3] for [α, β] = [0, 1]. The comparison of L∞ error norms
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Table 9. L∞ and L2 error norms in approximate solutions of Example 5.5 at t = 1 for ∆t = 0.001
and x ∈ [0, 1].

N L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w) CPU time
(Seconds)

2 5.0248e-03 8.1526e-03 9.5768e-03 5.0248e-03 8.1526e-03 9.5768e-03 9.2
4 9.0064e-06 1.3131e-05 1.5795e-05 1.1362e-05 1.8464e-05 2.1680e-05 12.2
6 1.5133e-08 1.8654e-08 2.2919e-08 1.9804e-08 2.5456e-08 3.2252e-08 14.8
8 3.6382e-09 4.8847e-09 4.9943e-09 3.8265e-09 6.0714e-09 7.1766e-09 16.7

Table 10. Comparison of L∞ error norms in approximate solutions of Example 5.5 at t = 1 for
∆t = 0.001 and x ∈ [0, 1].

Error norm HWCM(N = 16) Present Method (N = 8)
L∞(R(w)) 3.0944e-06 3.6382e-09
L∞(I(w)) 3.3195e-05 4.8847e-09
L∞(w) 3.3318e-05 4.9943e-09

Table 11. Comparison of L∞ error norms in approximate solutions of Example 5.5 at t = 1 for
∆t = 0.001 and x ∈ [−1, 1].

N J-GL-C method Present method

L∞(w) L∞(R(w)) L∞(I(w)) L∞(w) L∞(R(w)) L∞(I(w))
2 3.81e-01 5.73e-01 6.21e-01 1.4438e-01 8.9372e-02 1.1339e-01
6 3.62e-05 15.70e-05 16.04e-05 2.2721e-06 6.8194e-07 2.2451e-06
10 4.62e-08 22.59e-08 22.74e-08 2.2710e-09 9.7587e-10 2.1647e-09
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Figure 9. The real parts of exact and approximate solutions of Example 5.5 for N = 10.

in solutions given by present method and J-GL-C method [13] is shown in Table 11 for [α, β] = [−1, 1]. It is noticed
from Tables 10 and 11 that the present method provides better accuracy as compared to HWCM and J-GL-C method
for small number of collocation points. In Figures 9 and 10, , the real and imaginary parts of exact and approximate
solutions for [α, β] = [−1, 1] have been shown graphically.
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Figure 10. The imaginary parts of exact and approximate solutions of Example 5.5 for N=10.

Table 12. L∞ and L2 error norms in approximate solutions of Example 5.6 at t = 1 for ∆t = 0.001
and x ∈ [0, 1].

N L∞(R(w)) L∞(I(w)) L∞(w) L2(R(w)) L2(I(w)) L2(w) CPU time
(Seconds)

2 3.7564e-01 1.7884e-01 4.1604e-01 3.7564e-01 1.7884e-01 4.1604e-01 8.0
4 7.7089e-03 4.7336e-03 8.8997e-03 9.5059e-03 6.4951e-03 1.1513e-02 10.5
6 4.0109e-05 3.2256e-05 4.2947e-05 5.4799e-05 4.5866e-05 7.1461e-05 14.2
8 1.3326e-07 8.7455e-07 8.8464e-07 2.2040e-07 1.5689e-06 1.5843e-06 16.0
10 2.5697e-08 7.7054e-08 7.8279e-08 3.2693e-08 9.1680e-08 9.7335e-08 19.5

Example 5.6. Consider the nonlinear case of Equation (1.1)

iwt + wxx + 2|w|2w = 0,

subject to Dirichlet boundary conditions

w(α, t) = ei(2α−3t)sech(α− 4t), w(β, t) = ei(2β−3t)sech(β − 4t),

and initial condition

w(x, 0) = e2ixsech(x).

The exact solution is given by

w(x, t) = ei(2x−3t)sech(x− 4t).

The numerical solutions have been obtained for two domains (i) [α, β] = [0, 1] and (ii) [α, β] = [−1, 1]. Table 12
presents the error norms and CPU time for obtaining approximate solutions of nonlinear Schrödinger equation at t = 1
obtained by present method taking ∆t = 0.001 and different value of N for [α, β] = [0, 1]. It is seen that error norms
reduce to order 10−8 by increasing value of N up to 10. Table 13 shows L∞ error norms in approximate solutions of
this example for [α, β] = [−1, 1]. It is revealed that the L∞ error norm is reduced to order of 10−7 by fixing value
of N = 15. The real and imaginary parts of exact and approximate solutions for domain [α, β] = [−1, 1] have been
shown in Figures 11 and 12. A good agreement of exact and approximate solutions demonstrates the accuracy of the
present method.
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Table 13. L∞ error norms in approximate solutions of Example 5.6 at t = 1 for ∆t = 0.001 and
x ∈ [−1, 1].

N L∞(w) L∞(R(w)) L∞(I(w))
2 6.5804e-01 5.3388e-01 3.8469e-01
5 4.0672e-02 4.0277e-02 2.9984e-02
10 4.4055e-05 4.4055e-05 2.3373e-05
15 1.5443e-07 3.8166e-08 1.4964e-07
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Figure 11. The real parts of exact and approximate solutions of Example 5.6 for N = 15.
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Figure 12. The imaginary parts of exact and approximate solutions of Example 5.6 for N = 15.

Example 5.7. Consider the nonlinear Schrödinger equation

iwt + wxx + |w|2w = 0,
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Table 14. L∞ and L2 error norms in approximate solutions of Example 5.7 at t = 1 taking time
steps ∆t = 0.001 and 0.0001.

N ∆t = 0.001 CPU time ∆t = 0.0001 CPU time

L∞(w) L2(w) (seconds) L∞(w) L2(w) (seconds)
2 1.1025e-05 1.1025e-05 6.7 1.1025e-05 1.1025e-05 57.8
4 1.0084e-07 1.3285e-07 10.7 1.0084e-07 1.3285e-07 96.5
6 1.0097e-09 1.3034e-09 13.5 1.0097e-09 1.3034e-09 146.7
8 1.7699e-12 2.7323e-12 16.2 1.8438e-12 2.7804e-12 159.7
10 1.1849e-12 1.2880e-12 20.0 5.3663e-15 7.9392e-15 192.5

subject to Dirichlet boundary conditions

w(α, t) =
√

2sech(α− t

2
+ 10)exp(i(

α

4
+

15

16
t)),

w(β, t) =
√

2sech(β − t

2
+ 10)exp(i(

β

4
+

15

16
t)),

and initial condition

w(x, 0) =
√

2sech(x+ 10)exp(i(
x

4
)).

The exact solution is given by

w(x, t) =
√

2sech(x− t

2
+ 10)exp(i(

x

4
+

15

16
t)).

The numerical solutions have been obtained for domain [α, β] = [−1, 1]. Table 14 shows the error norms and CPU
time for obtaining approximate solutions of Example 5.7 at t = 1 by taking different values of time steps ∆t and
different values of N . Table 15 presents L∞ error norms for approximate solutions obtained by present method at
different time levels for different values of ∆t and fixed N = 10. Table 16 depicts the L∞ and L2 error norms in
approximate solutions at different time levels taking ∆t = 0.0001 for different values of N . From these tables, it is
revealed that
(i) both error norms decrease by increasing the number of collocation points.
(ii) the error norms are smallest for ∆t = 0.0001 and
(iii) the error norms reduce to order of 10−15 for ∆t = 0.0001 and N = 10.

Further, the real and imaginary parts of exact and approximate solutions are depicted respectively in Figures 13
and 14 taking ∆t = 0.0001.

6. Conclusion

In this paper, shifted Chebyshev spectral collocation method is used for numerical solutions of linear and nonlinear
Schrödinger equation with variable and constant coefficients. Chebyshev-Gauss-Lobatto points are used for collocation
purpose and it is suggested that these collocation points produced accurate solutions. The convergence analysis of
SCSCM has been demonstrated. The solutions of linear and nonlinear Schrödinger equations are complex valued
functions. The efficiency and accuracy of the present method have been demonstrated by considering seven examples
of linear and nonlinear Schrödinger equation and presenting L∞ and L2 error norms in numerical solutions for different
number of collocation points N . It is observed that error norms decrease by increasing the value of N and highly
accurate solutions are obtained mostly for N = 10. Further, the error norms for present method have been compared
with error norms for other numerical methods such as HWCM, MQ quasi-interpolation technique and J-GL-C method.
In comparison to these approaches, the present method provides better accuracy for smaller number of collocation
points. Thus, it consumes less processing time and computer memory for obtaining higher accuracies in numerical
solutions. The approximate solutions of Example 5.7 have been obtained for two values of time step ∆t = 0.001, 0.0001.
It is revealed that both the error norms are smaller for ∆t = 0.0001 and they reduce to order of 10−15 taking N = 10.
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Table 15. L∞ and L2 error norms in approximate solutions of Example 5.7 at different time levels
taking N = 10.

t ∆t = 0.001 ∆t = 0.0001

L∞(w) L2(w) L∞(w) L2(w)
0.1 3.9863e-13 5.5326e-13 2.6879e-15 4.3470e-15
0.2 6.0429e-13 8.0393e-13 4.3578e-15 6.3938e-15
0.3 5.5515e-13 6.2240e-13 3.2497e-15 5.0801e-15
0.4 2.6962e-13 3.3489e-13 1.8705e-15 3.1534e-15
0.5 5.0404e-13 7.2150e-13 2.9033e-15 4.4263e-15
0.6 8.5872e-13 9.9916e-13 4.3664e-15 6.3492e-15
0.7 8.4621e-13 8.7204e-13 4.1370e-15 5.9476e-15
0.8 5.8446e-13 7.0444e-13 2.1515e-15 3.5842e-15
0.9 8.0265e-13 1.0163e-12 3.6081e-15 5.8066e-15
1.0 1.1849e-12 1.2880e-12 5.3663e-15 7.9392e-15

Table 16. L∞ and L2 error norms in approximate solutions of Example 5.7 for different time levels
taking ∆t = 0.0001.

t N = 6 N = 8 N = 10

L∞(w) L2(w) L∞(w) L2(w) L∞(w) L2(w)
0.1 1.8546e-10 3.0088e-10 1.2953e-12 1.9258e-12 2.6879e-15 4.3470e-15
0.2 2.6290e-10 4.3322e-10 2.0594e-12 3.0396e-12 4.3578e-15 6.3938e-15
0.3 3.4843e-10 5.1375e-10 2.0423e-12 2.8884e-12 3.2497e-15 5.0801e-15
0.4 4.8900e-10 6.6416e-10 9.8641e-13 1.5826e-12 1.8705e-15 3.1534e-15
0.5 5.0087e-10 7.3941e-10 9.1615e-13 1.4128e-12 2.9033e-15 4.4263e-15
0.6 6.1828e-10 8.4164e-10 2.1631e-12 2.8741e-12 4.3664e-15 6.3492e-15
0.7 7.9609e-10 1.0329e-09 2.3369e-12 3.3321e-12 4.1370e-15 5.9476e-15
0.8 8.3520e-10 1.1465e-09 1.6773e-12 2.5562e-12 2.1515e-15 3.5842e-15
0.9 9.1567e-10 1.2267e-09 8.6802e-13 1.6811e-12 3.6081e-15 5.8066e-15
1.0 1.0097e-09 1.3034e-09 1.8438e-12 2.7804e-12 5.3663e-15 7.9392e-15
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Figure 13. The real parts of exact and approximate solutions of Example 5.7 for N = 10 taking
∆t = 0.0001.
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Figure 14. The imaginary parts of exact and approximate solutions of Example 5.7 for N = 10
taking ∆t = 0.0001.

Therefore, present method is an efficient, accurate, effective and useful method to obtain the approximate solutions
of linear and nonlinear Schrödinger equations. It will be helpful for the researchers and analysts who are engaged in
numerical study of modelling of different linear and nonlinear physical and engineering problems. The SCSCM can be
extended for solving coupled and higher dimensional linear and nonlinear Schrödinger equation.
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