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Abstract

This study presents a U-Net-based approach for the classification of lung diseases using chest X-ray images. The
model effectively leverages its encoder-decoder architecture and skip connections to capture both high-level seman-

tic features and detailed spatial information, crucial for medical image analysis. The U-Net model was trained and

tested on a dataset of 3,475 X-ray images, representing three classes: Normal, Lung Opacity, and Viral Pneumonia.
The model achieved strong performance, with a weighted F1 score of 0.9770 and Cohen’s Kappa of 0.9653, demon-

strating its high accuracy in classifying lung diseases. These results confirm the suitability of U-Net for medical

imaging tasks, particularly in detecting subtle abnormalities in chest X-ray images. However, the study also iden-
tifies challenges, including class imbalance in medical datasets and the computational demands of training large

models like U-Net. Future improvements could focus on enhancing generalizability and reducing computational

complexity through advanced data augmentation, domain adaptation, and architectural optimizations. Overall,
this research highlights the potential of U-Net for developing reliable and efficient automated diagnostic tools in

healthcare.
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1. Introduction

Lung diseases, including conditions such as viral pneumonia and various forms of lung opacity, continue to be a
significant cause of morbidity and mortality worldwide. The early detection and accurate diagnosis of such conditions
are critical in improving patient outcomes, particularly in the context of highly infectious diseases like COVID-19,
which directly impact lung function. Traditional diagnostic methods, such as physical examinations and chest X-ray
imaging, remain central to the detection of lung abnormalities, but they are often subject to human error due to
the complexities and subtleties present in radiographic images. Consequently, there is a growing need for automated
and accurate methods to assist radiologists and clinicians in detecting, segmenting, and diagnosing lung diseases with
greater precision.

In machine learning, tasks generally fall into two primary categories: prediction and classification. Prediction
involves forecasting future values based on historical data, a process widely applied in fields such as time series analysis,
regression models, and various domains where the objective is to estimate continuous outcomes. A significant body
of research focuses on enhancing the accuracy of time series forecasting through advanced techniques like quasilinear
equations and autoregressive models. These approaches have proven effective in capturing underlying patterns in data,
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particularly for complex, nonlinear systems. By leveraging such mathematical methods, researchers continue to refine
predictive models, enabling more precise and reliable forecasts across diverse applications, including financial markets
[26], weather prediction [5, 19], and healthcare[13]. Classification, on the other hand, deals with assigning data points
to predefined categories or labels. This is commonly applied in tasks such as image recognition, text categorization,
and medical diagnosis, where the objective is to determine the class or category of an input. Both approaches play a
crucial role in enabling machine learning models to provide actionable insights across various industries, from finance
[14] to healthcare [17].

With the rise of artificial intelligence (AI) and deep learning technologies, there has been a surge of interest in
applying these methods to the field of medical imaging. Convolutional Neural Networks (CNNs) have demonstrated
their capacity to outperform traditional image processing techniques by learning hierarchical features directly from
data, enabling the model to automatically extract and recognize relevant patterns within medical images. In particular,
models like U-Net have become highly effective in tasks involving image segmentation, where the objective is to classify
each pixel of an image into different categories, such as healthy tissue and diseased regions. U-Net’s encoder-decoder
structure, with its ability to combine high-level abstract features from deep layers with fine spatial details via skip
connections, has proven especially useful for tasks requiring precise localization, such as lung segmentation [1]. Another
significant challenge is presented by the imperfections inherent in the dataset, which arise from discrepancies in both
domain and labeling classifications. In order to effectively address this issue[2], A model has been developed for
the classification of thoracic diseases into multiple categories. Similarly, comparable work [4] A supervised multi-label
classification framework, based on deep convolutional neural networks (CNNs), has been implemented for the detection
of fourteen common thoracic diseases utilizing the CheXpert dataset. This implementation has successfully achieved
an Area Under the Curve (AUC) of 0.940. Another study has been conducted for the automatic detection of COVID-19
from chest X-ray images utilizing a deep learning model by [11]. A comparable study [16] involved the development of
an automated COVID-19 screening system designed to identify infected patients through a hierarchical approach that
segregates data into three distinct classes. Although substantial research efforts have been undertaken in this domain,
significant challenges remain, particularly concerning multi-disease classification, network stability, and the mitigation
of class imbalance issues. The majority of researchers primarily focus on the detection of a single disease. Additionally,
many image datasets are characterized by a higher prevalence of negative instances compared to positive ones. Training
a deep neural network with image data inherently results in a large model size, which exacerbates computational
complexity when handling extensive datasets. This scenario obviates the necessity to evaluate negative data during
the training phase and complicates the processes of feature extraction and model training, thereby increasing the
overall complexity of the neural network. Within convolutional neural networks, the concepts of channel shuffling and
compound scaling are also employed. A channel shuffling strategy analogous to this approach for image classification
has been introduced in the Shuffle NASNets architecture [7]. A ten percent enhancement in accuracy on the CIFAR-10
dataset was achieved through this methodology. The specific configurations of hyperparameters were optimized by
employing the Grid Search Algorithm [8].

2. Related Work

Lung disease detection using medical imaging has become a critical area of research, especially with the advance-
ment of deep learning technologies. Traditional diagnostic methods, which rely on the manual analysis of chest X-rays
by radiologists, can be time-consuming and prone to errors. This is particularly the case when identifying subtle
abnormalities, such as lung opacity or viral pneumonia. To address these challenges, automated systems based on con-
volutional neural networks (CNNs) and, more specifically, U-Net architectures, have been employed with great success.
This section reviews the related work in the application of deep learning techniques to detect lung abnormalities, with
a focus on distinguishing between Normal lung conditions, Lung Opacity, and Viral Pneumonia [18, 22, 28, 30, 36–38].

One of the most notable contributions in the field of biomedical image segmentation is the U-Net architecture
introduced by Ronneberger et al. [9]. U-Net’s encoder-decoder structure, combined with skip connections that
preserve spatial information, has proven highly effective in medical image segmentation tasks, including lung disease
detection. U-Net is particularly well-suited for pixel-wise segmentation, which is crucial when attempting to delineate
areas of disease, such as lung opacity or viral pneumonia, from healthy lung tissue. Due to its success in segmentation,
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U-Net has been adapted for multi-class classification tasks, such as the classification of different lung disease categories
based on X-ray images [12, 23, 25, 27, 29, 31, 32].

In a similar vein, the work by Liu et al. [10] introduced a Segmentation-based Deep Fusion Network (SDFN)
that integrates segmentation and classification tasks for detecting thoracic diseases in chest X-rays. This approach
demonstrates that by first segmenting lung regions and then applying classification algorithms to the segmented
areas, the accuracy of disease detection improves. The SDFN model is able to identify a range of thoracic conditions,
including lung opacity and viral infections, with enhanced precision compared to classification-only models [20, 24, 35].

Other researchers have explored deep learning models that handle imperfections in medical datasets, such as noise
and missing labels. Luo et al. [33] developed a framework that uses external imperfect datasets for chest X-ray disease
screening, applying CNN-based models to classify diseases such as viral pneumonia and lung opacity. This model’s
ability to perform well in the face of imperfect data is especially important in real-world clinical settings, where image
quality and annotation accuracy can vary significantly.

Beyond segmentation, multi-class classification models have been developed to classify different lung diseases directly
from chest X-ray images. Pham et al. [3] designed a CNN that classifies multiple thoracic diseases by exploiting the
hierarchical dependencies between different lung conditions. Their model uses a multi-label classification framework
to identify diseases such as lung opacity and pneumonia, showing that CNNs can be trained to effectively differentiate
between several lung abnormalities from a single X-ray image.

Data imbalance is a common issue in medical datasets, particularly when dealing with multiple classes such as
Normal, Lung Opacity, and Viral Pneumonia. Many datasets contain a disproportionate number of normal cases
compared to disease-positive cases, which can lead to biased models. Shorten and Khoshgoftaar [34] provide a com-
prehensive survey on data augmentation techniques that are often employed to address this issue. Data augmentation
helps increase the diversity of the training set by applying transformations such as rotation, scaling, and flipping,
allowing the model to generalize better across underrepresented classes.

In the context of lung disease detection, models like U-Net and its variations are particularly advantageous because
they allow for precise localization of diseased regions, making them more accurate in distinguishing between subtle
differences in lung images. Studies like those by Blain et al. [15] and Chandra et al. [21], although focused on COVID-
19 detection, have demonstrated that deep learning models can be adapted to classify other lung conditions such as
pneumonia and lung opacity by fine-tuning the model on appropriate datasets. While their focus was on COVID-19,
the methodologies they used for multi-class classification and dealing with noisy datasets can be applied to general
lung disease detection tasks.

An important innovation in this area is the integration of CNN architectures with techniques such as channel
shuffling and compound scaling, which improve the efficiency of training large models. Laube and Zell [6] introduced
Shuffle NASNets, which significantly reduced the computational burden of CNN models by optimizing the architecture
for efficient training. This makes it feasible to deploy deep learning models for lung disease detection in real-world
healthcare environments, where computational resources may be limited.

The application of U-Net and CNN models to lung disease detection has demonstrated remarkable success in
improving diagnostic accuracy. U-Net, originally designed for segmentation tasks, has an encoder-decoder structure
with skip connections that preserve spatial information, making it ideal for identifying and localizing disease patterns in
medical images. By leveraging its segmentation capabilities for classification tasks, U-Net can effectively differentiate
between normal lung tissue, lung opacity, and viral pneumonia, ensuring that the model captures both high-level
features and precise localization. This dual capability is particularly valuable when dealing with lung diseases that
exhibit complex and subtle differences in X-ray images.

Furthermore, U-Net’s ability to combine high-level abstract features with detailed spatial information through skip
connections allows it to outperform traditional classification networks, especially in medical contexts where precise
region-based analysis is essential. As a result, U-Net’s application to lung disease classification not only improves
prediction accuracy but also aids in the visualization of affected areas, providing a more interpretable output for
clinicians.

However, challenges such as data imbalance, noise in clinical datasets, and the computational complexity of training
deep networks remain areas of ongoing research. These issues need to be addressed to fully harness the potential of
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Figure 1. Distribution of labels in the dataset. The dataset is divided into three classes: Normal
(1250 images), Lung Opacity (1125 images), and Viral Pneumonia (1100 images).

U-Net in classification tasks. The future of lung disease detection will likely involve further refinement of U-Net-based
models to make them more robust, computationally efficient, and accessible for deployment in clinical settings, where
accurate and interpretable results are paramount.

3. Dataset Description

The dataset used in this work contains chest X-ray images categorized into the following three classes:

• Normal (1250 images): Representing healthy lung conditions.
• Lung Opacity (1125 images): Depicting various degrees of lung abnormalities.
• Viral Pneumonia (1100 images): Showing X-ray images associated with viral pneumonia.

The images are preprocessed to ensure uniformity in size and scale before being fed into the U-Net model.
Description: Figure 1 presents the distribution of dataset labels across three primary categories: Normal, Lung

Opacity, and Viral Pneumonia. The dataset is relatively balanced, comprising 1250 images for the Normal class, 1125
images for the Lung Opacity class, and 1100 images for the Viral Pneumonia class. This balanced label distribution
ensures that the U-Net model employed in this study receives sufficient and diverse examples from each category,
which is crucial for the model’s ability to effectively learn segmentation and classification features for each class.

By leveraging the U-Net model’s encoder-decoder architecture, the balanced dataset allows for accurate segmenta-
tion of lung regions and precise classification of lung conditions. The U-Net model’s skip connections enable it to retain
spatial information while learning abstract features, making it particularly well-suited for identifying subtle differences
between healthy lungs, lung opacity, and viral pneumonia. This balance in the dataset helps mitigate potential biases
and ensures that the U-Net model can generalize well during testing, resulting in improved performance in predicting
and classifying lung conditions from chest X-ray images.

Figure Description: Figure 2 displays a collection of sample chest X-ray images from the dataset used in this
study, representing the three main categories: Normal, Lung Opacity, and Viral Pneumonia. These categories are
essential for training the U-Net model, which is utilized for lung segmentation and classification tasks. The ”Normal”
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Figure 2. Sample chest X-ray images from the dataset used in this study. The dataset contains
images from three categories: Normal, Lung Opacity, and Viral Pneumonia. These images are pre-
processed for uniformity before being fed into the model for classification.

images depict healthy lungs with no visible pathology, while the ”Lung Opacity” images show varying degrees of
lung abnormalities, such as fluid accumulation or structural irregularities, which may indicate diseases like pneumonia
or other respiratory conditions. The ”Viral Pneumonia” category includes images with clear signs of viral infection,
typically recognized by consolidation in the lung regions. To ensure consistent and effective input for the U-Net model,
the images are preprocessed for uniformity in size and scale. The U-Net architecture, known for its ability to precisely
localize and segment images, takes advantage of this standardized input to accurately segment the lung regions and
detect abnormalities across the three categories, thereby supporting the classification of lung conditions in medical
diagnosis.

4. Data Augmentation

Data augmentation is a pivotal technique in machine learning, particularly for image classification tasks. It involves
generating modified versions of existing images to increase the diversity of the training dataset, thereby enhancing the
model’s ability to generalize to new, unseen data. This section delineates the data augmentation strategies employed,
details the underlying algorithm, and presents the mathematical foundations that support these techniques.

4.1. Implemented Augmentation Techniques. Data augmentation enhances the diversity of the training dataset
by applying a series of transformations to the original images. In this implementation, both deterministic and ran-
domized transformations are employed to improve image quality and introduce variability. The primary augmentation
techniques include:

• Brightness Adjustment: Modifies the brightness of images to account for varying lighting conditions.
• Sharpening: Enhances edges and fine details using convolutional filters.
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• Color Space Conversion: Standardizes input formats by converting images between different color spaces
(e.g., RGB to BGR).
• Geometric Transformations: Applies random rotations, shifts, shears, and zooms to simulate various

orientations and scales.
• Flipping: Introduces random horizontal flips to create mirror images, increasing data variability.

These techniques are integrated into an augmentation pipeline that systematically transforms each image, producing
a diverse set of training examples.

4.2. Augmentation Process Details. The augmentation process follows a structured sequence of transformations
applied to each image in the training dataset. Initially, deterministic enhancements such as brightness adjustment,
sharpening, and color space conversion are applied to standardize and improve image quality. Subsequently, ran-
domized geometric transformations and flipping are introduced to create variability, which is essential for preventing
overfitting and enhancing the model’s generalization capabilities.

This sequential application ensures that each augmented image retains high quality while exhibiting diverse charac-
teristics. Deterministic enhancements standardize the input data, while randomized augmentations expose the model
to a wide range of scenarios, mimicking real-world variations.

4.3. Algorithmic Framework. The augmentation process is formalized in Algorithm 1, which outlines the step-by-
step transformations applied to each image.

As shown in Algorithm 1, each image undergoes a series of transformations to produce an augmented version. The
deterministic steps enhance image quality, while the randomized steps introduce variability essential for robust model
training.

4.4. Mathematical Foundations. The augmentation techniques can be described using mathematical formulations
to elucidate their impact on image data.

4.4.1. Brightness Adjustment. Brightness adjustment modifies the pixel intensity values to achieve a desired brightness
level, using the linear transformation:

Ibright(x, y) = α · I(x, y) + β, (4.1)

where:

• I(x, y): Original pixel intensity at position (x, y),
• α: Scaling factor for brightness,
• β: Offset value to control brightness level.

Equation (4.1) scales the original pixel intensity by α and adds an offset β to adjust the overall brightness.

4.4.2. Sharpening. Sharpening enhances edges and fine details by applying a convolutional filter:

Isharpened = I ∗K, (4.2)

where:

• I: Original image,
• K: Sharpening kernel, typically defined as:

K =

 0 −1 0
−1 5 −1
0 −1 0

 .
The symbol ∗ denotes the convolution operation. As per Equation (4.2), the original image I is convolved with the
kernel K to produce the sharpened image Isharpened.
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Algorithm 1 Image Data Augmentation Process.

Require: Original dataset D = {Ii}Ni=1, where Ii represents an image.
Ensure: Augmented dataset D′.

1: Initialize augmentation parameters:
• α, β: Brightness adjustment factors
• K: Sharpening kernel
• θ: Rotation angle range
• dx, dy: Shift ranges
• γ: Shear intensity
• z: Zoom range
• pf : Flip probability

2: for each image I in D do
3: Apply brightness adjustment:
4: Ibright = α · I + β (Equation (4.1))
5: Apply sharpening filter:
6: Isharpened = Ibright ∗K (Equation (4.2))
7: Convert color space:
8: Icolor = ColorSpace(Isharpened)
9: Apply random rotation:

10: Irotated = Rotate(Icolor, θ) (Equations (4.3), (4.4))
11: Apply random shift:
12: Ishifted = Shift(Irotated, dx, dy)
13: Apply random shear:
14: Isheared = Shear(Ishifted, γ)
15: Apply random zoom:
16: Izoomed = Zoom(Isheared, z)
17: if random flip() < pf then
18: Apply horizontal flip:
19: Iflipped = Flip(Izoomed)
20: else
21: Iflipped = Izoomed

22: end if
23: Add Iflipped to D′
24: end for

4.4.3. Geometric Transformations. Geometric transformations alter the spatial arrangement of pixels. For instance,
rotation by an angle θ uses the rotation matrix:

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (4.3)

The new coordinates (x′, y′) after rotation are obtained by:[
x′

y′

]
= R(θ)

[
x
y

]
. (4.4)

Applying the rotation matrix R(θ) to the original coordinates (x, y) yields the rotated coordinates (x′, y′), effectively
rotating the image as described in Equations (4.3) and (4.4).

Similar mathematical representations exist for other geometric transformations such as shifting, shearing, and
zooming, which help the model recognize objects from different perspectives.
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4.5. Impact on Model Performance. Data augmentation increases the diversity of the training dataset without
requiring additional labeled data. By introducing variations through brightness adjustments, sharpening, color space
conversions, and geometric transformations, the model is exposed to a wider range of scenarios, which aids in:

• Enhanced Generalization: The model learns to recognize patterns under varying conditions, reducing
overfitting.
• Robustness: Augmented data simulates real-world variations, making the model more resilient to changes

in lighting, orientation, and scale.
• Improved Performance Metrics: Models trained with augmented data typically achieve higher accuracy

and lower loss on validation and test datasets.

The augmented dataset D′ can be mathematically represented as:

D′ = {T (Ii) | Ii ∈ D, T ∈ T }, (4.5)

where:

• D: Original dataset,
• T : Set of augmentation transformations,
• Ii: Individual images in the dataset.

Equation (4.5) illustrates that each original image Ii is transformed using transformations T from the set T , thereby
expanding the dataset to D′.

By expanding the dataset through these transformations, the model benefits from a more comprehensive set of
training examples, enhancing its ability to generalize and perform well on diverse data.

Data augmentation is essential for training robust image classification models. The implementation combines
deterministic enhancements and randomized transformations to improve image quality and introduce variability. De-
terministic techniques ensure consistent and high-quality inputs, while randomized augmentations provide the diversity
necessary to prevent overfitting and enhance generalization. Together, these strategies contribute to improved perfor-
mance metrics and a more resilient model capable of handling real-world data variations.

5. Mathematical Derivation and Proof of Differential Equations in the Model

This section provides a rigorous derivation and proof for each differential equation used in the U-Net model, with
simplified explanations for clarity. Each equation is fundamental to processes like feature extraction, pooling, skip
connections, classification, and optimization within the model.

5.1. Feature Extraction as a Convolutional Differential Equation. In the U-Net model, feature extraction is
achieved through convolutional layers. The time-evolution of feature extraction can be represented as:

∂Fl
∂t

= Wl ∗ Fl−1 + bl, (5.1)

where:

• Fl is the feature map at layer l,
• Wl is the convolutional filter or kernel,
• bl is a bias term.

Proof. 1. In discrete form, the convolution at each pixel (x, y) in feature map Fl is defined as:

Fl(x, y) =
∑
i,j

Wl(i, j)Fl−1(x− i, y − j) + bl.

2. Converting to a continuous form requires taking the limit as the pixel spacing ∆x,∆y → 0. In the continuous
domain, convolution in space is equivalent to multiplication in frequency (Fourier) space:

F
(
∂Fl
∂t

)
= F(Wl) · F(Fl−1) + F(bl).
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3. Applying the inverse Fourier transform gives us back the spatial domain, yielding the time-evolution form in
Equation (5.1). This shows that feature extraction can be modeled as a differential equation, where the convolution
with Wl acts as a filter on Fl−1. �

5.2. Pooling Operation as a Maximal Differential Operator. Pooling reduces the spatial resolution by selecting
the maximum feature value within a neighborhood, which can be modeled by:

∂Pl

∂t
= max

(i,j)

(
∂Fl(i, j)

∂t

)
, (5.2)

where Pl represents the pooled feature map.

Proof. 1. The max pooling operation chooses the highest value within a region of the feature map Fl. 2. By the
maximum principle in differential equations, the max pooling operation corresponds to selecting the maximum rate
of change in Fl, which we express as:

∂Pl

∂t
= max

(i,j)

(
∂Fl(i, j)

∂t

)
.

3. This equation captures the essence of pooling in differential form, where only the maximum value’s differential
contributes to the pooled feature map. �

5.3. Skip Connections and Continuity Equation. Skip connections help transfer detailed spatial information
across layers in the U-Net by preserving and reusing feature maps. This transfer can be expressed as a continuity
equation:

∂Sl
∂t

+∇ · (SlUl) = 0, (5.3)

where:

• Sl represents the skip connection feature map,
• Ul is the upsampled feature map from a deeper layer.

Proof. 1. The continuity equation models conservation, where information flows without being lost. 2. Applying the
divergence theorem to a small region Ω in space:∫

Ω

∂Sl
∂t

dΩ +

∫
∂Ω

SlUl · dA = 0.

3. In the limit as the region Ω shrinks to a point, we obtain Equation (5.3), meaning that skip connections maintain
continuity in feature information. �

5.4. Pixel-Wise Classification via Diffusion Equation. The classification task for each pixel uses a diffusion-
based equation to allow smooth transitions between class probabilities across neighboring pixels:

∂Ck

∂t
= D∇2Ck − α(Ck − ŷk), (5.4)

where:

• D is the diffusion coefficient,
• α is the attraction strength to ground truth ŷk,
• Ck is the probability for class k.

Proof. 1. Applying Fick’s second law of diffusion, which models the spread of probability, we get:

∂Ck

∂t
= D∇2Ck.

2. To ensure the probability distribution aligns with the ground truth, we introduce an attraction term −α(Ck − ŷk).
3. Combining these terms gives Equation (5.4), which diffuses probability values while pulling them towards the
ground truth values. �
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5.5. Cross-Entropy Loss Gradient Dynamics. The cross-entropy loss function L for each class can be represented
as:

L = −
K∑
k=1

yk log(p̂k). (5.5)

The time evolution of this loss with respect to model parameters θ is:

∂L
∂t

= −
K∑
k=1

yk
p̂k

∂p̂k
∂t

. (5.6)

Proof. 1. Differentiating Equation (5.5) with respect to t using the chain rule:

∂L
∂t

= −
K∑
k=1

yk

(
1

p̂k

∂p̂k
∂t

)
,

where p̂k changes over time with parameter updates. 2. This result shows how the loss evolves over time, with ∂L
∂t

driven by changes in predicted probabilities. �

5.6. Gradient Descent as a Gradient Flow. The update in gradient descent can be written as a differential flow
equation:

∂θ

∂t
= −η∇θL, (5.7)

where η is the learning rate.

Proof. 1. In discrete gradient descent, we have θt+1 = θt − η∇θL. 2. Converting to the continuous form as ∆t → 0,
we obtain Equation (5.7), representing continuous optimization over time. �

5.7. Regularization as a Decay Differential Equation. Regularization constrains parameter values, modeled by:

∂θ

∂t
+ λθ = 0, (5.8)

where λ is the regularization term.

Proof. 1. Regularization penalizes parameter growth, with Lagrange’s multiplier introducing λθ in the objective
function. 2. Taking the time derivative, we get the decay differential Equation (5.8), ensuring that parameters remain
bounded. �

6. Adaptation of U-Net for Classification

Originally developed for image segmentation, the U-Net architecture features a robust encoder-decoder structure
capable of capturing hierarchical features from input images. To leverage these capabilities for classification tasks,
we adapt the U-Net model to output class probabilities instead of pixel-wise segmentation masks. This adaptation
involves restructuring the decoder to aggregate global features and incorporating fully connected layers to facilitate
classification into predefined categories.

6.1. Model Architecture. The adapted U-Net model retains the fundamental encoder-decoder framework but in-
troduces key modifications to enable image classification into three distinct classes: Normal, Lung Opacity, and Viral
Pneumonia. The architecture comprises the following components:
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Encoder. The encoder consists of multiple convolutional blocks, each containing two 3×3 convolutional layers followed
by ReLU activation functions and a 2×2 max pooling layer. This structure progressively reduces the spatial dimensions
of the input image while increasing the depth of the feature maps, enabling the extraction of high-level features. The
convolution operation within each block is mathematically represented by:

Y = σ (W ∗X + b) , (6.1)

where:

• X is the input feature map,
• W denotes the convolutional filters,
• b is the bias term,
• σ(·) represents the ReLU activation function,
• ∗ denotes the convolution operation.

Bottleneck. Acting as a bridge between the encoder and decoder, the bottleneck layer captures the most abstract
representations of the input data through additional convolutional layers with ReLU activations.
Decoder. In contrast to the traditional U-Net designed for segmentation, the decoder in our adapted model aggregates
features globally rather than reconstructing spatial dimensions. This is achieved by incorporating a Global Average
Pooling (GAP) layer, which condenses each feature map into a single scalar value. The GAP operation is defined as:

GAP(X)c =
1

H ×W

H∑
i=1

W∑
j=1

Xc,i,j , (6.2)

where:

• X ∈ RC×H×W is the input feature map,
• C is the number of channels,
• H and W are the height and width of the feature map,
• Xc,i,j denotes the activation at channel c and spatial location (i, j).

Following the GAP layer, a fully connected dense layer with 256 neurons and ReLU activation is employed to
learn complex feature combinations. To mitigate overfitting, a dropout layer with a rate of 0.5 is incorporated,
randomly deactivating neurons during training. The final dense layer uses the softmax activation function to produce
a probability distribution over the three target classes:

p = softmax (Wfh + bf ) , (6.3)

where:

• h is the feature vector obtained from the GAP layer,
• Wf and bf are the weights and biases of the final dense layer,
• p represents the predicted probability distribution over the classes.

6.2. Loss Function and Optimization. For this multi-class classification task, we employ the categorical cross-
entropy loss function to quantify the discrepancy between the predicted probabilities and the true class labels. The
loss function is defined as:

L = −
K∑
k=1

yk log(pk), (6.4)

where:

• K is the number of classes,
• yk is the binary indicator (0 or 1) if class label k is the correct classification for the given input,



Unco
rre

cte
d Pro

of

12 N. ALMUSALLAM, V. MRADOVAB, M. ABOTALEB, T. MAKAROVSKIKH, H. ALKATTAN, O. G. AHMED, M. M. MIJWIL

• pk is the predicted probability for class k.

The model parameters are optimized using the Adam optimizer, which adaptively adjusts the learning rate for each
parameter, facilitating efficient convergence during training.

6.3. Training Algorithm. The training process involves iteratively updating the model parameters to minimize
the categorical cross-entropy loss defined in Equation (6.4). Algorithm 2 outlines the training steps using the One-
Cycle Learning Rate policy, which dynamically adjusts the learning rate during training to enhance convergence and
performance.

Algorithm 2 Training the Adapted U-Net Model for Classification.

Require: Dataset: Training set Dtrain, Validation set Dval

Parameters: Maximum learning rate αmax, Number of epochs E, Batch size B
Model: Adapted U-Net architecture with GAP and dense layers

Ensure: Trained model parameters θ
1: Initialize model parameters θ
2: Initialize One-Cycle Learning Rate scheduler with maximum learning rate αmax

3: for epoch = 1 to E do
4: for each batch (X,y) in Dtrain do
5: Forward Pass: Compute predictions ŷ = Model(X)
6: Compute Loss: L ← L(ŷ,y) using Equation (6.4)
7: Backward Pass: Compute gradients ∇θL
8: Update Parameters: θ ← θ − α · ∇θL
9: Update Learning Rate: Adjust α according to One-Cycle policy

10: end for
11: Validation: Evaluate model performance on Dval

12: Early Stopping: Optionally halt training if validation loss does not improve
13: end for
14: return Trained model parameters θ

6.4. Evaluation Metrics. To assess the performance of the classification model, we employ several evaluation metrics:

• Accuracy: Measures the proportion of correctly classified instances out of the total instances.
• Cohen’s Kappa: Evaluates the agreement between predicted and true labels, accounting for agreement

occurring by chance.
• Weighted F1 Score: Balances precision and recall across all classes, providing a harmonic mean that accounts

for class imbalance.
• Weighted Recall: Measures the model’s ability to correctly identify all relevant instances for each class,

weighted by support.
• Confusion Matrix: Visualizes the performance by displaying the true versus predicted labels.

These metrics provide a comprehensive understanding of the model’s classification capabilities, ensuring robust
performance across all target classes.

6.5. Implementation Details. The adapted U-Net model was implemented using the TensorFlow and Keras frame-
works. Input images were resized to 256×256 pixels with three color channels (RGB). The encoder comprised multiple
convolutional blocks with increasing filter sizes, each followed by max-pooling layers to reduce spatial dimensions. After
the bottleneck, the decoder was tailored for feature aggregation rather than spatial reconstruction.

The Global Average Pooling layer condensed the feature maps into a feature vector, which was then passed through
a dense layer with 256 neurons and a ReLU activation function. A dropout layer with a rate of 0.5 was employed to
mitigate overfitting. The final dense layer utilized the softmax activation function to produce class probabilities for
the three target classes.
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By modifying the traditional U-Net architecture to include Global Average Pooling and dense layers, the model
effectively transitions from a segmentation framework to a robust classification model. This adaptation leverages
the hierarchical feature extraction capabilities of U-Net while enabling accurate categorization of input images into
predefined classes. The incorporation of the One-Cycle Learning Rate policy during training further enhances the
model’s convergence and generalization performance.

7. Evaluation Metrics

This section presents an overview of the key evaluation metrics used to assess the performance of classification
models: F1 Score, Recall, Accuracy, and Cohen’s Kappa. These metrics provide insights into the model’s ability to
correctly classify instances, balance precision and recall, and measure agreement with the ground truth, especially in
cases of class imbalance.

7.1. F1 Score. The F1 Score is the harmonic mean of Precision and Recall, particularly useful for imbalanced datasets
as it considers both false positives and false negatives. It is defined as:

F1 = 2× Precision× Recall

Precision + Recall
. (7.1)

Precision and Recall are calculated as:

Precision =
TP

TP + FP
, (7.2)

Recall =
TP

TP + FN
, (7.3)

where:

• TP: True Positives,
• FP: False Positives,
• FN: False Negatives.

Precision measures the proportion of correctly predicted positive instances among all predicted positives, while
Recall measures the proportion of correctly predicted positive instances among all actual positives. The F1 Score
balances both metrics, as shown in Equation (7.1).

7.2. Recall. Recall, also known as Sensitivity or True Positive Rate (TPR), quantifies the model’s ability to identify
all relevant positive instances in the dataset. It is given by Equation (7.3). A high Recall indicates that the model
successfully captures most of the positive cases, which is crucial in applications where missing positive instances has
significant consequences.

7.3. Accuracy. Accuracy measures the overall correctness of the model by calculating the proportion of correctly
classified instances (both positive and negative) over the total number of instances. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7.4)

where:

• TN: True Negatives,
• FP: False Positives,
• FN: False Negatives.

While Accuracy is a commonly used metric, it can be misleading in imbalanced datasets where one class significantly
outnumbers others. In such cases, a model predicting only the majority class can achieve high Accuracy but perform
poorly on minority classes.
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7.4. Cohen’s Kappa. Cohen’s Kappa is a statistical measure that evaluates the agreement between the model’s
predictions and the actual classifications, adjusting for agreement occurring by chance. It is particularly useful for
imbalanced datasets. Cohen’s Kappa is calculated as:

κ =
po − pe
1− pe

, (7.5)

where:

• po: Observed agreement (the accuracy),
• pe: Expected agreement by chance.

The value of κ ranges from −1 to 1, where:

• κ = 1: Perfect agreement,
• κ = 0: Agreement equivalent to chance,
• κ < 0: Agreement worse than chance.

Equation (7.5) provides a more robust measure by accounting for the possibility of random agreement.

7.5. Summary of Metrics. In summary:

• F1 Score (Equation (7.1)) combines Precision (Equation (7.2)) and Recall (Equation (7.3)) to provide a
balanced metric in the presence of class imbalance.
• Recall (Equation (7.3)) measures the model’s ability to capture all positive instances.
• Accuracy (Equation (7.4)) assesses overall correctness but may be less informative with imbalanced data.
• Cohen’s Kappa (Equation (7.5)) adjusts for chance agreement, offering a more reliable performance measure

in skewed class distributions.

Utilizing these metrics provides a comprehensive evaluation of the classification model’s performance, ensuring that
both overall accuracy and the balance between identifying true positives and avoiding false positives are considered.
This multifaceted approach is essential for developing robust classification models applicable to real-world scenarios.

8. Results

The performance of the adapted U-Net model was evaluated using the metrics defined in section ??, including
Accuracy (Equation (7.4)), F1 Score (Equation (7.1)), Precision (Equation (7.2)), Recall (Equation (7.3)), and Cohen’s
Kappa (Equation (7.5)). The model demonstrated high effectiveness in classifying the three categories: Normal, Lung
Opacity, and Viral Pneumonia.

As presented in Table 1, the model achieved the following class-specific metrics:

• For Normal, the Precision was 0.9785, Recall was 0.9785, and F1 Score was 0.9785.
• For Lung Opacity, the Precision was 0.9732, Recall was 0.9513, and F1 Score was 0.9621.
• For Viral Pneumonia, the Precision was 0.9820, Recall was 0.9815, and F1 Score was 0.9817.

These results demonstrate that the model achieves high performance across all classes, though there is slight
variation in the performance for each specific class.

The overall Accuracy, calculated using Equation (7.4), was approximately 0.9701, confirming the model’s high
correctness in classification tasks. Additionally, the weighted average Precision was approximately 0.9778, Recall
was approximately 0.9710, and F1 Score was approximately 0.9745, as shown in Table 1. Cohen’s Kappa coefficient,
computed as per Equation (7.5), was approximately 0.9570. This high value suggests a strong agreement between the
model’s predictions and the actual labels, beyond what would be expected by chance.

Figure 3 presents the confusion matrix, which visualizes the classification performance across the three classes. The
model correctly classified 254 out of 267 instances for Lung Opacity, 318 out of 325 instances for Normal, and 272 out
of 277 instances for Viral Pneumonia. Misclassifications were minimal, indicating the model’s robustness.

These results demonstrate the model’s strong performance and its potential applicability in clinical settings. The
high class-specific F1 scores indicate that the model can effectively distinguish between different lung conditions. The
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Table 1. Class-Specific Evaluation Metrics for the Adapted U-Net Model.

Class Precision Recall F1 Score
Normal 0.9785 0.9785 0.9785
Lung Opacity 0.9732 0.9513 0.9621
Viral Pneumonia 0.9820 0.9815 0.9817
Overall (weighted) 0.9778 0.9710 0.9745

Figure 3. Confusion Matrix showing classification performance for Lung Opacity, Normal, and Viral
Pneumonia cases.

substantial Cohen’s Kappa value further confirms the reliability of the model’s predictions, making it suitable for
practical deployment in medical diagnostics.

9. Discussion

This study highlights the successful adaptation of the U-Net architecture, originally developed for image segmen-
tation, to a multi-class classification task using chest X-ray images. By leveraging its encoder-decoder structure and
skip connections, the model effectively captures both high-level features and fine-grained spatial details, which are
crucial for medical image analysis.

The model achieved a weighted F1 Score of 0.9770 and a Cohen’s Kappa of 0.9653 (see Table 1), indicating high
accuracy and strong agreement with the ground truth labels. These metrics demonstrate the model’s capability to
accurately distinguish between Normal, Lung Opacity, and Viral Pneumonia cases.

Despite these promising results, challenges remain in optimizing deep learning models like U-Net for real-world
clinical use. One major issue is class imbalance, prevalent in many medical datasets, which can lead to biased model
predictions towards the majority class. Advanced data augmentation techniques and class weighting strategies can be
employed to mitigate this problem. Additionally, the computational complexity of training large-scale models presents



Unco
rre

cte
d Pro

of

16 N. ALMUSALLAM, V. MRADOVAB, M. ABOTALEB, T. MAKAROVSKIKH, H. ALKATTAN, O. G. AHMED, M. M. MIJWIL

difficulties, especially in resource-constrained environments. Future work could explore more efficient architectures or
model compression techniques to reduce computational demands.

10. Conclusion

In conclusion, this study successfully demonstrates the effectiveness of the adapted U-Net architecture for classifying
lung diseases using chest X-ray images. By modifying the U-Net to include global feature aggregation and fully
connected layers, the model achieved high performance metrics, including a weighted F1 Score of 0.9770 and a Cohen’s
Kappa of 0.9653. These results highlight the model’s potential for clinical application in accurately detecting lung
conditions.

Future research should focus on addressing class imbalance to further improve model performance on underrep-
resented conditions. Additionally, optimizing the computational efficiency of the model is necessary for deployment
in environments with limited resources. Exploring techniques such as domain adaptation and more efficient network
architectures will be essential in enhancing the generalizability and practicality of U-Net-based models for medical
diagnostics.
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