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Jorge Sebastian Buñay Guaman1, Akram H. Shather2, Abbas Hameed Abdul Hussein3, Nabaa Muhammad Diaa4, Mo-

hammed khalid5, Nihad Abdul Kareem6, Saleh Naji Sreseh7, and Juan José Flores Fiallos8,∗
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Abstract

In mathematical physics and physical applications, solving approximate solutions to fractional partial differential
equations (FPDEs), especially for constant-coefficient FPDE (cc-FPDE) system is an interesting and challenging

work. A robust numerical method is proposed to approximate the solutions of time-fractional Klein-Gordon

equation (TFKG) which is based on the Lorentz group. The presented technique, namely the fictitious time
integration technique (FTIT) converts the undetermined dependent variable u(x, t) into a new variable with one

dimension more. Then the group preserving technique (GPT) is implemented to integrate the new FPDEs. By

appropriately assigning values to free parameters, the dynamic wave structures of certain analytical solutions
are illustrated through three-dimensional and contour graphics. The consequences of numerical experiments are

displayed to affirm the accuracy and efficiency of the offered scheme. The findings look at how the equation responds

to slight changes in initial conditions. These outcomes can enhance the understanding of nonlinear dynamics in
various fields like mathematical physics and fluid dynamics. Additionally, they validate the effectiveness of the

utilized approaches, warranting further validation. The findings of this study could be more useful in a range of

scientific disciplines and higher-level research.
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1. Introduction

Fractional calculus has a long history that dates back to the days of differential calculus, which was originated
by Newton and Leibniz. Differential equations of fractional order are extensions of classical differential equations
of integer order. It has been established that fractional differential equations provide a more effective explanation
for physical phenomena than integer-order models, and that fractional order models better characterize dynamical
systems [2, 3]. In mathematical physics, water wave concepts, dispersion processes, etc., nonlinear fractional-order
differential equations are encountered [19, 20]. It is difficult to find solutions to fractional issues, especially fractional-
order problems with higher dimensions involving novel derivatives, because fractional derivative operators are non-local
and have complex features. To the best of our knowledge, there is no conventional approach for handling fractional
nonlinear issues with larger dimensions. Using concepts from integer order calculus, a number of novel numerical [21]
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and analytical techniques are presented for fractional order problems; nonetheless, different approaches are being used
by various researchers to investigate fractional order problems [37, 38].

There is a deep past of fractional differential equations. Its past is as long as classical calculus and up to date since
1695. Due to its broad application areas such as biology, physics, fluid dynamics, engineering etc, many mathematicians
and physicists have paid great attention to this issue [2, 38]. Also, numerous researchers have worked on numerical and
analytical solution of nonlinear fractional partial differential equations in which can be pointed to interesting finding
such as [15, 30]. The development and obtaining the numerical and exact solutions of the equations, containing
fractional derivative and integral, have gained great and significant importance. So, various methods have been
investigated for this purpose. Among others, some of them are [24, 47]. In this study, we are going to gain the
numerical solutions of time fractional Klein-Gordon equation according to Caputo sense derivative which is one of the
fundamental equations considered in fractional calculus.

Dαt Λ(x, t) + κ∂Λ
∂x

2
(x, t) = −ηΛ(x, t) + ζΛβ(x, t)Λ(x, t) +H(x, t), (x, t) ∈ Ω ⊂ R2,

Λ(x, 0) = f1(x), x ∈ Ωx,

Λ(x, T ) = f2(x), x ∈ Ωx,

Λ(0, t) = p1(t), t ∈ Ωt,

Λ(b, t) = p2(t), t ∈ Ωt,

(1.1)

where Ωt and Ωx are boundaries of Ω := {(x, t) : a ≤ x ≤ b, 0 ≤ t ≤ T} in t and x, respectively. H(x, t) is a known
forced term and in addition to these terms κ, η, ζ and β are real constants and also ζ can presented as a variable
coefficients in some examples. Moreover Dαt Λ(x, t) is the Caputo fractional derivative with order of α defined as

Dαt Λ(x, t) =
∂αΛ(x, t)

∂tα
=


1

Γ(m−α)

∫ t
0
(t− σ)m−α−1 ∂

mΛ(x,σ)
∂σm dσ, m− 1 < α < m,

∂Λ(x,t)
∂tm , α = m.

(1.2)

The time fractional Klein-Gordon equation (TFKG) are inspected by many authors. Many mathematicians and
physicists have been interested in finding robust and accurate numerical methods for solving TFKG. Examples of
such methods include, for instance, a high-order difference scheme [45], Chebyshev spectral method [27], spectral
collocation method [8], Wavelet method [23], implicit RBF meshless approach [17], linearized second-order scheme
[36]. The more relevant and recent valuable works in applications of fractional calculus in the real-life applications
there are such: fractional-Legendre spectral Galerkin method [5], Fractional-order Legendre-collocation method [6],
fractional Walter’s B fluid with applications [7], fractional Maxwell fluid in a porous medium [9], fractional logistic
models in the frame [1].
Despite the various methods available, researchers continue to develop new methods to investigate NLPDEs [43, 44].
The set of solutions in most nonlinear models is challenging to characterize, prompting researchers to present families
of new solutions [39, 41]. Also, researchers have developed several approaches for finding analytical solutions to
NLPDEs [31, 40]. A plethora of computational techniques have been devised to delve into the essence of solutions for
such equations, each offering its unique advantages. Among these methodologies is the fractional generalized CBS-BK
equation [54], the (3+1)-D Burger system [22], the reduced differential transform method [46], the generalized Hirota
bilinear scheme [? ] and the analytical expansion technique [4]. In this work, we will first investigate time-fractional
Klein-Gordon equation using the FTIT where is given to model. Furthermore, different examples will be obtained as
solutions by applying the above mentioned technique.
The structure of this paper is given as under: This paper is formed because the section 2 contains fictitious time
integration method. In section 3, the numerical results is presented. Finally, a concluding summary of the research is
presented.

2. Fictitious time integration technique

The fictitious time integration technique is applied for solving time and space fractional Burger equation [34]. The
construction of FTIT for TFKG is in the following:
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According to the Caputo fractional derivative definition (1.2), Eq. (1.1) can be written as:

1

Γ(2− α)

∫ t

0

Λσσ(x, σ)

(t− σ)α−1
dσ + κΛxx + ηΛ− ζΛβ −H(x, t) = 0. (2.1)

Then, by multiplying the Eq. (2.1) into the amount ρ as a fictitious damping coefficient where can handle the stability
of numerical integration, we have:

ρ

Γ(2− α)

∫ t

0

uσσ(x, σ)

(t− σ)α−1
dσ + ρκΛxx + ρηΛ− ρζΛβ − ρH(x, t) = 0. (2.2)

Imposing the following transformation:

ω(x, t, χ) = (1 + χ)cΛ(x, t), 0 < c ≤ 1, (2.3)

Eq. (2.2) converts to a following form:

ρ

(1 + χ)c

[
1

Γ(2− α)

∫ t

0

ωσσ(x, σ, χ)

(t− σ)α−1
dσ + κωxx(x, t, χ) + ηω(x, t, χ)− ζωβ(x, t, χ)(1 + χ)c(1−β)

]
− ρH(x, t) = 0. (2.4)

From Eq. (2.3) it is easy to find:

∂ω

∂χ
= c(1 + χ)c−1Λ(x, t). (2.5)

Combination of Eqs. (2.5) and (2.4) leads to:

∂ω

∂χ
=

ρ

(1 + χ)c

[
1

Γ(2− α)

∫ t

0

ωσσ(x, σ, χ)

(t− σ)α−1
dσ + κωxx(x, t, χ)

+ ηω(x, t, χ)− ζωβ(x, t, χ)(1 + χ)c(1−β)

]
− ρH(x, t) + c(1 + χ)c−1u. (2.6)

Eq. (2.6) transforms into a new type of PDE for ω, by setting u = ω/(1 + χ)c :

∂ω

∂χ
=

ρ

(1 + χ)c

[
1

Γ(2− α)

∫ t

0

ωσσ(x, σ, χ)

(t− σ)α−1
dσ + κωxx(x, t, χ)

+ ηω(x, t, χ)− ζωβ(x, t, χ)(1 + χ)c(1−β)

]
− ρH(x, t) +

cω

1 + χ
.

(2.7)

Using

∂

∂χ

(
ω

(1 + χ)c

)
=

ωχ
(1 + χ)c

− cω

(1 + χ)1+c
, (2.8)

and by multiplying the integrating factor 1/(1 + χ)c on both sides of Eq. (2.7), results:

∂

∂χ

(
ω

(1 + χ)c

)
=

ρ

(1 + χ)2c

[
1

Γ(2− α)

∫ t

0

ωσσ(x, σ, χ)

(t− σ)α−1
dσ + κωxx(x, t, χ)

+ ηω(x, t, χ)− ζωβ(x, t, χ)(1 + χ)c(1−β)

]
− ρH(x, t)

(1 + χ)c
. (2.9)

Using again the relation Λ = ω
(1+χ)c , results:

Λχ =
ρ

(1 + χ)c

[
1

Γ(2− α)

∫ t

0

Λσσ(x, σ, χ)

(t− σ)α−1
dσ + κΛxx(x, t, χ)

+ ηΛ(x, t, χ)− ζΛβ(x, t, χ)−H(x, t)

]
.

(2.10)
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Supposing Λji (χ) := Λ(xi, tj , χ) and Hji := H(xi, tj). By using this notations, Eq.(2.10) can be written to the following
form:

d

dχ
Λji (χ) =

ρ

(1 + χ)c

[
1

Γ(2− α)

∫ tj

0

Λσσ(xi, σ, χ)

(tj − σ)α−1
dσ

+ κ
Λji+1(χ)− 2Λji (χ) + Λji−1(χ)

∆x2
− ηΛji (χ)− ζ(Λji (χ))β −F ji

]
, (2.11)

where ∆x and ∆t are the uniform spatial lengths in the x and t directions, Λji (ξ) := Λ(xi, tj , χ), Hji := H(xi, tj),
and uχ indicates the differential of u subjected to χ. Fully discretization of above equation needs to calculate the
approximation of appeared integral as follows:∫ tj

0

Λσσ(xi, σ, χ)

(tj − σ)α−1
dσ ≈ Λ(xi, t3, χ)− 2Λ(xi, t2, χ) + Λ(xi, t1, χ)

∆t2(tj − t1)α−1

+

j−1∑
l=2

Λ(xi, tl+1, χ)− 2Λ(xi, tl, χ) + Λ(xi, tl−1, χ)

∆t2(tj − tl)α−1
, (2.12)

where ∆x = b−a
N1

, ∆t = T
N2

, xi = a+ i∆x and tj = j∆t.

Considering Λ = (Λ1
1,Λ

2
1, ...,Λ

N2

N1
)T , we can write the Eq. (2.11) in the vector form as:

Λ′ = G(Λ, χ), Λ ∈ RM , χ ∈ R, (2.13)

where Λ is an M -dimensional state vector, F ∈ RM is a vector valued function of Λ and χ and M = N1 ×N2. Now,
we implement the following scheme namely the group preserving technique (GPT) which is introduced by Liu in [33]

to solve Eq. (2.11) by taking the initial value Λji (0) :

Λk+1 = Λk +

[
cosh

(
∆χ‖Gk‖
‖Λk‖

)
− 1

]
Gk.Λk + sinh

(
∆χ‖Gk‖
‖Λk‖

)
‖Λk‖‖Gk‖

‖Gk‖2
Gk. (2.14)

Supposing Λji (0), to solve Eq. (2.11) from the fictitious initial χ = 0 to a chosen fictitious final χf , we can implement
the proposed method. Terminating criterion for this scheme is:√√√√N1,N2∑

i,j=1

[Λji (k + 1)− Λji (k)]2 ≤ ε, (2.15)

where ε is a chosen convergence measure. The solution of u is gettable from

Λji =
Λji (χ0)

(1 + χ0)d
, (2.16)

where χ0(≤ χf ) satisfies at the mentioned measure. By choosing the appropriate ρ and c, we can raise the stableness
of solution and increasing the convergence rate of numerical integration, respectively.

3. Numerical examples

In this part, we analyze the performance of the proposed method by solving the following four examples as:

Example 3.1. As the first example, we consider the fractional TFKG Equation (1.1), [26] with α = 1.9, κ = −1, η =
0, ζ = 2.5, β = 3/2,

H(x, t) =
Γ(3 + α)

2
t2x3(1− x)3 + (30x4 − 60x3 + 36x2 − 6x)t2+α + 2.5exx4.5(1− x)4.5t3+1.5α.
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Figure 1. Plot of the analytical and approximate solutions of Example 3.1.
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Figure 2. Contour plot of absolute error of Example 3.1.

The analytical solution of the Eq. (1.1) for this instance is Λ(x, t) = t2+αx3(1 − x)3. When the semi-discretization
procedure, we employ the number of knots N1 = N2 = 30 in each coordinates of space and time respectively. Men-
tioned domain in this instance is Ω = [0, 1] × [0, 1]. The boundary conditions in Ωx are stated to be homogeneous.

The initial assumption and step size for χ are mentioned as Λji (0) = 1e − 4 and ∆χ = 1e − 5. In order to control
the convergency and stability of FTIT for the current instance, we consider ρ = 47 and c = 1. Figure 1 shows the
analytical and numerical solutions obtained by our method. Numerical error of the current scheme can be found in
Figure 2. Table 1 shows that the obtained maximum absolute numerical errors which are 1.2 × 10−19 obviously are
better than error 8.19× 10−7 of the the method [26]
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Table 1. The comparison of the analytical solutions with the numerical solutions for α = 1.9, N1 =
N2 = 30, T = 1 and the maximum absolute error for Example 3.1.

(x, t) Numerical Exact Error

(0.1,0.1) 1.146348117901298e-07 1.146348117901298e-07 1.146348117901298e-24
(0.2,0.2) 9.477350807799033e-06 9.477350807799033e-06 9.477350807799034e-23
(0.3,0.3) 1.022405372471378e-04 1.022405372471378e-04 1.022405372471378e-21
(0.4,0.4) 4.570431272556304e-04 4.570431272556304e-04 4.570431272556304e-21
(0.5,0.5) 0.001190347092027 0.001190347092027 1.190347092026936e-20
(0.6,0.6) 0.002031506243924 0.002031506243924 2.031506243924486e-20
(0.7,0.7) 0.002263825332587 0.002263825332587 2.263825332586649e-20
(0.8,0.8) 0.001388760647375 0.001388760647375 1.388760647375236e-20
(0.9,0.9) 2.003363608618149e-04 2.003363608618149e-04 2.003363608618149e-21
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Figure 3. Plot of the analytical and approximate solutions of Example 3.2.

Example 3.2. Considering the nonlinear Klein Gordon Eq. (1.1) where the constants are κ = 1, η = 0, ζ = 1 and
β = 2, 0 < x < 1 and 0 < t ≤ 1 with the source term [26]

H(x, t) =
Γ(5/2)

Γ(8/2− α)
(1− x)5/2t3/2−α − 15

4
(1− x)1/2t3/2 + (1− x)5t3.

Initial assumption is Λji (0) = 0.01, and the values of parameters are ρ = 0.2 and c = 0.1. The analytical solution,

Λ(x, t) = (1 − x)5/2t3/2, and approximate solutions are plotted in Figure 3. The power of the proposed method can
be seen in Figure 4. Table 2 is dedicated to show the exact and numerical solutions point by point and the gained
absolute errors.

Example 3.3. We take the Eq. (1.1) with κ = 1, η = −1, ζ = 3/2 and β = 3 and

H(x, t) =
Γ(3 + α)

2
sin(πx)t2 + (1 + π2)sin(πx)t2+α +

3

2
(sin(πx)t2+α)3.
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Figure 4. Contour plot of the maximum absolute error of Example 3.2.

Table 2. The comparison of the analytical solutions with the numerical solutions for α = 1.9, N1 =
N2 = 30, T = 1 and the maximum absolute error for Example 3.2.

(x, t) Numerical Exact Error

(0.1,0.1) 0.025323472618256 0.025323472618256 2.532347261825621e-20
(0.2,0.2) 0.052717459616574 0.052717459616574 5.271745961657405e-20
(0.3,0.3) 0.068288372392296 0.068288372392296 6.828837239229595e-20
(0.4,0.4) 0.070032911361076 0.070032911361076 7.003291136107603e-20
(0.5,0.5) 0.060237229098190 0.060237229098190 6.023722909819004e-20
(0.6,0.6) 0.043330976761268 0.043330976761268 4.333097676126785e-20
(0.7,0.7) 0.024629858567274 0.024629858567274 2.462985856727429e-20
(0.8,0.8) 0.009292870429238 0.009292870429238 9.292870429238161e-21
(0.9,0.9) 0.001122092459237 0.001122092459237 1.122092459237206e-21

The approximate and the analytical solutions Λ(x, t) = sin(πx)t2+α of this example are displayed in Figure 5 for
applied FTIT subjected to the parameters: ρ = 0.002, c = 0.1,∆χ = 1e − 9. We choose the initial assumption
Λji (0) = 0.01. High accuracy of presented method for this example can be detected from Figure 6 which shows relative
error for Example 3.3. Accuracy of our method can be found from Table 3.

Example 3.4. ([51]). As the third example, we consider the Eq. (1.1) with α = 1.7, κ = −1, η = 0, ζ = 1 and β = 0
as follows

H(x, t) =
2t2−α

(2− α)Γ(2− α)
(e− ex)sin(x) + t2(2e− ex)sin(x) + 2t2excos(x).

Let Λji (0) = 0.01. Domain of the problem and Dirichlet boundary conditions are taken as the Example 3.2. By taking
ρ = 102, c = 0.6, and ∆χ = 1e−2, the low obtained numerical error is shown in Figure 8 which shows FTIT is suitable
to solve TFKG equation. The analytical solution of TFKG equation for this example is Λ(x, t) = t2(e − ex)sin(x).
The exact solution and obtained approximate solutions are plotted in Figure 7. The low absolute errors, the exact and
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Figure 5. Plot of the analytical and approximate solutions of instance 3.
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Figure 6. Contour plot of the maximum absolute error of instance 3.

numerical values at points are presented in Table 4 which the errors obtained via GPT are more better than errors
gained by the method of [51].

4. Conclusion

In this work, we have converted the TFKG equation into a new type of functional PDE in a new dimension with
one extra by proposing a fictitious coordinate. After applying the semi-discretization for the original equation, the
GPT as a geometric technique is utilized to integrate the equations of first-order ODEs. Some numerical instances
were performed, which illustrate that the offered technique is reliable and applicable to gain the numerical solutions
of TFKG equation. By employing different parametric values, new approximate solutions were produced at certain
fractional order levels α. These findings and technique can be extended to investigate other higher-dimensional
fractional-order models in nonlinear wave theory, encompassing fields such as optics, quantum gases, hydro-dynamics,
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Table 3. The comparison of the analytical solutions with the numerical solutions for α = 1.9, N1 =
N2 = 30, T = 1 and the maximum absolute error for instance 5.

(x, t) Numerical Exact Error

(0.1,0.1) 4.587981957479481e-05 4.587981957479481e-05 4.587981957479481e-23
(0.2,0.2) 0.001298129742021 0.001298129742021 1.298129742020981e-21
(0.3,0.3) 0.008630993260602 0.008630993260602 8.630993260601923e-21
(0.4,0.4) 0.030855239384296 0.030855239384296 3.085523938429597e-20
(0.5,0.5) 0.076342489974861 0.076342489974861 7.634248997486077e-20
(0.6,0.6) 0.144615688247927 0.144615688247927 1.446156882479273e-19
(0.7,0.7) 0.216446406988547 0.216446406988547 2.164464069885473e-19
(0.8,0.8) 0.246459572764354 0.246459572764354 2.464595727643535e-19
(0.9,0.9) 0.162684146882440 0.162684146882440 1.626841468824396e-19

0

1

0.1

0.2

0.3

1

 u
(x

,t)

0.4

Approximate solution 

 t 

0.5

0.5

x 

0.6

0.5

0 0

0

1

0.1

0.2

0.3

1

 u
(x

,t)

0.4

Exact solution 

 t 

0.5

0.5

x 

0.6

0.5

0 0

Figure 7. Plot of the analytical and approximate solutions of instance 4.

Table 4. The comparison of the analytical solutions with the numerical solutions for α = 1.7, N1 =
N2 = 30, T = 1 and the maximum absolute error for instance 4.

(x, t) Numerical Exact Error

(0.1,0.1) 0.001778402744399 0.001778402744399 1.778402744398820e-20
(0.2,0.2) 0.013088331917926 0.013088331917926 1.308833191792626e-19
(0.3,0.3) 0.039836593476932 0.039836593476932 3.983659347693239e-19
(0.4,0.4) 0.083011335376355 0.083011335376355 8.301133537635463e-19
(0.5,0.5) 0.137702854681641 0.137702854681641 1.377028546816410e-18
(0.6,0.6) 0.144615688247927 0.144615688247927 1.446156882479273e-18
(0.7,0.7) 0.227657449061668 0.227657449061668 2.276574490616675e-18
(0.8,0.8) 0.217093344003187 0.217093344003187 2.170933440031868e-18
(0.9,0.9) 0.125971300346882 0.125971300346882 1.259713003468815e-18
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Contour of absolute error
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Figure 8. Contour plot of the maximum absolute error of instance 4.

photonics, plasmas, and solid-state physics. This research thus opens new avenues for understanding and applying
high-dimensional fractional equations across various scientific disciplines.
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