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Abstract

Solving option pricing equations is one of the most important challenges facing financial mathematics. In this

article, a non-linear model is assumed for the market and the European option is priced under this model. To

solve the pricing problem accurately, the Lie algebra method has been used. The conservation laws of the model
have been calculated using Lie direct method, as well. Numerical simulation of the model has been done using

the finite difference method.
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1. Introduction

Choosing the right model for option pricing is important in creating and controlling volatility, creating an arbitrage
environment, and risk hedging. The Black-Scholes model is one of the main pricing models that presents a mathematical
model for a financial market using a stochastic differential equation. This modeling is done with riskless and risky
assets as defined by the following dynamics.

dNt = rNtdt, (1.1)

dXt = µ(t,Xt)Xtdt+ σ(t,Xt)XtdWt, (1.2)

where Nt is riskless asset at time t, Xt risky asset, r interest rate, µ expected rate of return, σ volatility and {Wt}t
a Winner process. As seen in this market, volatility and interest rate are assumed to be risk-free and constant. The
linear Black-Scholes equation related to European option pricing is

Zt(t, x) + rxZx(t, x) +
1

2
x2σ2(t, x)Zxx(t, x)− rZ(t, x) = 0,

Z(T, x) = Φ(x), (1.3)

where x is underlying asset price and Zx(t, x) = ∂Z
∂x (t, x) [5].

Black-Scholes model was used by traders for a long time but the assumption of stability of volatility and interest
rate caused it to lose its efficiency gradually [11]. So the researchers tried to get a mathematical model much closer to
reality by eliminating these assumptions. Heston’s model, for instance, assumes that volatility is a stochastic process.
By including a stochastic process for the interest rate, it is also possible to remove the interest rate from its fixed
state [24]. Using the fractional Brownian process in place of the Brownian process is another method to enhance the
Black-Scholes model [10]. Assuming that transaction costs are zero is another way to violate the Black-Scholes model.
Transaction costs are calculated in different ways, which is used in this article from Barles and Soner model. Barles
and Soner extracted a more complicated model using the approach of the utility function of Hodges and Neuberger
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[16] which was developed in [12]. Applying an exponential utility function and the theory of stochastic optimal control
they proved Z satisfies the following non-linear PDE, when ε and κ tend to zero [14].

Zt +
1

2
x2σ̃2Zxx + rxZx − rZ = 0,

σ̃2 = σ2(1 + Ψ(er(T−t)a2x2Zxx)), (1.4)

where a = κ√
ε

and κ denotes transaction cost for per unit dollar traded. Ψ(x) is the solution of non-linear ODE,

Ψ ′(x) =
Ψ(x) + 1

2
√
xΨ(x)− x

, x 6= 0, (1.5)

Ψ(0) = 0.

We have

lim
x→∞

Ψ(x)

x
= 1, (1.6)

lim
x→−∞

Ψ(x) = −1.

This property allows the treatment of the function Ψ(.) as the identity for large arguments. Following [3], let

σ̃2 = σ2(1 + er(T−t)a2x2Zxx). (1.7)

Substituting (1.7) into (1.4) yields

Zt +
1

2
er(T−t)a2x4σ2Z2

xx +
1

2
σ2x2Zxx + rxZx − rZ = 0. (1.8)

Equation (1.8) is called non-linear Black-Scholes PDE. Initial and boundary conditions of considered European call
option with strike price K respectively are

Z(x, 0) = max(x−K,0), 0 6 x 6 Xmax, (1.9){
Z(0, t) = 0,

limx→∞ Z(x, t) = x,
(1.10)

and for European put option,

Z(x, 0) = max(K − x,0), 0 6 x 6 Xmax, (1.11){
Z(0, t) = Ke−r(T−t),

limx→∞ Z(x, t) = 0.
(1.12)

Xmax is upper bound of price x which is assumed three or four times K [13].
There are two exact and numerical methods to solve Equation (1.8). One of the precise solution methods is to

use Lie symmetries [8, 9, 11, 25]. In this paper, the exact and approximate solutions as well as the conservation
laws of Eq. (1.8) are found. The exact solutions are found using Lie algebra, especially by points symmetries and
one-parameter groups. Using Lie symmetries, the parameters of considered PDE are reduced. Usually reducing the
parameters, PDEs are transformed into ODEs which are solved easily. Conservation Laws for PDEs in reality are
mathematical expressions for physical principles. These laws are important to prove the uniqueness and existence of
solutions [7, 21].In this paper, we calculate the conservation laws with a direct method.

There are also different methods to solve a PDE numerically. Numerical solutions for PDEs can also be found in
various ways. In [2], the full discretization in the second level for the pricing of catastrophic bonds is generated using
the spectral collocation method approach, which is based on the Chebyshev basis of the second kind. The approximate
solution of the temporal fractional Black-Scholes model with beginning and boundary conditions, incorporating the
time derivative in the Caputo sense, has been examined in [20]. The orthogonal polynomials utilized for spatial
discretization serve as the foundation for the Chebyshev collocation, while time discretization has been accomplished
by linear interpolation with temporally order accuracy. This article considers the time-fractional Black-Scholes model
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regulating European options, as described in [19], where the temporal derivative is concentrated on the Caputo
fractional derivative. First, the semi-discrete was produced in the temporal sense using a quadratic interpolation
with accuracy order, and then the unconditional stability and convergence order were examined. This is how the
approximate numerical scheme was derived. Using the composition of the orthogonal Gegenbauer polynomials (GB
polynomials) and the approximation of the fractional derivative dependent on the Caputo derivative, [1] proposes an
efficient procedure to estimate the fractional Black-Scholes model in time dependent on the market prices of European
options. The numerical method’s speed and computation time reduction are attributed to the orthogonality of GB
polynomials and operational matrices.

In the sequel, an approximate solution is obtained using the finite differences method.
Some notations and definitions were presented in section 2. The exact solutions of the non-linear Black-Scholes

model are found in the second section, as well. The conservation law of the considered equation is given in the third
section. In the next section, the approximate solution of European options pricing is g using the finite differences
method. The paper concluded in section 5.

2. Lie symmetries

Assume the differential equation system of order β with independent variable xi, 1 6 i 6 n and dependent variable
uβ , 1 6 β 6 m,

∆f (xi, uβ , uβi , u
β
ij , . . . ) = 0, 1 6 f 6 l, (2.1)

where uβij = ∂2uβ/∂xi∂xj [22]. The infinitesimal Lie transformations for (2.1), are

x̃i = xi + εξi +O(ε2), (2.2)

ũβ = uβ + ελβ +O(ε2),

which do not change the system of equations to O(ε2). In Lie point symmetry, the infinitesimal generators of ξi =
ξi(xi, uβ) and λβ = λβ(xi, uβ) depend only on xi and λβ and not on the derivatives or integrals of λβ .
When the transformations (2.2) are dependent on derivatives or integrals of λβ we use generalized Lie symmetries.
The infinitesimal transformations for the first and second order derivatives to O(ε2) are

ũβi = uβi + εηβi , ũβij = uβij + εηβij , (2.3)

where

ηβi = Diλ̂
β + ξfuβfi, ηβij = DiDj λ̂

β + ξfuβfij , (2.4)

and

λ̂β = λβ − ξfuβf , (2.5)

are related to Lie transformations in which x̃i = xi and ũβ = uβ+ελ̂β [9]. The operator Di denotes the total derivative
w.r.t. xi and

Di =
∂

∂xi
+ uβi

∂

∂uβ
+ uβij

∂

∂uβj
+ . . . [6] (2.6)

The following relation must hold for the transformations of (2.2) not to change the hypothetical system of differential
equations to O(ε2),

Lv∆f ≡ ṽ(∆f ) = 0 whenever ∆f = 0, 1 6 f 6 l, (2.7)

where

ṽ = v + ηβi
∂

∂uβi
+ ηβij

∂

∂uβij
+ . . . , (2.8)
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the prolongation of the vector field

v =
n∑
i=1

ξi
∂

∂xi
+

m∑
i=1

λβ
∂

∂uβ
, (2.9)

for infinitesimal transformations (2.2) [11]. Lv∆f represents the derivative of ∆f w.r.t. the vector field v. The partial
differential equation (1.8) which can be represented as

∆(x, t, Z, Zx, Zt, Zxx, Ztt, Zxt) = 0, (2.10)

has the following infinitesimal transformations

x̃ = x+ εξx +O(ε2),

t̃ = t+ εξt +O(ε2), (2.11)

Z̃ = Z + ελ+O(ε2).

The prolongation of vector field of transformations (2.11) is as follows.

v(2) = v + λx
∂

∂Zx
+ λt

∂

∂Zt
+ λxx

∂

∂Zxx
+ λtt

∂

∂Ztt
+ λxt

∂

∂Zxt
, (2.12)

where

v = ξx(x, t, Z)
∂

∂x
+ ξt(x, t, Z)

∂

∂t
+ λ(x, t, Z)

∂

∂Z
, (2.13)

and

λx = Dx(λ− ξxZx − ξtZt) + ξxZxx + ξtZxt,

λt = Dt(λ− ξxZx − ξtZt) + ξxZxt + ξtZtt,

λxx = Dx

[
Dx(λ− ξxZx − ξtZt)

]
+ ξxZxxx + ξtZxxt, (2.14)

λtt = Dt

[
Dt(λ− ξxZx − ξtZt)

]
+ ξxZxtt + ξtZttt,

λxt = Dx

[
Dt(λ− ξxZx − ξtZt)

]
+ ξxZxxt + ξtZxtt.

In the sequel the parameters of the considered equation is reduced. For this, invariant of the vector field (2.9) is
calculated. So the following characteristic device should be solved [8, 15].

dx1

ξ1
= . . . =

dxn

ξn
=
dZ1

λ1
= . . . =

dZm

λm
. (2.15)

Some vector fields do not find a suitable solution for the differential equation. So calculating flow and substituting
it into one of the found solutions yield a new solution. The flows of the vector field v is

(x̄, t̄, Z̄) = exp(εv)(x, t, Z), (2.16)

where

exp(εv) = 1 +
ε

1!
v +

ε2

2!
v2 + . . . , (2.17)

and

v2(x, t, Z) = v(v(x, t, Z)), [21]. (2.18)

The prolongation of vector field of the second order Eq. (1.8) is

ξx(2a2x3σ2Z2
xx + σ2xZxxrZx)− 1

2
ξter(T−t)ra2x4σ2Z2

xx − λr (2.19)

+ λxrx+ λt + λxx(er(T−t)a2x4σ2Zxx +
1

2
σ2x2) = 0.
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So

ξxZ = ξtx = ξtZ = ξttt = 0,

λxx = − ξtt
2a2x2er(T−t)

, λZ = rξt − ξtt ,

λt =
8
(
− 1

2rZξ
t + Zξtt − 1

2xλx + 1
2λ
)
a2rer(T−t) + σ2ξtt

4a2er(T−t)
, (2.20)

ξxt = rxξtt , ξxx =
1

x
ξx.

From (2.20) the vector field coefficients v are

ξx = x(c1rt+ c3), ξt = c1t+ c2, (2.21)

λ =
1

4ra2

[
c1(σ2 − 2r)(rt− 1)e−r(T−t) + 2c1r ln(x)e−r(T−t)

+ 4a2
(
c4e

rt +
(
rZ(c1t+ c2) + c5x− c1Z

)
r
)]
.

So the infinitesimal generators of the Barles and Soner equation are

v1 = x
∂

∂x
, v2 = ert

∂

∂Z
, v3 = x

∂

∂Z
, v4 =

∂

∂t
+ rZ

∂

∂Z
, (2.22)

v5 = xrt
∂

∂x
+ t

∂

∂t
+

2e−r(T−t) ln(x)− 2ter(t−T )(−σ
2

2 + r) + 4Z(rt− 1)a2

4a2

∂

∂Z
.

In addition to the above vector fields, their linear combinations can be used. We can not use vector fields v2 and v3

in which the infinitesimal generators ξx and ξt are zero. So we combine them with v1 or v4 vectors. So

v6 = v1 + v2 = x
∂

∂x
+ ert

∂

∂Z
, (2.23)

v7 = v1 + v3 = x
∂

∂x
+ x

∂

∂Z
.

2.1. The exact solution for the Barles-Soner equation. To calculate the exact solutions of the Barles and Soner
equation using Lie groups, the invariant of vector fields should be obtained. Substituting them into the considered
equation, the number of parameters of the equation is reduced. We apply the parameter reduction process until the
reduced equation is solvable.

• For the generator v1 the invariant transformations is Z = u(y), t = y. So substituting obtained invariant into
(1.8) and reducing its parameters, it becomes a linear first-order differential equation as follows.

u′ − ru = 0, (2.24)

so we have Z = c.ert where c is the integrating coefficient. In the sequel, new solutions for remained generators
are presented using one-parameter groups (flow).
• The flow of generator v5 is (x̄, t̄, Z̄) = exp(εv5)(x, t, Z) and so

x̄ = xertε, t̄ = teε, (2.25)

Z̄ = − 1

8a2

[
(σ2te−rT − 6rte−rT − σ2te−Tr+2ε − 8e−rta2Z

+ 4 ln(x)e−rT + 4e−Tr+εrt+ 2rte−Tr+2ε − 4 ln(xertε)e−Tr+ε)e−ε+rte
ε

]
.
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(a) (2.26). (b) (2.29).

Figure 1. The solutions of Eqs. (2.26) and (2.29) for a = 0.6, r = 0.04 and σ = 0.45.

Substituting the obtained flow into Z = c.ert, yields

Z(x, t) = −e
rt−ε

2a2

[
− ln(xertε(−1+exp(−ε)))e−Tr+ε −

3(−σ
2

6 + r)te−Tr−ε

2

+ e−rT ln(xe−rtε) +
t(−σ

2

2 + r)e−Tr+ε

2
+ rte−rT − 2a2c

]
. (2.26)

• Similarly the flow of generator v6 is (x̄, t̄, Z̄) = exp(εv6)(x, t, Z) and so

x̄ = xeε, t̄ = t, Z̄ = Z + εert. (2.27)

yields

Z(x, t) = (c− ε)ert. (2.28)

• Finally the last generator flow gives the following solution,

Z(x, t) = cert − xe−ε + x. (2.29)

Figure 1 shows the solutions of Eqs. (2.26) and (2.29) when a = 0.6, r = 0.04 and σ = 0.45.

3. Conservation laws

The conservation laws of a system of differential equations with partial derivatives is a divergence expression that is
constant on all solutions of the system. Each non-trivial divergence expression that results in a local law of the system
of differential equations is obtained from the local multipliers of the independent and dependent variables and the
derivatives of the dependent variables. In the direct method to find divergence expressions, we replace the dependent
variables and their derivatives in the system of differential equations and functional multipliers with arbitrary functions.
This makes zero the divergence expressions on all system solutions [6, 18, 21].

A conservation law for a PDE (2.1) is a divergence expression

DiΦ
i[u] =

n∑
j=1

DjΦ
j [u] = 0, (3.1)
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which must be satisfied all solutions system (2.1). In the above expression, Φi[u] is called the fluxes of conservation
laws and

Φi[u] = Φi(x, u, ∂u, . . . , ∂ru). (3.2)

The highest order of the derivative seen in the fluxes is called the order of the conservation law [6]. Multipliers

{Λν [U ]}Nν=1 = {Λν(x, U, ∂U, . . . , ∂sU)}Nν=1, (3.3)

where U(x) are arbitrary functions, produces a divergence expression, provided

Λν [U ]Rν [U ] ≡ DiΦ
i[U ], (3.4)

multipliers (3.3) with arbitrary order s yields a conservation law for

R(xi, u) = ∆f (xi, uβ , uβi , u
β
ij , . . . ) = 0, 1 6 f 6 l, (3.5)

if for each arbitrary function U(x), we have

EUβ [Λν(x, U, ∂U, . . . , ∂sU)Rν(x, U, ∂U, . . . , ∂sU)] ≡ 0, 1 6 β 6 m, (3.6)

where EUβ [.] is the Euler-Lagrange operator w.r.t. Uβ , that for 1 6 β 6 m is defined as follows.

EUβ =
∂

∂Uβ
−Di

∂

∂Uβi
+ · · ·+ (−1)sDi1 . . . Dis

∂

∂Uβi1...is
+ . . . . (3.7)

This operator makes zero the divergence expression DiΦ
i[U ] [6, 27].

3.1. The conservation law for Barles-Soner equation. One of the independent variables of the equation

R[u] = ut +
1

2
er(T−t)a2x4σ2u2

xx +
1

2
σ2x2uxx + rxux − ru, (3.8)

is the time variable t. So its conservation law is

DtΨ[u] +
n−1∑
i=1

DiΦ
i[u] = 0. (3.9)

Ψ[u] is the density and Φi[u] spatial fluxes of conservation law of Eq. (3.8) [4].
To find conservation law, we find the multipliers Λ which are obtained from Eq. (3.6) for an arbitrary order s.

Then from relation

DtΨ[u] +DxΦx[u] ≡ Λ(x, U, ∂U, . . . , ∂sU)R[u], (3.10)

the conservation law of the order s is obtained, where U(x, t) are arbitrary functions. For the zero-order conservation
law, the local multipliers Λ(x, t, u) is obtained from

EU [Λ(x, t, U)(Ut +
1

2
er(T−t)a2x4σ2U2

xx +
1

2
σ2x2Uxx + rxUx − rU)] ≡ 0, (3.11)

for arbitrary functions U(x, t). Applying the Euler-Lagrange operator, the above relation is written as follows.

8x2a2σ2er(T−t)
(

1

8
ΛUUx

2U2
xUxx +

1

4
ΛxUx

2UxUxx +
1

8
Λxxx

2Uxx

+ ΛU

(1

4
x2(UxxxUx +

3

4
U2
xx) + xUxUxx

)
+ Λx(

1

4
x2Uxxx + xUxx)

+ Λ(
1

8
x2Uxxxx + xUxxx +

3

2
Uxx)

)
+

1

2
ΛUUx

2U2
xσ

2 + ΛxUx
2Uxσ

2

+
1

2
Λxxx

2σ2 + ΛU

(
(x2Uxx + 2xUx)σ2 − rU

)
− Λxx(−2σ2 + r)

+ Λ(σ2 − 2r)− Λt ≡ 0. (3.12)
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The above equation is a polynomial in terms of Ux, Uxx, Uxxx and Uxxxx variables. From (3.12) we get the local
multiplier Λ = 0. From relationship (3.10) for the local multiplier Λ = 0, the conservation law from the zeroth order
of Eq. (3.8) is

Dtu−Dxxut = 0. (3.13)

4. Numerical approximate

In this paper, using the finite differences method, a numerical solution is found. For this, the explicit method is
applied to approximate Equation (1.8). In this method, the forward difference is used for the first derivative w.r.t.
time, the central difference for the first derivative w.r.t. underlying price, and the central symmetric difference for the
second derivative w.r.t. x, These differences are computed having three points [13, 23].

For the European option pricing that follows a non-linear Black-Scholes market, the remaining time until the
maturity which is denoted by t, at the moment of concluding the contract, is T . With approaching the maturity
time, t decreases from T to 0. At the moment of contact performance, it is 0. Decreasing t from T to 0 transforms
the Equation (1.8) into a backward equation. Changing of variable ρ = T − t, yields a forward equation in which ρ
increase to T [11].

∂Z(x, t)

∂t
=
∂Z(x, ρ(t))

∂ρ(t)
ρ′(t) = −∂Z(x, ρ)

∂ρ
. (4.1)

Replacing ρ with t,

Zt −
1

2
erta2x4σ2Z2

xx −
1

2
σ2x2Zxx − rxZx + rZ = 0. (4.2)

To approximate the derivatives, time and price intervals should be discretized. Divide [0, T ] into Q sub-intervals of
length ∆t. Limit interval [0,∞ ) which its maximum amount (Xmax) has been assumed to be three or four times the
strike price. Divide [0, Xmax] into P sub-intervals of length ∆x. Each point of obtained grid of space [0, Xmax]× [0, T ]
for 0 6 p 6 P and 0 6 q 6 Q is (p∆x, q∆t). For discretization and approximation of derivatives in finite differences,
the following approximations in an explicit way are needed [13, 26].

∂Z

∂t
(p∆x, q∆t) =

zq+1
p − zqp

∆t
+O(∆t), (4.3)

∂Z

∂x
(p∆x, q∆t) =

zqp+1 − z
q
p−1

2∆x
+O((∆x)2),

∂2Z

∂x2
(p∆x, q∆t) =

zqp+1 − 2zqp + zqp−1

(∆x)2
+O((∆x)2).

For Eq. (1.8),

zq+1
p − zqp

∆t
− erq∆ta2σ2p4

(zqp+1 − 2zqp + zqp−1)2

2
− σ2p2

(zqp+1 − 2zqp + zqp−1)

2

− rp
(zqp+1 − z

q
p−1)

2
+ rzqp = 0, 1 6 p 6 P − 1, 0 6 q 6 Q− 1.

From (4.4),

zq+1
p = zqp +

∆terq∆ta2σ2p4

2

[
4(zqp)2 − 4zqp−1z

q
p − 4zqpz

q
p+1 + (zqp−1)2 + 2zqp−1z

q
p+1

+ (zqp+1)2
]

+
∆tσ2p2

2

[
zqp+1 − 2zqp + zqp−1

]
+

∆trp

2

[
zqp+1 − z

q
p−1

]
− r∆tzqp, 1 6 p 6 P − 1, 0 6 q 6 Q− 1. (4.4)
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Take the change of variables

α1 =
∆ta2σ2

2
, α2 =

∆tσ2

2
, (4.5)

α3 =
∆tr

2
, α4 = r∆t,

for 1 6 p 6 P − 1 and 0 6 q 6 Q− 1. So Eq. (4.4) can be rewritten as follows.

zq+1
p = zqp + α1e

rq∆tp4
[
4(zqp)2 − 4zqp−1z

q
p − 4zqpz

q
p+1 + (zqp−1)2 + 2zqp−1z

q
p+1

+ (zqp+1)2
]

+ α2p
2
[
zqp+1 − 2zqp + zqp−1

]
+ α3p

[
zqp+1 − z

q
p−1

]
− α4z

q
p =

(
1− 2α2p

2 − α4

)
zqp +

(
α2p

2 + α3p
)
zqp+1 +

(
α2p

2 − α3p
)
zqp−1

+ α1e
rq∆tp4

(
zqp+1 − 2zqp + zqp−1

)2
. (4.6)

The equation (4.6) can be rewritten as the following matrix.

zq+1 = Azq + gq2(Bzq + gq3)2 + gq1, 0 6 q 6 Q− 1, (4.7)

where the power 2, refers to the power of each element of the matrix Bzq + gq3 and we have

A =



d1 u2 0 · · · 0

l1 d2 u3
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . uP−1

0 · · · · · · lP−2 dP−1


, B =



d′1 u′2 0 · · · 0

l′1 d′2 u′3
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . u′P−1

0 · · · · · · l′P−2 d′P−1


, (4.8)

where A,B ∈ R(P−1)×(P−1) and

dp = 1− 2α2p
2 − α4, d′p = −2p2, 1 6 p 6 P − 1, (4.9)

up = α2(p− 1)2 + α3(p− 1), u′p = (p− 1)2, 2 6 p 6 P,

lp = α2(p+ 1)2 − α3(p+ 1), l′p = (p+ 1)2, 0 6 p 6 P − 2,

and

zq+1 =


zq+1

1

zq+1
2
...

zq+1
P−1

 , zq =


zq1
zq2
...

zqP−1

 , gq1 =


l0z

q
0

0
...
0

uP z
q
P

 , (4.10)

gq3 =


l′0z

q
0

0
...
0

u′P z
q
P

 , gq2 = α1e
rq∆t.

So the amount of zq+1
p at each moment can be calculated with three points zqp−1, z

q
p, z

q
p+1 at a moment before q + 1.

The explicit method is easy to implement with any programming language capable of storing arrays of data [13]. The
following condition of stability

0 < ∆t <
1

σ2(N − 1) + 1
2r
, (4.11)

has been proved in [17].
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Table 1. Numerical solution for Barles and Soner equation using finite differences method.

X Call option Put option

12 1.812 12.162
18 8.503 9.801
30 16.902 6.265
42 25.973 3.516
54 35.309 1.127

CPU Time (sec) 0.02619 0.02256

(a) Put option. (b) Call option.

Figure 2. Explicit solution of Barles and Soner model.

(a) Call option. (b) Put option.

Figure 3. Comparison between obtained prices at different maturity times.

4.1. European option pricing. In this subsection, we investigate the approximate solution of the European call
and put option (4.7) with initial and boundary conditions (1.9)–(1.12). Take K = 20, r = 0.04, σ = 0.45, a = 0.6 and
T = 1. The European call and put option pricing results for Q = 700 and P = 10 have been shown in Table 1.

Figure 2 shows the diagrams of European options pricing of the non-linear Black-Scholes market (Barles and Soner
model). In Fig. 3 options pricing with different maturities; 6 months, one year, one and a half years and two years
have been compared.
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5. Conclusion

In this paper, using Lie symmetries, four exact solutions for European options pricing under the non-linear Black-
Scholes market (Barles and Soner model) have been found. One of them is obtained by applying invariant and the
other by flow vector fields. In the sequel, a conservation law with order zero for the considered equation has been
presented. The numerical solution of the assumed solution is computed, as well. Finally, the comparison between
European option prices in different maturity times has been shown via diagram.
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