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Abstract

Smoking is one of the most hazardous habits, which damages almost all organs in the body and has a detrimental
effect on general health. In this work, we investigate a mathematical smoking model by taking into account a

singular and non-local Caputo operator as well as non-singular modified Atangana-Baleanu Caputo derivative.
We proposed a Yang transform decomposition technique, which combines the Yang transform with the Adomian

decomposition method, to find the analytical solution of the model. The existence of a unique solution to the

model has been investigated using the Lipschitz condition and fixed point theory. The local asymptotic stability
of equilibrium point is also discussed. Graphical analysis are carried out in order to demonstrate the impact of

fractional order.
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1. Introduction

Smoking is becoming an extremely hazardous habit globally, especially among young people. Approximately 21
million teenagers worldwide, comprising 15 million boys and 6 million girls, between the ages of 13 and 15, report
being current smokers. Globally, 8% of boys and 3% of girls, or 6% of teenagers between the ages of 13 and 15 on
average, smoke cigarettes [34]. There were 1.1 billion tobacco users worldwide in 2000, and that number is expected
to stay there until at least 2025. Smoking causes more deaths from cardiovascular heart disease and stroke than from
all other diseases. Smoking damages your immune system and causes inflammation throughout your body. Type 2
diabetes is also a result of smoking and might be more difficult to manage. Smokers are significantly more likely to
suffer from heart disease, stroke, and lung cancer than non-smokers. Annually, smoking causes more fatalities than the
total number of the following causes: HIV infection, alcohol use, motor vehicle injuries, and events involving firearms.
E-cigarettes contain nicotine, a highly addictive substance that can harm a child’s developing brain.

The smoke that emanates from people smoking tobacco products into restaurants, offices, homes, and other enclosed
locations is known as second-hand smoke. There’s no such thing as a safe second-hand smoking exposure level.
Every year, second-hand smoke prematurely claims the lives of over 1.3 million people due to severe respiratory and
cardiovascular illnesses such lung cancer and coronary heart disease. The Institute for Health Metrics and Evaluation
(IHME) in their annual “Global Burden of Disease 2021” [12] studied that high blood pressure, smoking and high
blood sugar were the three leading risk factors globally for early death and poor health worldwide in 2021. Figure
1, shows that the IHME in their Global burden of disease study 2021, estimates that around 6.18 million people die
prematurely from smoking. A risk factor is a condition or behavior that increases the likelihood of developing a given
disease or injury, or an outcome such as death. Numerous initiatives have been undertaken worldwide, such as the
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Figure 1. Global deaths by risk factor in 2021, with wide uncertainties, from the IHME’s Global
Burden of Disease Study [13].

Figure 2. Smoking prevalence in selected countries, based on surveys of 2,000 to 9,500 legal-age
respondents (18-64 years old) per country [9].

World Health Organization’s “Global Action Plan for the Prevention and Control of Non-communicable Diseases 2013-
2020” [36] and social campaigns to educate people about the risk factors of smoking. Tax increases on cigarettes and
other tobacco products are associated with a considerable decrease in tobacco usage, according to research conducted
globally. High-income country studies predict that a 10% rise in cigarette pricing will, over the medium term, cut
general smoking by 2.5% to 5%, and possibly by twice this amount over the longer term [14]. Despite the abundant
evidence of the detrimental consequences of smoking, the habit is still highly prevalent in several countries (See, Figure
2).

Giving up smoking can lengthen your life and reduce your risk of smoking-related diseases. In an effort to protect
human life, numerous countries, mathematicians, and physicians are working to reduce smoking [26, 36]. This is why
researchers have been trying to create various smoking models that work effectively and give the best representation
of the phenomenon of cigarette smoking.

Mathematical modeling is a captivating area of research which uses equations to express a wide range of natural
phenomena. Mathematical modeling has evolved into more valuable in the domain of mathematics because it permits
us to transform the real world issues into mathematical language, more specifically into equations and empoly the
suitable processes to forecast results. In recent years, mathematical modeling together with fractional calculus has
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given way for a thorough investigation of the vigorous features of numerous biological and physical models [5, 21, 29].
Over the last few decades, an enormous spike has been seen in the study of fractional calculus. More specifically, frac-
tional calculus has been identified as an effective tool for understanding biological processes associated with memory.
In biological system analysis, fractional derivatives have proven to be more successful and effective compared to integer-
order derivatives. Several researchers have recently studied the fractional modeling of infectious and non-infectious
diseases using a variety of fractional operators, including Riemann-Liouville, Caputo, Atangana-Baleanu Caputo, and
Hilfer-fractional derivatives [11, 25]. In [19], authors have proposed the modified Homotopy analysis transform method
to compute the analytical solution of the fractional giving up smoking model. In [27], authors considered non-integer
order smoking model using Grünwald-Letnikov derivative with an iterative scheme. Singh et al. [28] used the non-
singular Caputo-Fabrizio fractional derivative to study the giving up smoking model. The qualitative behaviour of
the smoking model is discussed in [30]. In order to analyze the smoking model, Veeresha et al. [32] recently employed
the q-homotpy analysis transform method in Caputo form. Furthermore, the smoking model is examined in the
Atangana-Baleanu, Caputo, and Caputo-Fabrizio forms in [22] using the Natural transform decomposition approach.

Since smoking is one of the biggest health issues the world is facing at present, Smokers will often live 12–13
years shorter lives than non-smokers. Yang recently [37] introduced the concept of the Yang transform and derived
the solution to a steady heat transfer equation. The Yang transform technique has been widely used in recent years
by researchers to solve a wide range of fractional and partial differential equations due to its efficiency, accuracy,
and straightforward approach [2, 20]. When it comes to solving nonlinear ordinary, partial, and fractional differential
equations, the Adomian decomposition method (ADM) is strong and effective. It is shown in [24, 33] that the ADM is
preferable to Picard’s iterated technique and variational iteration technique. In this work, we thoroughly examine the
fractional form of smoking model in Caputo sense as well as in modified Atangana-Baleanu Caputo (MABC) sense.
This Caputo fractional derivative, which is singular and non-local, was initially described by Michele Caputo in his
article [7] in 1967. The MABC derivative [3] is an extension of the Atangana-Baleanu Caputo derivative across a larger
space, whose kernel has an integrable singularity at the origin. To determine the approximate solution of the model,
we applied the Yang transform decomposition method, which is a spectacular amalgam of ADM and Yang transform.

The novelty of this work is that to study the smoking model, we proposed the Yang transform decomposition
method. The primary purpose for using YTDM is its simple methodology, precision, and efficiency for dealing with
fractional non-linear systems. In this method, no perturbation, liberalization is required, and it essentially transforms
the given problem into its simplest form. Using the Caputo and MABC operators, we impose fractional derivatives on
the non-linear smoking model. As a result, we have a greater understanding about the way singular and non-singular
operators affect the behaviour of each subclass within the population, as well as the way fractional order affects the
disease. A comparison between these operators has been emphasised through simulations. This analytical technique
investigates the smoking model efficiently. Many theoretical aspects of the model have been studied, such as its
existence, uniqueness, equilibria, and reproduction number.

The complete work is structured and divided into the following sections: section 2 provides fundamental definitions
for the Yang transform and fractional calculus. In section 3, the integer-order smoking model is covered, and the flow
chart of our proposed scheme is given. In section 4, Equilibrium points, reproduction number, and stability analysis
of the model have been discussed. Section 5 is further divided into subsections 5.1 and 5.2. Subsection 5.1 presents a
numerical solution to the fractional smoking model in Caputo form. It further includes the existence and uniqueness
of the model solution. Subsection 5.2 contains a numerical solution to the fractional smoking model in MABC form.
The uniqueness and existence of the model solution are also given. In section 6, the findings from the research are
graphically analyzed and discussed. Section 7 provides the conclusion of our work.

2. Preliminaries

Definition 2.1. A real valued function f(t), t > 0 is said to be in space Cv, if there exists a real number k > v such
that f(t) = tkf1(t), where f1(t) ∈ C[0,∞), and it is said to be in the space Cnv if fn ∈ Cv, n ∈ N.
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Definition 2.2. The Riemann-Liouville fractional integral of a function f(t) ∈ Cv(v ≥ −1) and of order µ > 0, is
defined as follows [23]:

Iµt f(t) =
1

Γ(µ)

∫ t

0

(t− y)µ−1f(y) dy, (2.1)

I0
t f(t) = f(t). (2.2)

Definition 2.3. The Caputo derivative of f(t) of order µ, p− 1 < µ ≤ p, p ∈ N is given as follows [7]:

CDµ
t f(t) =

1

Γ(p− µ)

∫ t

0

(t− y)p−µ−1f (p)(y) dy. (2.3)

The properties of the Caputo fractional derivative are as follows [17, 23]:

(CDµ
t I

µ
t f)(t) = f(t), (2.4)

(Iµt
CDµ

t f)(t) = f(t)−
p−1∑
k=0

f (k)(0+)
tk

k!
. (2.5)

Definition 2.4. The Atangana-Baleanu fractional derivative of order 0 < µ < 1 of Caputo sense, with a non-singular
kernel is defined as follows [4]:

ABCDµ
t [f(t)] =

B[µ]

1− µ

∫ t

0

Eµ

(
−µ(t− y)µ

1− µ

)
f
′
(y) dy, (2.6)

where B[µ] is a normalization function.

The MABC fractional derivative is an extension of ABC fractional derivative in a wider space. The kernel of the
MABC derivative has integrable singularity at the origin.

Definition 2.5. The MABC derivative of the function f(t) with order µ ∈ (0, 1) defined as [3]:

MABCDµ
t [f(t)] =

B[µ]

1− µ

[
f(t)− Eµ

(
−µ tµ

1− µ

)
f(0)− µ

1− µ

∫ t

0

(t− y)µ−1Eµ,µ

(
−µ (t− y)µ

1− µ

)
f(y) dy

]
. (2.7)

Moreover, Eµ represents the Mittag-Leffler function [18] and Eµ,ρ is known as the two-parameter Mittag-Leffler
function [35], defined as follows:

Eµ(y) =

∞∑
m=0

ym

Γ(µm+ 1)
, (y, µ ∈ C,<(µ) > 0),

and

Eµ,ρ(y) =
∞∑
m=0

ym

Γ(µm+ ρ)
, (y, µ, ρ ∈ C,<(µ) > 0,<(ρ) > 0).

Definition 2.6. The modified Atangana-Baleanu fractional integral defined as follows [3, 6] :

MABIµt [f(t)] =
1− µ
B[µ]

[
f(t) +

µ

1− µ
RL
0 Iµt [f(t)]− f(0)− f(0)

µ

1− µ
tµ

Γ(µ+ 1)

]
. (2.8)

Definition 2.7. The Yang transform of a function f(t), where t > 0, is given by [38]:

Y [f(t)] =

∫ ∞
0

e
−t
ξ f(t) dt, (2.9)

where ξ represents the transformed variable.
The Yang transform of some useful functions is given as follows [8]:

Y [1] = ξ,

Y [t] = ξ2,

Y [tq] = Γ(q + 1)ξq+1.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-22 5

Definition 2.8. The Yang transform of Caputo derivative is given as [16, 37]:

Y [CDµ
t f(t)] =

Y [f(t)]

ξµ
−
n−1∑
k=0

fk(0)

ξµ−k−1
, (n− 1 < µ ≤ n). (2.10)

Laplace Yang Duality: If the Laplace transform of the function f(t) is F (u), then the Yang transform of a function
f(t) is given as [8]:

Y [f(t)] = F (1/u).

Lemma 2.9. Let f(t) be a continuous function, then Yang transform of the modified Atangana-Baleanu Caputo
fractional derivative of f(t) is given as

Y [MABCDµ
t f(t)] =

B[µ]ξ

1− µ+ µξµ

(
Y [f(t)]

ξ
− f(0)

)
. (2.11)

Proof. The Laplace transform of the modified Atangana-Baleanu Caputo derivative is given as [3]

L[MABCDµ
t f(t)] =

B[µ]

1− µ
ξµL[f ]− ξµ−1f(0)

ξµ + µ
1−µ

.

Using the Laplace-Yang Duality property, we have

Y [MABCDµ
t f(t)] =

B[µ]

1− µ
( 1
ξ )µY [f ]− ( 1

ξ )µ−1f(0)

( 1
ξ )µ + µ

1−µ
.

Y [MABCDµ
t f(t)] =

B[µ]

1− µ+ µξµ
{Y [f ]− ξf(0)}.

After simplification, we get the desired result. �

3. Smoking Model and Proposed Methodology

To comprehend biological issues, it is essential as well as beneficial to develop mathematical models and analyze their
dynamical behaviours. The smoking mathematical model has been the subject of extensive analysis and investigation.
The system made up of five equations notably non-linear differential equations that describes the smoking model is
taken into account in this work. Let P(t) be the total population at time t. This population is further divided into
five groups: Potential smokers (Non-smoker) L(t), Occasional smokers R(t), Smokers M(t), Temporarily quit smokers
S(t), Permanently quit smokers A(t). The mathematical representation of the smoking model [1, 30] consists of a set
of non-linear differential equations as follows:

dL
dt = Υ−$LM − vL,
dR
dt = $LM − κ1R− vR,
dM
dt = κ1R+ κ2MS − (v + ϕ)M,
dS
dt = −κ2MS − vS + ϕ(1− ς)M,
dA
dt = ςϕM − vA.

(3.1)

In the above model, Υ represents the recruitment rate in potential smokers, $ denotes the effective contact rate be-
tween smokers and potential smokers, v indicates the rate of natural death, ϕ represents the rate of quitting smoking,
(1−ς) represents the fraction of smokers who temporarily quit smoking, ς symbolizes the remaining fraction of smoking
who successfully gave up smoking, κ1 stands for the rate of transition from occassional smokers to regular smokers,
κ2 indicates the interaction ratio between smokers and temporary quitters who resume smoking.

The flow chart (See, Figure 3) of our proposed methodology is given as follows:
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Smoking Model

Fractionalized 

Smoking Model

In Caputo Fractional Derivative 

Form
In MABC Fractional Derivative 

Form

Yang Transform and its Inverse

Adomain Decomposition Method

Approximate Solution of Model

Existence and Uniqueness of the Solution

Graphical Representation and Discussion

Figure 3. Flow chart of proposed methodoloy.

4. Equilibrium Points and Stability Analysis

In this section, we will investigate the equilibrium points, reproduction number and stability analysis of the smoking
model (3.1).

4.1. Equilibrium Points. The system (3.1) has two equilibria, namely disease-free equilibria and endemic equilibria.
The disease free equilibrium can be defined as the point at which there is no disease in the population. To find the
equilibrium points, we consider

d

dt
L =

d

dt
R =

d

dt
M =

d

dt
S =

d

dt
A = 0,

We get the disease free equilibrium point, when R0 = M0 = 0.

Υ− vL0 = 0.

Therefore,

L0 =
Υ

v
.

We have, the disease-free equilibrium point E0 = (Υ
v , 0, 0, 0, 0).

The endemic equilibrium point is

E∗ = (L∗, R∗,M∗, S∗, A∗),

where,

L∗ =
Υ

$M∗ + v
, R∗ =

$ΥM∗

($M∗ + v)(κ1 + v)
, S∗ =

ϕ(1− ς)M∗

κ2M∗ + v
, A∗ =

ςϕM∗

v
.
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4.2. Reproduction Number. Reproduction number R0 is the average number of secondary infections produced by
one infected individual introduced in a susceptible population throughout the individual duration of infectiousness.
We calculate the reproduction number of the model by applying the next-generation matrix technique [31]. For the
model (3.1), the infected compartments are R and M. At the disease-free equilibrium matrices F and V are

F =

[
0 $Υ

v
0 0

]
, and V =

[
(κ1 + v) 0
−κ1 (v + ϕ)

]
,

FV −1 =

[ $κ1Υ
v(v+ϕ)(κ1+v)

$Υ
v(v+ϕ)

0 0

]
.

So, FV −1 has eigenvalues 0 and R0, where

R0 =
$κ1Υ

v(v + ϕ)(κ1 + v)
.

4.3. Stability Analysis.

Theorem 4.1. The disease free equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. For the smoking model (3.1) at E0 = (Υ
v , 0, 0, 0, 0), the Jacobian matrix is given by

J =


−v 0 −$Υ

v 0 0
0 −(κ1 + v) $Υ

v 0 0
0 κ1 −(v + ϕ) 0 0
0 0 ϕ(1− ς) −v 0
0 0 ςϕ 0 −v

 .
At equilibrium point E0 = (Υ

v , 0, 0, 0, 0), the system is stable if all the eigenvalues have negative real parts.
The characteristic equation is

(−v − λ)3(λ2 + (v + ϕ+ κ1 + v)λ+ ((v + ϕ)(κ1 + v)− $κ1Υ

v
)) = 0. (4.1)

We have the quadratic equation

(λ2 + (v + ϕ+ κ1 + v)λ+ ((v + ϕ)(κ1 + v)− $κ1Υ

v
)) = 0,

where, sum of the roots = −(v + ϕ+ κ1 + v) < 0.

It follows that the roots of the quadratic equation have negative real parts if

product of the roots = ((v + ϕ)(κ1 + v)− $κ1Υ
v ) > 0.

Therefore, all the roots of Eq. (4.1) have negative real part if

(v + ϕ)(κ1 + v)− $κ1Υ

v
> 0,

if
$κ1Υ

v(v + ϕ)(κ1 + v)
< 1,

i.e

R0 < 1.

Therefore, the disease-free equilibrium is locally asymptotically stable for R0 < 1, otherwise unstable. �
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5. Smoking Model in Fractional Orders

This section explores the dynamics of smoking behaviour through fractional calculus. This approach allows for a
more nuanced understanding of the memory and hereditary properties inherent in smoking patterns. The Caputo
derivative provides a more accurate depiction of real-world scenarios. Additionally, the MABC derivative offers a new
perspective, increasing the model’s flexibility and applicability. Together, these derivatives provide a comprehensive
framework for analyzing and predicting smoking behavior over time, facilitating more effective public health interven-
tions.

5.1. Fractionalized Smoking Model in Caputo Form and its Solution. We employ the Caputo fractional order
derivative to examine smoking model in system (3.1). In the system, dimensional inconsistency has been prevented by
taking into account a parameter γ ( see [6, 10]). Therefore, the fractional differential system in Caputo form is given
by 

1
γ1−µ

CDµ
t L = Υ−$LM − vL,

1
γ1−µ

CDµ
t R = $LM − κ1R− vR,

1
γ1−µ

CDµ
tM = κ1R+ κ2MS − (v + ϕ)M,

1
γ1−µ

CDµ
t S = −κ2MS − vS + ϕ(1− ς)M,

1
γ1−µ

CDµ
t A = ςϕM − vA,

(5.1)

with the initial conditions L(0) = L0, R(0) = R0, M(0) = M0, S(0) = S0, A(0) = A0.

5.1.1. Yang Transform Decomposition Method. Firstly, by applying the Yang transform in the system of Equations
(5.1), we get 

1
ξµ [Y [L(t)]− ξL(0)] = Y [γ1−µ{Υ−$LM − vL}],
1
ξµ [Y [R(t)]− ξR(0)] = Y [γ1−µ{$LM − κ1R− vR}],
1
ξµ [Y [M(t)]− ξM(0)] = Y [γ1−µ{κ1R+ κ2MS − (v + ϕ)M}],
1
ξµ [Y [S(t)]− ξS(0)] = Y [γ1−µ{−κ2MS − vS + ϕ(1− ς)M}],
1
ξµ [Y [A(t)]− ξA(0)] = Y [γ1−µ{ςϕM − vA}].

(5.2)

Then applying the Yang inverse transform in the system of Equations (5.2), we get

L(t) = Y −1
[
ξL(0) + ξµY

[
γ1−µ{Υ−$LM − vL}

]]
,

R(t) = Y −1
[
ξR(0) + ξµY

[
γ1−µ{$LM − κ1R− vR}

]]
,

M(t) = Y −1
[
ξM(0) + ξµY

[
γ1−µ{κ1R+ κ2MS − (v + ϕ)M}

]]
,

S(t) = Y −1
[
ξS(0) + ξµY

[
γ1−µ{−κ2MS − vS + ϕ(1− ς)M}

]]
,

A(t) = Y −1
[
ξA(0) + ξµY

[
γ1−µ{ςϕM − vA}

]]
.

(5.3)

Now, the Adomian decomposition polynomials gives the nonlinear terms as follows:

LM =
∞∑
k=0

Ck, MS =
∞∑
k=0

Dk, (5.4)

where Ck and Dk are both Adomian polynomials. The unknown functions are given by the infinite series as follows:

L(t) =
∞∑
k=0

Lk, R(t) =
∞∑
k=0

Rk, M(t) =
∞∑
k=0

Mk, S(t) =
∞∑
k=0

Sk, A(t) =
∞∑
k=0

Ak. (5.5)
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Using (5.4) and (5.5) in Eq. (5.3), we have

∑∞
k=0 Lk = Y −1[L0ξ] + Y −1

[
ξµY

{
γ1−µ[Υ−$∑∞k=0

∑k
j=0 LjMk−j − v

∑∞
k=0 Lk

]}]
,∑∞

k=0Rk = Y −1[R0ξ] + Y −1
[
ξµY

{
γ1−µ[$∑∞k=0

∑k
j=0 LjMk−j − κ1

∑∞
k=0Rk − v

∑∞
k=0Rk

]}]
,∑∞

k=0Mk = Y −1[M0ξ] + Y −1
[
ξµY

{
γ1−µ[κ1

∑∞
k=0Rk + κ2

∑∞
k=0

∑k
j=0MjSk−j − (v + ϕ)

∑∞
k=0Mk

]}]
,∑∞

k=0 Sk = Y −1[S0ξ] + Y −1
[
ξµY

{
γ1−µ[− κ2

∑∞
k=0

∑k
j=0MjSk−j − v

∑∞
k=0 Sk + ϕ(1− ς)

∑∞
k=0Mk

]}]
,∑∞

k=0Ak = Y −1[A0ξ] + Y −1
[
ξµY

{
γ1−µ[ςϕ∑∞k=0Mk − v

∑∞
k=0Ak

]}]
,

(5.6)

From Eq. (5.6), we get

CL0 = 40, CR0 = 10, CM0 = 20, CS0 = 10, CA0 = 5.

CL1 = Y −1
[
ξµY

[
γ1−µ{Υ−$L0M0 − vL0}

]]
,

CR1 = Y −1
[
ξµY

[
γ1−µ{$L0M0 − κ1R0 − vR0}

]]
,

CM1 = Y −1
[
ξµY

[
γ1−µ{κ1R0 + κ2M0S0 − (v + ϕ)M0}

]]
,

CS1 = Y −1
[
ξµY

[
γ1−µ{−κ2M0S0 − vS0 + ϕ(1− ς)M0}

]]
,

CW1 = Y −1
[
ξµY

[
γ1−µ{ςϕM0 − vA0}

]]
.

(5.7)

and 

CL2 = Y −1
[
ξµY

[
γ1−µ{Υ−$(L0M1 + L1M0)− vL1}

]]
,

CR2 = Y −1
[
ξµY

[
γ1−µ{$(L0M1 + L1M0)− κ1R1 − vR1}

]]
,

CM2 = Y −1
[
ξµY

[
γ1−µ{κ1R1 + κ2(M0S1 +M1S0)− (v + ϕ)M1}

]]
,

CS2 = Y −1
[
ξµY

[
γ1−µ{−κ2(M0S1 +M1S0)− vS1 + ϕ(1− ς)M1}

]]
,

CA2 = Y −1
[
ξµY

[
γ1−µ{ςϕM1 − vA1}

]]
.

(5.8)

Using the above equations, we get the series solution

CL(t) = CL0 + CL1 + CL2 + . . . ,
CR(t) = CR0 + CR1 + CR2 + . . . ,
CM(t) = CM0 + CM1 + CM2 + . . . ,
CS(t) = CS0 + CS1 + CS2 + . . . ,
CA(t) = CA0 + CA1 + CA2 + . . . ,

(5.9)

5.1.2. Existence and Uniqueness of the Solution. In this section, we will show the system (5.1) has a unique solution.
Here, we present the existence and uniqueness of smoking model solution in Caputo form, as shown by the technique
described in [15]. Applying the fractional integral and using initial condition, we have

L(t) = L(0) +
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1[Υ−$LM − vL] dζ, (5.10)

R(t) = R(0) +
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1[$LM − κ1R− vR] dζ, (5.11)

M(t) = M(0) +
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1[κ1R+ κ2MS − (v + ϕ)M ] dζ, (5.12)

S(t) = S(0) +
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1[−κ2MS − vS + ϕ(1− ς)M ] dζ, (5.13)

A(t) = A(0) +
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1[ςϕM − vA] dζ. (5.14)
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We have the following Kernels,

Θ1(t, L) = Υ−$LM − vL,
Θ2(t, R) = $LM − κ1R− vR,

Θ3(t,M) = κ1R+ κ2MS − (v + ϕ)M,

Θ4(t, S) = −κ2MS − vS + ϕ(1− ς)M,

Θ5(t, A) = ςϕM − vA.

Theorem 5.1. Θ1, Θ2, Θ3, Θ4 and Θ5 satisfy the Lipschitz condition. For each kernel Θj , j = 1 . . . , 5, there exists
ℵj j = 1, . . . , 5 such that

‖Θj(t, z)−Θj(t, z1)‖ ≤ ℵj‖z(t)− z1(t)‖.
where z is the state vector presented as {L,R,M,S,A} and are contractions for 0 ≤ ℵj < 1.

Proof. Firstly we show that Θ1 satisfies the Lipschitz condition. let L and L1 be two functions. then

‖Θ1(t, L)−Θ1(t, L1)‖ = ‖(Υ−$LM − vL)− (Υ−$L1M − vL1)‖. (5.15)

Using Cauchy’s inequality, we have

‖Θ1(t, L)−Θ1(t, L1)‖ ≤ ‖v +$M(t)‖ ‖L(t)− L1(t)‖,
‖Θ1(t, L)−Θ1(t, L1)‖ ≤ ℵ1‖L(t)− L1(t)‖, (5.16)

where,

‖v +$M(t)‖ ≤ ℵ1.

So, Θ1 satisfies the Lipschitz condition and contraction for 0 ≤ ℵ1 < 1. In a similar way, we can prove this for other
kernels also.
Now, we take recursive formula

Ll(t) =
γ1−µ

Γ(µ)

∫ t

0

Θ1(ζ, Ll−1)(t− ζ)µ−1 dζ.

Now, consider the successive difference of two terms

Ll(t)− Ll−1(t) =
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1(Θ1(ζ, Ll−1)−Θ1(ζ, Ll−2)) dζ. (5.17)

By taking the norm on both sides of Eq. (5.17) and further solving it, we get

‖Ll(t)− Ll−1(t)‖ ≤ γ1−µ

Γ(µ)

∫ t

0

|(t− ζ)µ−1| ‖(Θ1(ζ, Ll−1)−Θ1(ζ, Ll−2))‖ dζ,

≤ ℵ1γ
1−µ‖(Ll−1 − Ll−2)(t)‖

∣∣∣∣ tµ

Γ(µ+ 1)

∣∣∣∣. (5.18)

Therefore, we get

‖Ll(t)− Ll−1(t)‖ ≤ ℵ1γ
1−µ
∣∣∣∣ tµ

Γ(µ+ 1)

∣∣∣∣ ‖(Ll−1(t)− Ll−2(t))‖. (5.19)

Similarly, we can show this for all the other kernels. �

Theorem 5.2. [15] The Caputo fractional model given by Eq. (5.1) has a solution if we can find η satisfying the
inequality

γ1−µ ηµ

Γ(µ+ 1)
ℵj < 1, j = 1, 2, . . . , 5.
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Proof. Since equations are bounded and kernels satisfy Lipschitz condition, as a result of recursive technique and from
Eq. (5.19), we have

‖Ll(t)‖ ≤ ‖L(0)‖
{
γ1−µ ηµ

Γ(µ+ 1)
ℵ1

}l
. (5.20)

Suppose for now that the following are satisfied:

L(t)− L(0) = Ll(t)− Pl(t).
Thus, we have

‖Pl(t)‖ =
γ1−µ

Γµ

∫ t

0

‖(Θ1(ζ, Ll)−Θ1(ζ, Ll−1))‖ |(t− ζ)µ−1| dζ,

‖Pl(t)‖ ≤
γ1−µ tµ

Γ(µ+ 1)
ℵ1‖(Ll − Ll−1)‖.

Recursively repeating the process, we get

‖Pl(t)‖ ≤
{
γ1−µ tµ

Γ(µ+ 1)

}l
ℵl1‖(L1 − L0)‖.

Taking t = η

‖Pl(t)‖ ≤
{
γ1−µ ηµ

Γ(µ+ 1)

}l
ℵl1‖(L1 − L0)‖.

Thus at applying the limit to both sides as l→∞, we see that ‖Pl(t)‖ → 0 for

γ1−µ ηµ

Γ(µ+ 1)
ℵ1 < 1.

In a similar way, we can prove this for other kernels. Theorem (5.1) and Theorem (5.2) guarantes the existence of
solution of model by the Banach fixed point theorem. �

Theorem 5.3. [16] The Caputo fractionalized smoking model has a unique solution if∣∣∣∣ γ1−µ ηµ

Γ(µ+ 1)

∣∣∣∣ℵj < 1, j = 1, 2, . . . , 5.

Proof. We suppose that there is another set of solution for the Eq. (5.10),

L(t)− L1(t) =
γ1−µ

Γ(µ)

∫ t

0

(t− ζ)µ−1(Θ1(ζ, L)−Θ1(ζ, L1)) dζ, (5.21)

taking the norm on both side of Eq. (5.21), we get

‖L(t)− L1(t)‖ =
γ1−µ

Γ(µ)

∫ t

0

|(t− ζ)µ−1| ‖(Θ1(ζ, L)−Θ1(ζ, L1))‖ dζ,

‖L(t)− L1(t)‖ ≤
∣∣∣∣ γ1−µ tµ

Γ(µ+ 1)

∣∣∣∣ ℵ1 ‖(L− L1)‖.

Since,

1− γ1−µ tµ

Γ(µ+ 1)
ℵ1 > 0.

Therefore, we have
L(t) = L1(t),

similarly,
R(t) = R1(t),
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M(t) = M1(t),

S(t) = S1(t),

and

A(t) = A1(t).

Therefore, the system has a unique solution. �

5.2. Fractionalized Smoking Model in Modified Atangana-Baleanu Caputo Form and its Solution. We
employ the modified Atangana-Baleanu Caputo fractional order derivative to examine smoking model in system (3.1).
In the system, dimensional inconsistency has been prevented by taking into account a parameter γ ( see [6, 10]). The
fractional differential system is given by

1
γ1−µ

MABCDµ
t L = Υ−$LM − vL,

1
γ1−µ

MABCDµ
t R = $LM − κ1R− vR,

1
γ1−µ

MABCDµ
tM = κ1R+ κ2MS − (v + ϕ)M,

1
γ1−µ

MABCDµ
t S = −κ2MS − vS + ϕ(1− ς)M,

1
γ1−µ

MABCDµ
t A = ςϕM − vA,

(5.22)

with the initial conditions L(0) = L0, R(0) = R0, M(0) = M0, S(0) = S0, A(0) = A0.

5.2.1. Yang Transform Decomposition Method. Firstly, by applying the Yang transform in the system of Equations
(5.22), we get 

B[µ]ξ
1−µ+µξµ

[
Y [L(t)]

ξ − L(0)

]
= Y [γ1−µ{Υ−$LM − vL}],

B[µ]ξ
1−µ+µξµ

[
Y [R(t)]

ξ −R(0)

]
= Y [γ1−µ{$LM − κ1R− vR}],

B[µ]ξ
1−µ+µξµ

[
Y [M(t)]

ξ −M(0)

]
= Y [γ1−µ{κ1R+ κ2MS − (v + ϕ)M}],

B[µ]ξ
1−µ+µξµ

[
Y [S(t)]

ξ − S(0)

]
= Y [γ1−µ{−κ2MS − vS + ϕ(1− ς)M}],

B[µ]ξ
1−µ+µξµ

[
Y [A(t)]

ξ −A(0)

]
= Y [γ1−µ{ςϕM − vA}].

(5.23)

Operating the inverse of Yang transform in system of Equations (5.23), we get

L(t) = Y −1

[
ξL(0) + 1−µ+µξµ

B[µ] Y
[
γ1−µ{Υ−$LM − vL}

]]
,

R(t) = Y −1

[
ξR(0) + 1−µ+µξµ

B[µ] Y
[
γ1−µ{$LM − κ1R− vR}

]]
,

M(t) = Y −1

[
ξM(0) + 1−µ+µξµ

B[µ] Y
[
γ1−µ{κ1R+ κ2MS − (v + ϕ)M}

]]
,

S(t) = Y −1

[
ξS(0) + 1−µ+µξµ

B[µ] Y
[
γ1−µ{−κ2MS − vS + ϕ(1− ς)M}

]]
,

A(t) = Y −1

[
ξA(0) + 1−µ+µξµ

B[µ] Y
[
γ1−µ{ςϕM − vA}

]]
.

(5.24)
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The nonlinear terms and infinite series solution of Adomian decomposition polynomials are given in Eqs. (5.4) and
(5.5). Substituting the values of (5.4) and (5.5) in Eq. (5.24), we have

∑∞
k=0 Lk = Y −1[L0ξ] + Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{Υ−$

∑∞
k=0

∑k
j=0 LjMk−j − v

∑∞
k=0 Lk}

]]
,∑∞

k=0Rk = Y −1[R0ξ] + Y −1
[

1−µ+µξµ

B[µ] Y
[
γ1−µ{$

∑∞
k=0

∑k
j=0 LjMk−j − κ1

∑∞
k=0Rk − v

∑∞
k=0Rk}

]]
,∑∞

k=0Mk = Y −1[M0ξ] + Y −1
[

1−µ+µξµ

B[µ] Y
[
γ1−µ{κ1

∑∞
k=0Rk + κ2

∑∞
k=0

∑k
j=0MjSk−j − (v + ϕ)

∑∞
k=0Mk}

]]
,∑∞

k=0 Sk = Y −1[S0ξ] + Y −1
[

1−µ+µξµ

B[µ] Y
[
γ1−µ{−κ2

∑∞
k=0

∑k
j=0MjSk−j − v

∑∞
k=0 Sk + ϕ(1− ς)

∑∞
k=0Mk}

]]
,∑∞

k=0Ak = Y −1[A0ξ] + Y −1
[

1−µ+µξµ

B[µ] Y
[
γ1−µ{ςϕ

∑∞
k=0Mk − v

∑∞
k=0Ak}

]]
.

(5.25)

From Eq. (5.25), we get

MABCL0 = 40, MABCR0 = 10, MABCM0 = 20, MABCS0 = 10, MABCA0 = 5,

and 

MABCL1 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{Υ−$L0M0 − vL0}

]]
,

MABCR1 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{$L0M0 − κ1R0 − vR0}

]]
,

MABCM1 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{κ1R0 + κ2M0S0 − (v + ϕ)M0}

]]
,

MABCS1 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{−κ2M0S0 − vS0 + ϕ(1− ς)M0}

]]
,

MABCW1 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{ςϕM0 − vA0}

]]
,

(5.26)

and 

MABCL2 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{Υ−$(L0M1 + L1M0)− vL1}

]]
,

MABCR2 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{$(L0M1 + L1M0)− κ1R1 − vR1}

]]
,

MABCM2 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{κ1R1 + κ2(M0S1 +M1S0)− (v + ϕ)M1}

]]
,

MABCS2 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{−κ2(M0S1 +M1S0)− vS1 + ϕ(1− ς)M1}

]]
,

MABCA2 = Y −1

[
1−µ+µξµ

B[µ] Y
[
γ1−µ{ςϕM1 − vA1}

]]
.

(5.27)

Using the above equations, we get the series solution

MABCL(t) = MABCL0 + MABCL1 + MABCL2 + . . . ,
MABCR(t) = MABCR0 + MABCR1 + MABCR2 + . . . ,
MABCM(t) = MABCM0 + MABCM1 + MABCM2 + . . . ,
MABCS(t) = MABCS0 + MABCS1 + MABCS2 + . . . ,
MABCA(t) = MABCA0 + MABCA1 + MABCA2 + . . . .

(5.28)

5.2.2. Existence and Uniqueness of the Solution. In this section, we will show the system (5.22) has a unique solution.
Here, we present the existence and uniqueness of smoking model solution in modified Atangana-Baleanu Caputo form,
as shown by the technique described in [6]. Applying the fractional integral on system of Equations (5.22) and using
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initial condition, we have

L(t)− L(0) = γ1−µ MABIµt [Υ−$LM − vL],

R(t)−R(0) = γ1−µ MABIµt [$LM − κ1R− vR],

M(t)−M(0) = γ1−µ MABIµt [κ1R+ κ2MS − (v + ϕ)M ],

S(t)− S(0) = γ1−µ MABIµt [−κ2MS − vS + ϕ(1− ς)M ],

A(t)−A(0) = γ1−µ MABIµt [ςϕM − vA].

(5.29)

Utilising the value of modified Atangana-Baleanu fractional integral, we get

L(t) = L(0) +
γ1−µ(1− µ)

B[µ]

[
Υ−$L(t)M(t)− vL(t) +

µ

1− µ
RLIµt (Υ−$L(t)M(t)− vL(t))

− (Υ−$L(0)M(0)− vL(0))(1 +
µ

1− µ
tµ

Γ(µ+ 1)
)
]
. (5.30)

For clarity, we consider

Θ1(t, L) = Υ−$LM − vL,
Θ2(t, R) = $LM − κ1R− vR,

Θ3(t,M) = κ1R+ κ2MS − (v + ϕ)M,

Θ4(t, S) = −κ2MS − vS + ϕ(1− ς)M,

Θ5(t, A) = ςϕM − vA.

In Theorem (5.1), we have seen that Θ1, Θ2, Θ3, Θ4, and Θ5 satisfy the Lipschitz condition. With Θ1, Eq. (5.30) can
be written as

L(t) = L(0) +
γ1−µ(1− µ)

B[µ]
[Θ1(t, L(t)) +

µ

1− µ
RLIµ0 [Θ1(t, L(t))]

−
(

1 +
µ

1− µ
tµ

Γ(µ+ 1)

)
(Υ−$L(0)M(0)− vL(0))]. (5.31)

Considering the recursive formula,

Ll(t) =
γ1−µ(1− µ)

B[µ]
[Θ1(t, Ll−1(t)) +

µ

1− µ
RLIµ0 [Θ1(t, Ll−1(t))]

−
(

1 +
µ

1− µ
tµ

Γ(µ+ 1)

)
(Υ−$L(0)M(0)− vL(0))].

Now, we examine

Nl(t) = Ll(t)− Ll−1(t),

Nl(t) =
γ1−µ(1− µ)

B[µ]
[Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]

+
µγ1−µ

B[µ]
RLIµ0 [Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))],

we can write,

Ll(t) =
l∑

j=0

Nj(t),
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taking the norm on both sides

‖Nl(t)‖ = ‖Ll(t)− Ll−1(t)‖,

‖Nl(t)‖ =

∥∥∥∥γ1−µ(1− µ)

B[µ]
[Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]

+
µγ1−µ

B[µ]
RLIµ0 [Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]

∥∥∥∥,
‖Nl(t)‖ ≤ γ1−µ(1− µ)

B[µ]

∥∥[Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]
∥∥

+
µγ1−µ

B[µ]

∥∥ RLIµ0 [Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]
∥∥.

Since Θ1 satisfies Lipschitz condition

‖Ll(t)− Ll−1(t)‖ ≤ γ1−µ(1− µ)

B[µ]
ℵ1‖Ll−1(t)− Ll−2(t)‖

+ ℵ1
µγ1−µ

B[µ]

∥∥ RLIµ0 ∥∥[Θ1(t, Ll−1(t))−Θ1(t, Ll−2(t))]
∥∥.

Therefore, we get

‖Nl(t)‖ ≤
γ1−µ(1− µ)

B[µ]
ℵ1‖Nl−1(t)‖+ ℵ1

µγ1−µ

B[µ]
RLIµ0 ‖Nl−1(t)‖. (5.32)

Theorem 5.4. [6]. The model has a solution if there exists ℵj for every kernel Θj, j = 1, . . . , 5 such that[
γ1−µ(1− µ)

B[µ]
ℵj +

µγ1−µ

B[µ]
ℵj t

]
≤ 1.

Proof. Since, L(t) is bounded function. We have seen that the kernels satisfy the Lipschitz condition. Utilising the
Equation (5.32) along with recursive technique, we get

‖Nl(t)‖ ≤ ‖L(t)‖
[
γ1−µ(1− µ)

B[µ]
ℵ1 +

µγ1−µ

B[µ]
ℵ1t

]l
.

Suppose for now that the following is satisfied:

L(t)− L(0) = Nl(t)− Vl(t),

we get

‖Vl(t)‖ =

∥∥∥∥γ1−µ(1− µ)

B[µ]
[Θ1(t, L(t))−Θ1(t, Ll−1(t))]

+
µγ1−µ

B[µ]
RLIµ0 [Θ1(t, L(t))−Θ1(t, Ll−1(t))]

∥∥∥∥.
‖Vl(t)‖ ≤ γ1−µ(1− µ)

B[µ]
‖[Θ1(t, L(t))−Θ1(t, Ll−1(t))]‖

+
µγ1−µ

B[µ]

∥∥RLIµ0 ∥∥[Θ1(t, L(t))−Θ1(t, Ll−1(t))]
∥∥,

‖Vl(t)‖ ≤ γ1−µ(1− µ)

B[µ]
ℵ1‖[L(t)− Ll−1(t)]‖

+
µγ1−µ

B[µ]
ℵ1t
∥∥[L(t)− Ll−1(t)]

∥∥,
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continuing the above process, we get

‖Vl(t)‖ ≤
[
γ1−µ(1− µ)

B[µ]
+
µγ1−µ

B[µ]
t

]l+1

ℵl+1
1 ,

as l→∞, we get ‖Vl(t)‖ → 0. �

Theorem 5.5. [6]. The modified Atangana-Baleanu Caputo fractionalized smoking model has a unique solution if(
1− γ1−µ(1− µ)

B[µ]
ℵj −

µγ1−µ

B[µ]
ℵj t

)
≥ 0, j = 1, 2, . . . , 5. (5.33)

Proof. For kernel Θ1, let the system has another solution L1(t).

‖L(t)− L1(t)‖ =

∥∥∥∥γ1−µ(1− µ)

B[µ]
[Θ1(t, L(t))−Θ1(t, L1(t))]

+
µγ1−µ

B[µ]
RlIµ0 [Θ1(t, L(t))−Θ1(t, L1(t))]

∥∥∥∥,
≤ γ1−µ(1− µ)

B[µ]
‖[Θ1(t, L(t))−Θ1(t, L1(t))]‖

+
µγ1−µ

B[µ]
RLIµ0

∥∥[Θ1(t, L(t))−Θ1(t, L1(t))]
∥∥,

using Lipschitz condition

≤ γ1−µ(1− µ)

B[µ]
ℵ1‖[L(t)− L1(t)]‖+

µγ1−µ

B[µ]
ℵ1t
∥∥[L(t)− L1(t)]

∥∥. (5.34)

Thus

‖L(t)− L1(t)‖
(

1− γ1−µ(1− µ)

B[µ]
ℵ1 −

µγ1−µ

B[µ]
ℵ1t

)
≤ 0, (5.35)

but (
1− γ1−µ(1− µ)

B[µ]
ℵ1 −

µγ1−µ

B[µ]
ℵ1t

)
≥ 0. (5.36)

Therefore,
‖L(t)− L1(t)‖ = 0,

L(t) = L1(t).

In a similar way, we can show this for other kernels also. We get the unique solution. �

6. Numerical Results and Discussion

This section, presents the YTDM to give a numerical simulation for the smoking model. The graphs and tables show
the dynamic behaviour of potential smokers, occasional smokers, smokers, temporarily quit smokers and permanently
quit smokers for integer order as well as for fractional order. The behaviour was demonstrated using the fractional
orders µ = 0.9 and 0.8 and the integer order µ = 1. The fractional order has a minor affect on the dynamics of
the epidemic as shown in Figures 4(a)-8(b). This further shows that the method used to solve fractional differential
equations provides better approximations for different fractional model. For the computational simulation of the
smoking model, the particular value of parameters used from Table 1.

In Figures 4(a) and 4(b), it can be seen that the potential smokers, i.e., non-smokers, increase with the increase
in time t and increases with a decrease in the value of µ. As shown in Table 2, for fractional order, as the time
increases, the number of potential smokers is increasing rapidly with non-singular MABC operator as compared to
Caputo operator. One can observe that the number of occasional smokers increases rapidly in the beginning, then
declines rapidly, and the same behaviour occurs for temporarily quit smokers. Further, occasional and temporarily
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(a) Variation of L(t) for Caputo Operator. (b) Variation of L(t) for MABC Operator.

Figure 4. Approximate solution for potential smokers L(t) for µ = 1, 0.9, 0.8.

(a) Variation of R(t) for Caputo Operator. (b) Variation of R(t) for MABC Operator.

Figure 5. Approximate solution for occasional smokers R(t) for µ = 1, 0.9, 0.8.

(a) Variation of M(t) for Caputo Operator. (b) Variation of M(t) for MABC Operator.

Figure 6. Approximate solution for smokers M(t) for µ = 1, 0.9, 0.8.
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Table 1. Description of specific values of parameters used in system (3.1).

Parameters Descriptions Values (unit: 1/time)
Υ Recruitment rate in L 1
v Natural death rate 0.05
ϕ Rate of quitting smoking 0.8
$ Effective contact rate between M and L 0.14
ς Remaining fraction of smoking who permanently quit smoking 0.1
κ1 Rate of transition from occasional smokers to regular smokers 0.002
κ2 The interaction ratio between M and S who resume smoking 0.0025

(a) Variation of S(t) for Caputo Operator. (b) Variation of S(t) for MABC Operator.

Figure 7. Approximate solution for temporarily quit smokers S(t) for µ = 1, 0.9, 0.8.

(a) Variation of A(t) for Caputo Operator. (b) Variation of A(t) for MABC Operator.

Figure 8. Approximate solution for permanently quit smokers A(t) for µ = 1, 0.9, 0.8.

quit smokers decrease as the value of µ goes down. The number of smokers who smoke occasionally declines over time
and tends to zero, showing the accuracy of the proposed method for smoking model. In Figures 6(a) and 6(b), we can
see that the smokers rise with time and rise when the µ decreases. Figures 8(a) and 8(b) illustrate how the number
of persons who give up permanently increases over time at first with the increase in the value of µ and then begins to
decline over time.
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It is crucial to note that the outcomes depend on the value of the fractional order as well as the singular and non-
singular operators. The approximate solutions that our technique yields are compared with the existing methods like
q-HATM [32], LADM [1] and NTDM [22] in the literature in Tables 2, 3, 4, 5, and 6. The graphical and tabular re-
sults show that the fractional derivative provides better information to analyze the smoking model. MATHEMATICA
software is utilized for numerical computations and constructions of figures.

Table 2. Approximate solution for potential smokers L(t).

Table 3. Approximate solution for occasional Smokers R(t).

Table 4. Approximate solution for smokers M(t).
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Table 5. Approximate solution for temporarily quit smokers S(t).

Table 6. Approximate solution for permanently quit smokers A(t).

7. Conclusion

The main objective of this study is the successful implementation of the Yang transform decomposition technique
to obtain an approximate analytical solution for the fractional smoking model. The addition of a parameter prevented
dimensional inconsistencies. The second objective of our research is to demonstrate the impact of the order of the
fractional derivative and the singular and non-singular operator via an efficient graphical depiction of an approximate
solution. This study provides a comprehensive framework for analyzing and predicting smoking behavior over time,
facilitating more effective public health interventions. In comparison to integer-order differential calculus, fractional
operators are more favourable due to their non-local characteristic and degree of freedom in the modeling process. The
fractional model shows accuracy, leads to better outcomes, and provides a more accurate depiction. The figures clearly
show the distinction between the modified Atangana-Baleanu Caputo derivative and Caputo derivative behaviours,
and when µ → 1, both the fractional solutions converge to the classical integer solution. It is clear that the Ado-
mian decomposition technique works effectively when operating the non-linear terms, whereas the Yang transform is a
quicker and more straightforward technique. The solutions obtained via YTDM are in good correspondence with the
previous research conducted using q-HATM, LADM, and NTDM. Thus, it can be concluded that the YTDM technique
for smoking model effectively reduces the negative effects of smoking over a range of time periods. We anticipate that
our method will be useful in addressing more fractional order problems, particularly when studying the modeling of
real-world phenomena.
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