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Abstract

The problem of flow of a gas-condensate system to a well-draining a time-dependent deformable formation is

considered in the case when the laws of compressibility of reservoir rocks in the bottomhole zone and in the part
of the reservoir remote from the well are different. Using the idea of a binary representation of a gas-condensate

system, a semi-analytical solution to the considered problem is obtained, an algorithm is proposed for calculating

the main indicators of depletion of a gas-condensate reservoir, for the case when near the well (inner zone) the
formation undergoes creep, and in the distant part of the reservoir (outer zone) elastic deformation occurs. Based

on this algorithm, a computer simulator of the considered process created.

The results of a study of the influence of the noted factor on the main indicators of the depletion process of
gas-condensate deposits represented by time-dependent (relaxing) reservoirs showed that taking into account the

rheological characteristics of the reservoir in the well bottom-hole zone significantly refines the forecasting of the
main development indicators. It has been established that when the creep effect of formation rocks in the near-

wellbore zone is taken into account, the maximum difference in the current values of formation pressures reaches

up to 12.53%. It corresponds to a gas recovery factor value of 0.55.
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1. Introduction

It is known that the development of deep gas-condensate and oil fields [1], [2], [5], [10], [17] is accompanied by
deformation of reservoir rocks [6], as a result of which their reservoir characteristics change. It has been established
that with a wider range of changes in reservoir pressure, the deformation of rocks can have a significantly nonlinear
character [3], [16], [19]. In addition, creep of rocks may occur in this case [9]. Moreover, in the same formation,
depending on the pore pressure value, deformations of the rocks skeleton can manifest themselves differently [8]. So,
if near the well bottomhole zone, where the reservoir pressure is much lower than its initial value, deformations of
the reservoir formation occur according to the same law, and on the well-drainage areas edge (or far from the well
bottomholle zone), where the pressure is relatively high (or pressure above a certain limit), the reservoir skeleton is
compressed according to a different law. In this case, we are talking about taking into account changes in rheology
along the formation.

In [13], solution to the problem of flow of gas-condensate mixtures in time-dependent, including creeping collectors,
was obtained. It was assumed that the formation was rheologically homogeneous.

But in this work, a study of the development of gas-condensate deposits with time-dependent deformable reservoirs
is developed to take into account changes in the rheology of the formation along its strike.
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Figure 1. Schematic representation of the well and drainage area, which consisted of two zones with
different rheological properties.

For this purpose, the gas condensate reservoir appears to consist of two zones (Figure1). In the inner zone of the
formation, creep manifests itself when in the outer zone the rocks are still deformed according to the time-dependent
elastic law.

2. Flow of gas condensate mixture to the well

It is known that the movement of a gas-condensate mixture in deformable reservoirs is represented by complex
nonlinear partial differential equations [14], [15], [18], the solution of which uses various methods. In [12], a technique
was proposed for approximate solution of the equations of motion of a gas-condensate mixture using the averaging
method and applying the Khristianovich function. Based on the results of [4], [12], [15], the equations of motion of
gas and condensate dissolved in it when flowing to the well in the internal and external zones (Figure1), taking the
averaging method into account, can be written in the following form:

1

r

∂

∂r

(
r
∂H

∂r

)
= −Φ (t) , (2.1)

1

r

∂

∂r

(
r
∂H1

∂r

)
= −Φ1 (t) , (2.2)

where r and t are radial coordinates and time, respectively, H, H1 are Khristianovich functions, H =
∫
ϕ(p, s)dp +

const , H1 =
∫
ϕ(p1, s1)dp1 + const,

ϕ =

[
krg(s)pβ[1− c(p)γ̄(p)]

µg(p)z(p)pat
+
kro(s)S(p)

µo(p)Bo(p)

]
k(p, t),

ϕ1 =

[
krg(s1)p1β[1− c(p1)γ̄(p1)]

µg(p1)z(p1)pat
+
kro(s1)S(p1)

µo(p1)Bo(p1)

]
k(p1, t), (2.3)
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Φ(t) and Φ1(t) are unknown functions that depend only on time and are determined for a fixed time using additional
conditions, p is pressure, k is the reservoir permeability, kro(s), krg(s) are the relative phase permeability of the liquid
and gas phases, respectively. s is the condensate saturation. µo, µg are the dynamic viscosities of condensate and
gas, respectively. Bo is the condensate volume factor. S is the gas solubility in liquid phase. z is the gas factor (gas
compressibility factor), β is the temperature correction factor. c is the content of potentially liquid hydrocarbons in
the gas phase. is the ratio of the specific weight of liquid phase and the specific weight of gas phase at the reservoir
pressure p; pat is the atmospheric pressure. Parameters with index “1” correspond to the external zone.

The system of Equations (2.1) and (2.2) is solved under the following boundary conditions:

r = rw, H = Hw,

r = rk, H = Hk , (2.4)

r = Re, H1 = H̄.

Additionally, we have the following conditions and notations:

r = rk,
∂H

∂r
=
∂H1

∂r
, (2.5)

r = Re,
∂H1

∂r
= 0

and

r = rk, H1 = Hk. (2.6)

General solutions of Equations (2.1) and (2.2) under boundary conditions (2.4) can easily be obtained in the form:

H = −1

4
Φ(t)

(
r2 − r2

k −
r2
k − r2

w

ln rk
rw

ln
r

rk

)
+
Hk −Hw

ln rk
rw

ln
r

rk
+Hk (2.7)

and

H1 = −1

4
Φ1(t)

(
r2 −R2

e −
R2
e − r2

k

ln Re

rk

ln
r

Re

)
+
H̄k −Hk

ln Re

rk

ln
r

Re
+Hk. (2.8)

From (2.7) and (2.8), taking into account conditions (2.5) and (2.6), it is possible to determine Φ(t), Φ1(t):

Φ(t) = 2

H̄−Hk

R2
e ln Re

rk
− 1

2 (R2
e−r2

k)

(
r2
k − 1

2
R2

e−r
2
k

ln Re
rk

)
− H̄−Hk

ln Re
rk

+ Hk−Hw

ln
rk
rw

r2
k −

1
2

r2
k−r2

w

ln
rk
rw

, (2.9)

Φ1(t) = 2
H̄ −Hk

R2
e ln Re

rk
− 1

2 (R2
e − r2

k)
. (2.10)

If we take into account that the well flow rate q = 2πrwh
∂H
∂r

∣∣
r−rw

, then the expression for determining the well

flow rate will be obtained from (2.7) and (2.9) in the following form:
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q = 2πh

H̄−Hk

R2
e ln

Re
rk
− 1

2 (R2
e−r2

k)

(
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k− 1

2

R2
e−r2

k

ln
Re
rk

)
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Re
rk

+
Hk−Hw

ln
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rw

r2
k−

1
2

r2
k
−r2

w

ln
rk
rw

→

→
(
r2
w − 1

2
r2
k−r

2
w

ln
rk
rw

)
+ Hk−Hw

ln
rk
rw

.

(2.11)

Now let’s consider determining the gas flow rate flowing from the external zone to the internal zone at the rk
boundary. If we take into account that q1 = 2πrkh

∂H1

∂r

∣∣
r−rk

, then from (2.8) and (2.10) we can obtain an expression

for q1 in the following form:

q1 = 2πh

[
H̄k −Hk

1
2 (R2

k − r2
k)−R2

k ln Rk

rk
−

(
r2
k −

1

2

R2
k − r2

k

ln Rk

rk

)
− H̄k −Hk

ln Rk

rk

]
, (2.12)

where the value of the H function is determined by the following integral:

H =

∫
ϕ(p, s)dp+ const,

where the ϕ(p, s) function is determined by expressions (2.3) depending on the zone under consideration.
Taking (2.12) into account, we can reduce (2.11) to the following form:

q = q1 · ε+ 2πh
Hk −Hw

ln rk
rw

(1− ε), (2.13)

where ε =

R2
e−r2

k

ln
Re
rk

− r2
k−r2

w

ln
rk
rw

R2
e

(
2 ln Re

rk
−1
)

+r2
k

.

The resulting formula (2.13), taking (2.12) into account, makes it possible to determine the gas flow rate of the
well under the considered development conditions for the gas condensate deposits. At the same time, the difference
between the pseudo pressures Hk −Hw and H̄ −Hk can be determined by the following expressions:

Hk −Hw =
A

3
(p3
k − p3

w) +
B

2
(p2
k − p2

w) + C(pk − pw), (2.14)

H̄ −Hk =
A1

3
(p3

1 − p3
k) +

B1

2
(p2

1 − p2
k) + C1(p1 − pk), (2.15)

where following [12], the approximation coefficients A, B, C and A1, B1, C1 can be analytically calculated from the
relations:

A =
2(ϕk + ϕw − 2ϕsr)

(pk − pw)2
, B =

ϕk − ϕw
pk − pw

−A(pk + pw), C = ϕk −Ap2
k −Bpk, (2.16)

A1 =
2(ϕk + ϕ1 − 2ϕ1sr)

(p1 − pk)2
, B1 =

ϕ1 − ϕk
p1 − pk

−A1(pk + p1), C1 = ϕ1 −A1p
2
1 −B1p1. (2.17)

Here ϕw, ϕk and ϕ1 are the values of the integrand at the well bottomhole, at the border of the external and internal
zones, i.e. at pressure pk and at the well supply boundary; ϕsr = ϕ(psr, ssr), psr = pk+pw

2 , ϕ1sr = ϕ(p1sr, ρ1sr),

p1sr = p1+pk
2 .
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However, to apply the algorithm outlined above, it will be necessary to determine reservoir pressures and condensate
saturations at the boundary between the zones under consideration and at the supply boundary over time. To do this,
we will use the equations of material balances of gas and condensate.

3. Determination of average reservoir parameters over time

We write the material balance equation for gas and condensate in the internal zone in the following form:

qg − qg1 = − d

dt

{[
(1− s)pβ
z(p)pat

[1− c(p)γ̄(p)] +
sS(p)

Bo(p)

]
Ω(p, t)

}
, (3.1)

qo − qo1 = − d

dt

{[
s

Bo(p)
+ (1− s) pβc(p)

z(p)pat

]
Ω(p, t)

}
, (3.2)

where qg, qo are the well production rate of gas and condensate, respectively, qg1, qo1 are the flow rate of gas and
condensate invading from the external zone in the internal zone across the boundary of rk. Similar equations for the
external zone can be written in the following form:

qg1 = − d

dt

[
(1− s1)p1β

z(p1)pat
[1− c(p1)γ̄(p)] +

s1S(p1)

Bo(p1)

]
Ω1(p1, t), (3.3)

qo1 = − d

dt

[
s1

Bo(p1)
+ (1− s1)

p1βc(p1)

z(p1)pat

]
Ω1(p1, t), (3.4)

where p1, s1 are average reservoir pressure and condensate saturation in the outer zone. From (3.1)-(3.2) and (3.3)-
(3.4) we can obtain equations describing changes in average reservoir pressures and condensate saturations over time
for the internal and external zones, respectively:

dp

dt
= −

qg−qg1

Ω0Ω̄
(α4 + α2

G )− (α2α3 + α1α4) 1
Ω̄
dΩ̄
dt

(α5 + α6)α4 + (α7 + α8)α2
, (3.5)

ds

dt
= −

qg−qg1

Ω0Ω̄G
+ (α7 + α8)dpdt + α3

1
Ω̄
dΩ̄
dt

α4
, (3.6)

dp1

dt
= −

qg1

Ω01Ω̄1
(α4 + α2

G1
)− (α2α3 + α1α4) 1

Ω̄1

dΩ̄1

dt

(α5 + α6)α4 + (α7 + α8)α2
, (3.7)

ds1

dt
= −

qg1

Ω01Ω̄1G1
+ (α7 + α8)dp1

dt + α3
1
Ω̄ 1

dΩ̄1

dt

α4
, (3.8)

where the gas condensate factor for the internal and external zones at the corresponding pressures (p, p1) and con-
densate saturations (s, s1) is determined by the following expression:

G =

µ̄(p)Bo(p)pβ
z(p)pat

[1− c(p)γ̄(p)] + S(p)
ψ(s)

1
ψ(s) + µ̄(p)Bo(p)pβc(p)

z(p)pat

, (3.9)
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where Ω̄ = Ω
Ω0

is the ratio of the current volume of gas-saturated pores in the internal zone to its initial value, Ω̄1 = Ω1

Ω10

is the ratio of the current pore volume of the external zone to its initial value;

α1 = (1− s) pβ

z(p)pat
[1− c(p)γ̄(p)]− s S(p)

Bo(p)
,

α2 =
pβ

z(p)pat
[1− c(p)γ̄(p)]− S(p)

Bo(p)
,

α3 = s
1

Bo(p)
− (1−Bo)

pβc(p)

z(p)pat
,

α4 =
1

Bo(p)
− pβc(p)

z(p)pat
,

α5 = (1− s)
{

pβ

z(p)pat
[1− c(p)γ̄(p)]

}′
,

α6 = s

[
S(p)

Bo(p)

]′
,

α7 = s

[
1

Bo(p)

]′
,

α8 = (1− s)
[
pβc(p)

z(p)pat

]′
,

”
′
” means the derivative of p. Remaining notations have the same meaning as in [1, 2].
To solve systems of Equations (3.5), (3.6), and (3.7), (3.8), time dependences of pore volume for the corresponding

zones of the formation are required. As such equations, we can use the equations obtained in [13]. Below we present
these equations.

In the case of time-dependent elastic deformation

dΩ̄

dt
=
φ̄(p)− φ̄
τm

, (3.10)

where φ̄(p) = φ(p)
φ0

and φ̄(p) = exp[cm(p − p0)]; φ0, τm are the initial value of the porosity coefficient and relaxation

time, respectively; φ̄ = φ
φ0

.

And in the case of time-dependent creeping deformation

dΩ̄

dt
= cm

dp

dt
+ (p− p0)(m1 + cmγm) + γm(1− φ̄), (3.11)

where m1 is the creep factor, γm = 1
τm

.
Let us assume that in the external zone the reservoir is deformed according to the time-dependent elastic law, and

the internal zone is subject to time-dependent creeping deformation. Then, taking (3.10) into account and (3.11), we
rewrite Equations (3.5) and (3.7), respectively, in the following form:

dp

dt
= −

qg−qg1

Ω0Ω̄
(α4 + α2

G ) + (α2α3 + α1α4) 1
Ω̄

[(p− p0)m1e
−γmt]

(α5 + α6)α4 + (α7 + α8)α2 + (α2α3 + α1α4) 1
Ω̄

(cm + m1

γm
− 1

γm
m1e−γmt)

, (3.12)

dp1

dt
= −

qg1

Ω01Ω̄1
(α4 + α2

G1
)− (α2α3 + α1α4) 1

Ω̄1

φ̄(p1)−φ̄
τm

(α5 + α6)α4 + (α7 + α8)α2
, (3.13)

where the flow rate of gas filtering from the external zone to the internal zone (qg1) is determined by (2.12).
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It should be noted that other models of rock deformation can be taken into account in Equations (3.5) and (3.7) in
a similar way [6], [7]. For example, when in the internal zone the rocks are time-dependent elastic, and in the external

zone they are nonlinearly elastic (i.e. when dΩ̄
dt = cm exp[cm(p− p0)]), expressions for determining the pressures in the

internal and external zones, respectively, will be written out from (3.5) and (3.7) taking (3.10) into account as follows:

dp

dt
= −

qg−qg1

Ω0Ω̄
(α4 + α2

G ) + (α2α3 + α1α4) 1
Ω̄
φ̄(p)−φ̄
τm

(α5 + α6)α4 + (α7 + α8)α2
, (3.14)

dp1

dt
= −

qg1

Ω01Ω̄1
(α4 + α2

G1
)

(α5 + α6)α4 + (α7 + α8)α2 − (α2α3 + α1α4) cm
Ω̄1
ecm(p1−p0)

. (3.15)

Thus, systems of differential equations were obtained, consisting of Equations (3.6), (3.12), and (3.8), (3.13) (or
(3.6), (3.14), and (3.8), (3.15)), the solutions of which, with a known well flow rate qg, make it possible to determine
the average reservoir pressure and condensate saturation in both parts of the reservoir at any time in the case when in
the internal and external zones the rocks are subjected, respectively, to time-dependent creeping and time-dependent
elastic deformations (or time-dependent elastic and nonlinear elastic deformations etc.).

4. Algorithm for simulation of development

The above approach allows us to determine the main indicators of the development of gas condensate deposits under
various technological conditions, taking into account the difference in the nature of deformations of the near-wellbore
zone and those remote from the well bottomhole. In this case, you can use the algorithm below.

(1) Input initial data

t = 0, pw = p0, pk = p0, p1 = p0, s = s0, s1 = s0, φ = φ0, k = k0, q1 = 0 ;

(2) Initial values are calculated:

gas condensate ratio G0 = 1−c(p0)γ̄(p0)
c(p0) ,

gas and condensate reserves (at s0 = 0) Vg = πR2
ehφ0

[
1−c(p0)γ̄(p0)
z(p0)patm

]
, Vo =

Vg

G0
;

(3) If we consider the case of a given gas production rate (percent per year of the initial balance reserves), the

flow rate is determined by the following expression: qg =
Vgn
100 and goes to step ”6.4”, otherwise go to step ”4”;

(4) If the case of a given depression (∆p) is considered, the depression value is set, otherwise go to step “6”;
(5) Bottomhole pressure is calculated by the expression pw = p1 −∆p;
(6) Calculation of well flow rate for gas (qg) and condensate (qo):

6.1. The values of ϕ(p, s) and A, B, C are calculated for pressures pw, psr, pk using (2.3) and (2.16),
respectively;

6.2. Pseudo depression is determined Hk −Hw using (2.14);
6.3. The current gas flow rate (qg) is calculated using (2.13).
6.4. The current value of the condensate flow rate is determined : qo =

qg
G .

(7) Calculation of gas flow rate filtered through the boundaries of the internal and external zones (qg1):
7.1. The values of the integrand function ϕ1 and the approximation coefficients A1, B1, C1 are calculated

for the current pressure values p1, p1sr, pk using (2.3) and (2.17), respectively;
7.2. Pseudodepression H̄ −Hk is determined by expression (2.15);
7.3. The flow rate of gas filtering through the boundaries of the internal and external zones qg1 is calculated

by (2.12).
(8) The current value of the gas condensate ratio G is calculated by (3.9).
(9) For time t + ∆t, the current values of condensate saturation (s1) and pressure (p1) for the external zone by

(3.8) together with (3.13) taking into account (3.10) are calculated.
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(10) For time t+ ∆t, the current values of condensate saturation (s) and pressure (p) for the external zone by (3.6)
together with (3.12) taking into account (3.11) are calculated.

(11) The current values of the accumulated gas and condensate production and their recovery factors are deter-

mined: Kg =
∑t

t=0 qg∆t

Vg
and Kk =

∑t
t=0 qo∆t

Vo
.

(12) Checking the value of the reservoir pressure, if it is greater than its certain value as the final one, go to step
“4”, otherwise go to step “13”;

(13) Output of results and halt.

5. Analysis of the results of computer simulations

Using the above algorithm, a computer simulator was created for the process under consideration and a series of
calculations was performed. The research was carried out in two stages. At the first stage, the features of the influence
of heterogeneity on the dynamics of the drop in reservoir pressure during development are studied. For this purpose,
calculations were performed in two versions: in the first version, it is assumed that the drainage zone of the well
consists of two parts. In this case, in the internal zone the rocks are creeping, while in the external zone they deform
in a time-dependent elastic manner. In the second version, for comparison, calculations were performed for the case
when the rocks are creeping throughout the entire formation.

In the second stage, the aim is to study the influence of the ratio of the dimensions of the outer and inner zones. In
the second stage of the investigation, the goal is to study the influence of the ratio of the dimensions of the external
and internal zones. Three variants for the Re/rk ratio are considered: 1.5, 5 and 10.

In all variants, calculations were performed based on the following initial data:
Initial reservoir pressure p0=40.0 MPa;
Reservoir thickness h = 20 m.
Reservoir external boundary radius Re=1000 m;
External zone radius rk = 500 m;
Well radius rs = 0.10 m;
Initial reservoir permeability k0 = 0.1 ∗ 10−12m2;
Initial reservoir porosity coefficient φ0= 0.2;
Porosity creep coefficient m1 = 3.4 ∗ 10−7 MPa−1s−1.
Permeability creep coefficient k1 = m1

4 .

Relaxation time τm = 0.23 · 106 s;
Elasticity coefficient of porosity cm = 0.001 1/MPa
Elasticity coefficient of permeability βk = 0.01 1/MPa.
First, let’s look at the results of the first stage calculations. They are shown in Figure 2 and Figure 3 , where the

curves plotted with a solid line correspond to the case when heterogeneity is taken into account, and the dotted curves
illustrate the case when the well drainage area is considered homogeneous.

Figure 2 shows the change in reservoir pressure over time under the consideration conditions. As can be seen from
a comparison of the curves, neglecting the rheological heterogeneity of the reservoir leads to some overvaluation of the
current values of reservoir pressure. At the same time, at the beginning of development the difference between these
variants increases, and at the end of the process the curves intersect. In the case under consideration, the maximum
difference reaches up to 12.53%. This phenomenon is associated with the influence of reservoir pore compressibility,
which is confirmed by the curves of formation pressure versus gas recovery factor in Figure 3. From the p(Kg) curves
it can be seen that the moment of maximum deviation of the curves corresponds to a value of η equal to 0.55.

As noted above, to identify the peculiarities of the influence of the size of the internal zone on the development
process, calculations were performed for three different Re/rk ratios. The calculation results are presented in Figures
4-9, in which the curves labeled “1”, “2” and “3” correspond to Re/rk values of 1.5, 5 and 10, respectively.

The curves in Figure 4 illustrate the dynamics of changes in reservoir pressure in a rheologically heterogeneous
formation under the considered variants of Re/rk. As we can see, an increase in the radius of the internal zone leads
to an increase in current reservoir pressures. If you look at the curves of well production versus formation pressure
(qg(p)) in Figure 5, it can be seen that as the radius of the internal zone increases, the current flow rates become lower.
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Figure 2. Dynamics of reservoir pressures in cases where heterogeneity is taken into account (solid line)
and neglected (dashed line).

Moreover, at the same time, the flow rate of gas flowing from the external zone to the internal zone also decreases in
Figure 6. The reason for the described phenomenon is the negative effect of increasing the radius of the internal zone,
which has poorer permeability, on the flow process, similar to the skin effect.

It is also clear from the qg1(t) curves in Figure 6 that at the beginning of the process, when the redistribution is
not yet completed, there is an intensive increase in the gas flow rate flowing from the external zone to the internal
one. And this happens in all variants. As soon as the marked period ends, a decrease in qg1 begins in all variants.
Moreover, the smaller the internal zone, the greater the current values of qg1.

The nature of the p(t) and qg(t) dependences illustrated in Figure 4 and Figure 7, respectively, led to changes
in time of condensate saturation ρ(t) and gas condensate factor G(t). They are presented in Figure 8 and Figure
9, respectively. Thus, the intense drop in reservoir pressure in all variants caused intense condensation formation
in Figure 8. In this case, at the smallest radius of the internal zone (curves 3), the lowest reservoir pressures and,
consequently, high condensate saturations are observed. By the end of development, the stabilization of condensate
saturation and its slight decrease are explained by partial evaporation. This change in condensate saturation led to
the nature of the change in the gas condensate factor shown in Figure 9.

6. Conclusions

The paper considers the problem of flow of a gas-condensate system in the case when around a well, where the pres-
sure is significantly lower than the average reservoir pressure, the reservoir rocks are subject to creeping deformations,
and in a remote part of the reservoir the rocks are still compressed within the elastic limits. A solution to the problem
of flow of a gas-condensate mixture to a well was obtained, taking into account the time-dependent deformation of
reservoir rocks and the PVT properties of the gas-condensate system. An algorithm is proposed for calculating the
main development indicators for the depletion of gas condensate deposits under the considered conditions.

A number of computer studies were carried out using the described algorithm. The results of these studies showed
that taking into account changes in the rheological characteristics of the reservoir in the near-wellbore zone significantly
improves the forecasting of the main development indicators. Thus, in the case when the creep of the near-wellbore
zone is taken into account, the maximum difference in the current values of formation pressures reaches up to 12.53%.
It corresponds to a gas recovery factor value of 0.55.

The obtained solution also takes into account the differences in the absolute permeability values of the well bot-
tomhole zone and the remote part of the well drainage zone, which makes it possible to use it in studies of the skin
effect.

The approach used in this work can also be used to solve problems of interpreting well-test data.
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Figure 3. Dependence of reser-
voir pressures on the gas recov-
ery factor in heterogeneous (solid
line) and homogeneous reservoirs
(dashed line).

Figure 4. Dynamics of the
reservoir pressure in a rheologi-
cally heterogeneous formation at
different values of Re/rk: 1-1.5,
2-5 and 3-10.

Figure 5. Dependency curves
of gas flow rate in a rheologically
heterogeneous formation at var-
ious values of Re/rk: 1-1.5, 2-5
and 3-10.

Figure 6. Dynamics of the
curves of gas flow flowing from
the external zone to the internal
zone at different values of Re/rk:
1-1.5, 2-5 and 3-10.
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Figure 7. Dynamics of well
flow rate at different values of
Re/rk: 1-1.5, 2-5 and 3-10.

Figure 8. Dynamics of the
condensate saturation coefficient
at different values of Re/rk: 1-
1.5, 2-5 and 3-10.

Figure 9. Dynamics of the gas
condensate factor at various val-
ues of Re/rk: 1-1.5, 2-5 and 3-10.
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